
Citation: Li, X.; Huang, X.; Ding, P.;

Wang, Q.; Wang, Q. Research on an

Intelligent Identification Method for

Cable‑Stayed Force with a Damper

Based on Microwave Radar

Measurements. Buildings 2024, 14,

568. https://doi.org/10.3390/

buildings14030568

Academic Editor: George Morcous

Received: 17 January 2024

Revised: 14 February 2024

Accepted: 17 February 2024

Published: 20 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Research on an Intelligent Identification Method for
Cable‑Stayed Force with a Damper Based on Microwave
Radar Measurements
Xiaogang Li 1,2,*, Xiangsheng Huang 1, Peng Ding 3, Qiansong Wang 1 and Qin Wang 1

1 School of Civil Engineering and Architecture, Chongqing University of Science & Technology,
Chongqing 400074, China; 2022206095@cqust.edu.cn (X.H.); 13618333005@163.com (Q.W.);
2023206039@cqust.edu.cn (Q.W.)

2 Chongqing Key Laboratory of Energy Engineering Mechanics & Disaster Prevention and Mitigation,
Chongqing University of Science & Technology, Chongqing 400074, China

3 T. Y. Lin International Engineering Consulting (China) Co., Ltd., Chongqing 401121, China;
dingpeng@tylin.com.cn

* Correspondence: 2021058@cqust.edu.cn; Tel.: +86‑135‑9409‑4526

Abstract: Aiming at the shortcomings of traditional contact cable force monitoring technology in
accuracy, efficiency, and applicability, an assessment method based on microwave radar measure‑
ments is proposed to measure a sloping cable with a damper for lengths greater than 200 m in this
study. A formula for calculating the cable‑stayed force with a damper is derived, and an intelligent
cable force monitoring platform is developed based on cloud technology. Based on the Chongqing
Nanjimen Railway Bridge, a real bridge test was carried out. It was indicated that the microwave
radarmethod could be used to freely adjust themeasurement angle and possessed high applicability
and penetration. It significantly improved the measurement accuracy and efficiency of cables with a
damper for lengths greater than 200m. It has good application value for the solution of the problems
of complicated operation and high costs in the monitoring of cables with a damper. The formula for
calculating the cable force with a damper was proven to be reliable and accurate when compared to
the results of direct calculation and the equivalent cable length method. It was able to significantly
reduce the calculation error of the cable force caused by the influence of the damper. Additionally,
the intelligent cable force monitoring platform was utilized to enhance the level of digitization, pro‑
viding technical support for the scientific management and maintenance of bridges.

Keywords: microwave radar; damper; cable‑stayed bridge; cable force monitoring; smartization

1. Introduction
The cable is a vital component of a cable‑stayed bridge, as it directly impacts the

bridge’s load‑bearing capacity, shape, and structural safety [1–3]. Accurate measurement
of the cable force and its variations is crucial for various purposes, including construc‑
tion control, health monitoring, safety assessment, and damage diagnosis of cable‑stayed
bridges [4].

Currently, there are four common methods for cable force monitoring: the tension
jack method, pressure sensor method, vibration frequency method, and magnetic flux
method [5–7]. However, each method has its limitations and advantages. The tension
jack method [8,9] is primarily used during the tensioning process, but it cannot provide
continuous monitoring of the cable force once a bridge is constructed. The pressure sensor
method [10] offers high measurement accuracy and simplicity of operation. However, a
pressure sensor needs to be embedded during the cable’s construction stage, and if the
sensor is damaged, it cannot be easily replaced. The magnetic flux method [11] has limita‑
tions in terms of measurement efficiency and applicability, and it is still in a critical stage
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of research and development. When using the vibration frequency method [12,13] to mea‑
sure a cable‑stayed cable with a damper, the vibration sensor is more susceptible to the
influence of the damper. Thus, a specific operating platform or measurement technique
is often required for the accurate identification of the natural vibration frequency of the
cable‑stayed cable.

Traditional cable forcemeasurementmethods have some disadvantages, such as their
limited range, low efficiency, insufficient accuracy, and applicability under certain condi‑
tions. Therefore, the development of a convenient and efficient cable force measurement
method is of great practical significance for the development of long‑span bridges. In
view of the methods of cable force measurement, scholars have conducted much related
research. Jo, Hyeon Cheol et al. [14] proposed a tension and tension range evaluation
method based on multiple digital images that was able to obtain the cable force more eco‑
nomically and efficiently than traditional methods could. Xiaofeng Liu et al. [15] proposed
a vibration‑based elastic–magnetic (VBEM) method that had a good ability to identify the
natural frequencies of each order of steel strand. Hongbo Liu [16] conducted dynamic re‑
sponse tests on closed cables and high vanadium cables under prestress and proposed a
deep learning model that could intelligently identify the cable force for construction based
on test data. Wen‑Hwa Wu et al. [17] considered the specific arrangement of the bound‑
ary constraints of a suspender of an arch bridge and were able to simply determine the
tension of the suspender by concentrating multiple measurements at one end. Marco Bon‑
opera et al. [18] studied the free transverse vibration of a post‑reinforced thin‑walled steel
box girder and found that the dynamic force of the beam largely depended on the contact
between the cable and the surrounding section.

There are two common methods for calculating the cable‑stayed force with a damper
(length ≥ 200 m): the equivalent cable length method and the energy method [19–21].
Xiongjun He et al. [19] used the finite‑element equivalent cable length instead of the calcu‑
lated cable length in the traditional vibration frequencymethod to measure the cable force,
which effectively improved the accuracy of the cable force test. Shenghua Tang et al. [20]
constructed a formula for calculating the equivalent cable length based on the differen‑
tial equation of cable vibration and the energy principle. Based on the derivation of ca‑
ble force formulas under different constraint conditions with the energy method, Xianyu
Wang et al. [21] conducted a systematic analysis from three perspectives: the optimization
of the cable force at the boom design stage, the measured cable force at the bridge com‑
pletion stage, and the influence of the cable force on the bending stiffness at the operation
stage. Gong Junh [22] took a concrete cable‑stayed bridge with a main span containing a
260 m high‑speed railway as an example, and they designed the bridge structure accord‑
ing to the functional needs and site conditions; then, they established a three‑dimensional
finite‑elementmodel and adopted theminimumbending energymethod and the influence
matrix method to determine the reasonable construction state of the cable‑stayed bridge.
However, the equivalent cable length method only considers the damper as the anchoring
section and reduces the length of the cable. It fails to effectively consider the influence of
the damper. The energy method only considers the damping of the damper when study‑
ing the shape function of the cable, ignoring its stiffness. However, the damper has an
equivalent stiffness K that affects the shape function of the cable. This results in an insuffi‑
cient calculation of the cable force [23,24]. Thus, it is essential to adjust the shape function
to align with reality and enhance the accuracy of calculations.

In summary, the field of cable force monitoring with a damper (length ≥ 200 m)
presents a significant contradiction. Traditional cable force measurement methods are eas‑
ily affected by the damper, resulting in low measurement accuracy, efficiency, and appli‑
cability. This limitation makes it difficult to meet actual engineering needs. Furthermore,
the influence of the damper is not fully considered in the calculation of cable force, which
requires improved accuracy. The emergence of big data cloud technology has opened up
new opportunities for intelligent monitoring. An intelligent cable force monitoring plat‑
form that integrates monitoring, evaluation, and early warning [24] can reduce costs, in‑
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crease efficiency, and provide technical support for the scientific management and main‑
tenance of bridges.

This study utilizesmicrowave radar as a tool for detecting the vibration frequency of a
cable. The energymethod ismodified to incorporate the presence of a damper, allowing for
the description of the cable’s shape function. Then, a new formula for calculating the cable
forcewith a damper is derived by combining the equivalent stiffness formula of the damper
with the modified energy method. The data collected by the microwave radar are then
uploaded to an intelligent cable force monitoring platform. The platform automatically
processes, analyses, and stores the data, providing cable force monitoring values through
the derived calculation formula. An evaluation and early warning system is implemented
to assess the cable’s operational status, facilitating intelligent monitoring, evaluation, and
early warning of the cable force. This approach provides a scientific basis for ensuring the
safe operation of cables.

2. Working Principle
2.1. Microwave Radar Differential Interferometry Technique

Microwave radar differential interferometry [25–28] is a technique that captures the
subtle vibrations of an object at different moments using microwave radar. This technique
relies on the characteristics ofmicrowaves, which can be absorbed, reflected, and projected.
The phase sum of two observations of an inclined cable is obtained using the differential
interferometry technique to determine its deformation over time. A working diagram of
microwave radar (Figure 1) and the deformation calculation formula are presented below.
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The sum of the two observations is used to obtain the phase:

∆φ = φ2 − φ1 =
4π

λ
· (R2 − R1) (1)

The form variables can be expressed as follows:

d = R2 − R1 =
λ

4π
·∆φ (2)
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2.2. Microwave Radar Frequency Conversion
After the microwave radar collects the time‑domain signals of the two vibrations be‑

fore and after the diagonal cable, the frequency‑domain signals are obtained through a
Fourier transformation: d(ts) [29]. d(ts) can be calculated with Equation (3):

X( fd) =
∫ Tx

0
d(ts)exp(−j π fdts)dts (3)

where
Tx—the deformation observation time;
fd—the frequency resolution, which is inversely proportional.

3. Calculation Formula for a Diagonal Cable with a Damper
3.1. Principle

Firstly, themode function of the cable is determined, followed by the integration of its
kinetic and potential energy over the entire length at a specific time. Then, based on the law
of conservation of energy, the relationship between the cable force S and the angular fre‑
quencyω is established. Finally, the equation for the relationship between the cable force
and frequency is derived by solving and simplifying the equations [30–32]. The equivalent
stiffness K in the calculation formula can be eliminated by calculating different order fre‑
quencies. However, this approach increases the workload of monitoring and calculation.
The damper’s information can typically be obtained through design data, field information,
or the nameplate. By calculating the equivalent stiffness K based on the known informa‑
tion of the damper, the workload can be significantly reduced, the monitoring efficiency
can be improved, and future tests can be facilitated. An equivalent stiffness calculation
method was used to modify the existing energy calculation formula given that the damper
information was available. It resulted in a more convenient, concise, and efficient formula
for calculating cable force with dampers.

3.2. Boundary Conditions
Under the action of dampers, the cable boundary conditions become complicated. Ac‑

cording to [33–35], the dynamic model was reasonably simplified in this research, and the
damper was simplified as the equivalent stiffness K. The cable was connected to the bridge
tower and the main beam through an anchor, and its boundary condition was between ar‑
ticulation and consolidation. However, when the cable reached a certain length, the bound‑
ary condition of articulation or solid connection had little influence on the calculation of
the cable force. Therefore, this study assumes that the cable’s boundary conditions were
hinged, so it was assumed that the boundary condition of the cable was articulation.

3.3. Calculation Process
According to [36], the sagging of a cable has little influence on high‑order frequencies

(4th and above). Therefore, this study took the fourth‑order mode as an example for the
calculation, without considering the influence of the cable’s dead weight, sagging, and
out‑of‑plane vibration.

When a cable vibrates, the existence of a stagnation point significantly influences the
vibration mode of the span with the damper, but it has little influence on the other spans.
Consequently, it is assumed that the shape function of the other spans is still a sine function
with only one constant difference, and the span with the damper is superimposed with an
anti‑symmetric higher‑order term. Therefore, this study only corrected the calculation of
this cross‑shape function with the damper, as shown in Figure 2 below.
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Here,

1⃝—v(x, t) = sin(2nπx/l)
sin(nγπ)

z(t),

2⃝—v(x, t) = sin(nπx/l)
sin(nγπ)

z(t),

3⃝—v(x, t) = ψ1(x)z(t) = Asin(nπx/l)+Bsin(2nπx/l)
Asin(nγπ)

z(t).

The shape function that is superimposed can be expressed as

ψ1(x) =
A sin

(
πxn

l
)
+ B sin

(
2πxi

l

)
A sin(nγπ)

(4)

where
A, B—constants to be determined;
γ—distance from the damper to the end.
The displacement of points on the diagonal cable at any instant t is described as fol‑

lows:
v(x, t) = ψ1(x)z(t) = ψ1sin(ωt + α) (5)

The kinetic energy (T) and potential energy (V) of the lasso at any given moment (t)
are determined as follows:

T = mω2L(A2 + B2)cos2(ωt + a)/(4A2nsin2γπ) (6)

V = [0.5EI l
n (0.5A2 π4n4

l4 + 8B2 π4n4

l4 ) + 0.5K
(

A sinnπγ + B sin2nπγ)2]
+[0.5S l

n (0.5A2 π2n2

l2 + 2B2 π2n2

l2 )] sin
2(ωt+α)

A2sin2nγπ

(7)

According to the law of conservation of energy, the maximum kinetic energy is equal
to the maximum potential energy:

Tmax = Vmax (8)

Finally, the force of the rope is obtained:

S = l2

8n2π2 {−
{

2Kn
l(sin2(nπγ)+4sin2(2nπγ))

+ 20 n4π4

l4 EI − 5mω2
}
+ [(2Kn/l(sin2(nπγ)−

4sin2(2nπγ)) + 12 n4π
4

l4 EI + 3mω2)2+64K2sin2(nπγ)sin2(2nπγ)n2/l2]l/2}
(9)

The term 64K2sin2(nπγ)sin2(2nπγ)n2/l2]l/2 in Equation (9) is small and negligible
compared to the other terms, so it can be simplified to

S =
4m f 2

n l2

n2 − n2π2

l2 EI − 2Kl
nπ2 sin

2(nπγ) (10)
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Compared with the direct calculation method, the modified energy method includes
an additional term ( 2Kl

nπ2 sin2(nπγ)) in the calculation formula for the cable force with
dampers, which increases the effect of the dampers.

According to the “Technical Regulations for Energy Dissipation and Shock Absorp‑
tion in Buildings (JGJ297‑2013)” [37], the equivalent stiffness K of the damper is calculated
based on the parameter information.

µ =
x
x1

(11)

K =
(1 − α)k1

µ
+ αk1 =

F
x

(12)

where
K—the damper’s equivalent stiffness;
F—the damper’s maximum damping force;
x—the damper’s maximum stroke;
x1—the yield displacement;
α—the post‑yield stiffness ratio;
k1—the initial elastic stiffness of the damper.
By substituting Equations (11) and (12) into Equation (10), we obtain

S =
4m f 2

i l2

i2
− π2i2

l2 EI − 2Fl
nπ2x

sin2(nπγ) (13)

When the flexural stiffness is disregarded, Equation (14) takes the following form:

S =
4m f 2

i l2

i2
− 2Fl

nπ2x
sin2(nπγ) (14)

3.4. Consideration of the Correction of Bending Stiffness
There is a correlation between the cable force S calculated with Equation (14) and the

actual cable force S0, which can be corrected with the correlation coefficient ζ: S0 = ζS.
For different cable lengths l, the relationship between the measured cable force and the
actual cable force is nonlinear. Therefore, through the nonlinear fitting of the correlation
coefficient, the functional relationship between the correlation coefficient ζ and the cable
length l can be obtained [5].

ζ = 1.00038 −

0.53036 ×
[

1 +
(

l
4.29473

)1.82264
]−1

 (15)

4. Evaluation and Early Warning through Cable Monitoring Based on
Cloud Technology

An intelligent cable forcemonitoring platform that integratedmonitoring, evaluation,
and early warning was established using big data cloud technology [38–44]. The platform
usedmicrowave radar as a sensor to collect cable vibration data, whichwere then transmit‑
ted to the data platform through an interface protocol. After processing and analyzing the
data, the cable’s status was evaluated using an objective evaluation and early warning sys‑
tem, and corresponding management measures were provided. The platform comprised
the following components and the structure of the intelligent cable force monitoring plat‑
form is shown in Figure 3:
1. Sensor and data acquisition and transmission system: First, microwave radar was

used to collect the cable vibration data in real time, and then the datawere transmitted
to the processing, analysis, and storage system through adata acquisitionmodule and
data transmission module.



Buildings 2024, 14, 568 7 of 23

2. Data processing, analysis, and storage system: After the data were transmitted to the
platform, the calculation formula for the cable forcewith a damperwas used to obtain
the monitoring values for professional analysis.

3. Evaluation and earlywarning system: After themonitoring valueswere obtained, the
following evaluation mechanism was established according to the “Technical specifi‑
cation for operation monitoring of urban rail transit facilities Part 2: Bridges
(GB/T 39559.2‑2020) [S]” [45]:

∆ = |Sσ| − β|Mσ| ≤ 0, normal (16)

∆ = |Sσ| − β|Mσ| > 0, early warning (17)

where
|Sσ|—the monitoring value of the cable force;
|Mσ|—the corresponding theoretical calculated value of the cable force;
β—the discount factor of the theoretical calculated value of the cable force, β ∈ [0.95,

1.00].
After the evaluation system, the following determinations were made: (1) The status

of the cable was normal according to the routine management; (2) there was a cable sta‑
tus warning, which should be analyzed through research and judgment to put forward
solutions, including the need for special inspections, train speed limits, and other recom‑
mendations.

4. User front‑end: Instructions were issued and data management functions were per‑
formed.
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5. Engineering Applications
5.1. Project Overview

The Chongqing Nanjimen Railway Bridge is currently the world’s largest dedicated
cable‑stayed bridge for railway tracks. Its structural form is that of a five‑span high‑ and
low‑tower double‑cable‑plane semi‑floating system, and it has a span arrangement of
34.5 m + 180.5 m + 480 m + 215.5 m + 94.5 m. The main beams of the main bridge are
all in the form of steel box composite beams, and the bridge tower is in the form of a portal
bridge tower. The low bridge tower has a total height of 158 m, while the high bridge
tower has a total height of 227 m. The diagonal cable used is a Φ 7.0 mm galvanized
high‑strength low‑relaxation parallel‑steel‑wire HDPE‑sheathed and finished cable, with
a tensile strength of not less than 1770 MPa and a tensile elastic modulus of not less than
195,000 MPa. The cable‑stayed steel wire is coated with zinc −5% aluminum/mixed rare
earth alloy; the steel wire is arranged in a compact concentric twist, and the outermost steel



Buildings 2024, 14, 568 8 of 23

wire is twisted at an angle of 3.5◦ with respect to the ground with a left turn. The outer
layer of the cable is a high‑density polyethylene sheath, and a double‑helix coil pipe jacket
is used to resist wind and rain vibrations. The high tower’s side has 27 pairs of perma‑
nent cables—NMC1–NMC27(north mid‑span cable) and NSC1–NSC27 (north side‑span
cable)—while the low tower’s side has 16 pairs of diagonal cables: SSC1–SSC16 (south
side‑span cable) and SMC1–SMC16 (south mid‑span cable). A linear viscous damper with
a length greater than 200 m is installed at both ends of the diagonal cables and connected
to the main beam. The bridge’s layout is shown in Figures 4–9.
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5.2. Health Monitoring System
5.2.1. System Overview

The long‑termhealthmonitoring of theChongqingNanjimenRailwayBridge includes
load and environmental monitoring, overall static and dynamic response monitoring, and
local response monitoring. The overall layout of the health monitoring points of the whole
bridge and the sensor information are shown in Figure 10 and Table 1: 1⃝: displacement of
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the expansion joint; 2⃝: angle of the beam end; 3⃝: video surveillance; 4⃝: vertical deforma‑
tion of themain beam; 5⃝: main beam stress; 6⃝: main beam temperature; 7⃝: steel structure
fatigue; 8⃝: horizontal displacement of the pier top; 9⃝: main beam vibration (transverse);
10⃝: main beam vibration (longitudinal); 11⃝: GNSS deformation system; 12⃝: ship collision
(lateral); 13⃝: ship collision (vertical); 14⃝: ship collision (longitudinal); 15⃝: wind speed and
direction; 16⃝: temperature and humidity; 17⃝: water level; 18⃝: cable force monitoring; 19⃝:
rainfall; 20⃝: main tower vibration (transverse); 21⃝: main tower vibration (longitudinal); 22⃝:
main tower stress; 23⃝: main tower temperature.
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Table 1. Health monitoring equipment information.

Monitoring Item Equipment Category Monitoring Frequency

1⃝ Fiber grating displacement
meter 1 Hz

2⃝, 8⃝ Inclination sensor 1 Hz

4⃝ Differential pressure—static
level 1 Hz

5⃝, 7⃝, 22⃝ Fiber grating strain gauge 1 Hz
6⃝, 16⃝, 23⃝ Hygrograph 1/600 Hz

9⃝, 10⃝, 20⃝, 21⃝ Acceleration sensor 1/120 Hz
11⃝ GNSS 1 Hz

12⃝, 13⃝, 14⃝ Acceleration sensor 1 Hz
15⃝ Mechanical anemometer 1 Hz
17⃝ Radar water level gauge 1/600 Hz

18⃝
Cable force acceleration

sensor 1/120 Hz

Transcore pressure sensor 1/60 Hz
19⃝ Rain gauge 1/60 Hz

5.2.2. Microwave Radar Application
The microwave radar method, vibration frequency method, and pressure sensor

methodwere used tomeasure SMC1, SMC16, NMC1, andNMC27 of the ChongqingNanji‑
men Railway Bridge. The schematic diagrams of the field measurements are shown
in Figure 11, and the test data are shown in Figure 12 and Tables 2 and 3. The deviation rate
of the cable force measured with the three test methods—namely, the vibration frequency
method, pressure sensor method, and microwave radar method—was equivalent to the
deviation ratio of the theoretical cable force: δ = S2−S1

S1
× 100%; here, δ is the deviation rate

of the cable force, S1 is the theoretical cable force, and S2 is the measured cable force.
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Table 2. Measurement results of the vibration frequency method, pressure transducer method, and
microwave radar method for an inclined cable with a damper.

Number
Fundamental
Frequency

Theoretical
Cable Force
S1 (kN)

Measured Cable Force S2 (kN) Deviation Rate of Cable Forceδ
Vibration
Frequency
Method

Pressure
Sensor
Method

Microwave
Radar
Method

Vibration
Frequency
Method

Pressure
Sensor
Method

Microwave
Radar
Method

NMC27 0.43 6902 6550 6262 6860 −5.1% −9.3% −0.6%

Table 3. Measurement results of the vibration frequency method, pressure sensor method, and mi‑
crowave radar method for an inclined cable without a damper.

Number
Fundamental
Frequency

Theoretical
Cable
Force S1
(kN)

Measured Cable Force S2 (kN) Deviation Rate of Cable Forceδ
Vibration
Frequency
Method

Pressure
Sensor
Method

Microwave
Radar
Method

Vibration
Frequency
Method

Pressure
Sensor
Method

Microwave
Radar
Method

SMC1 3.33 4139 4010 3901 4060 −3.1% −5.8% −1.9%
SMC16 0.71 6853 6403 6302 6638 −6.6% −8.0% −3.1%
NMC1 1.78 3695 3903 3609 3804 5.6% −2.3% 2.9%

Table 2 demonstrates that for the NMC27 cable with a damper longer than 200 m, the
deviation rate of the force measured with microwave radar was only 0.6%. This rate was
significantly lower than those of the vibration frequency and pressure sensor methods,
indicating that the microwave radar method was highly accurate and reliable. Table 3
shows that the cables without dampers, namely, SMC1, SMC16, and NMC1, which had a
length of less than 200 m, had a maximum deviation rate for the cable force of 3.1% when



Buildings 2024, 14, 568 15 of 23

measured using the microwave radar method. This was lower than the deviation rates
obtained using the vibration frequency method (6.6%) and the pressure sensor method
(8.0%). The results confirmed the excellent applicability of the microwave radar method
in meeting the required specifications.

In this study, three methods were applied to measure the cable force of a cable‑stayed
cable of the Chongqing Nanjimen Railway Bridge. The following were the results: Mi‑
crowave radar can be used to directly set up freely adjustable equipment, and the cable
force measurement can be completed by only two people. The vibration frequency is in‑
fluenced by the damper, and a ladder needs to be set up. The pressure sensor method
is more complex and requires embedding in advance for measurement. These two meth‑
ods need 3–4 people to complete the work. The vibration frequency method and pressure
sensor method do not support multi‑target measurement, as only one cable can be mea‑
sured at a time. In contrast, the microwave radar method can be used to measure the
cable force of more than 10 cables simultaneously. This method is based on the princi‑
ple of non‑contact measurement, and it provides better stability and efficiency than con‑
tact measurement methods do. Additionally, it can penetrate the HDPE sheath, result‑
ing in more accurate measurement results. Compared to traditional contact measurement
methods, the microwave radar method offers significant advantages in terms of measure‑
ment accuracy and efficiency for stayed cables with dampers. Table 4 demonstrates that
the microwave radar method has significant advantages over traditional contact measure‑
ment methods in terms of measurement accuracy and efficiency for an inclined cable with
a damper.

Table 4. Comparison of the advantages and disadvantages of the vibration frequency method, pres‑
sure sensor method, and microwave radar method.

Project Vibration Frequency Method Pressure Sensor Method Microwave Radar Method

Labor cost 3–4 people 3–4 people 2 people

Multi‑object measurement Nonsupport Nonsupport Up to 10 cables can be
measured simultaneously

Precision The deviation of cable force is
large

The cable force deviation is
large Cable force deviation is low

Efficiency One at a time One at a time More than 10 at a time

Measurement parameter Frequency Stress Displacement

Measurement mode Contact measurement Contact measurement Non‑contact measurement

How tedious the
preparation is

A ladder or an elevator is
necessary

The sensor must be
embedded in advance

Can be directly set up and
freely adjusted

Penetration characteristic No No Penetrable HDPE/PE sheath

5.2.3. GNSS Application
The Chongqing Nanjimen Railway Bridge relies on a GNSS deformation system to

monitor the displacement of the main beam and bridge tower. The monitoring items in‑
clude the transverse, longitudinal, and vertical spatial deformation data of the main beam,
as well as the transverse, longitudinal, and vertical spatial deformation data of the top
bridge tower. This system provides an important basis for the assessment of the state of
the bridge structure. The on‑site installation diagram is shown in Figure 13.



Buildings 2024, 14, 568 16 of 23Buildings 2024, 14, x FOR PEER REVIEW 17 of 23 
 

 
Figure 13. Photo of the special GNSS antenna used in the field. 

5.2.4. Application of an Environmental Monitoring System 
A temperature and humidity sensor was used to measure the changes in the ambient 

temperature of the bridge, and the changes in the wind speed and direction at the bridge 
site were measured with a wind speed and direction instrument, which provided a basis 
for the analysis of the working environment of the bridge and an evaluation of the driving 
safety. The ambient temperature measurement points were arranged at the closing section 
of the main span of the main bridge, and the wind speed and direction measurement 
points were arranged at the top of tower P3 and the closing section of the main span of 
the main bridge. The on-site installation diagram is shown in Figures 14 and 15. 

Based on the ambient temperature monitoring system and the wind speed and direc-
tion monitoring system, the temperature and wind speed and direction of Chongqing 
Nanjimen Railway Bridge were monitored from 1 January 2023 to 31 December 2023. It 
was found that the maximum wind speed at the measurement point of the middle span 
of the main bridge was about 17.3 m/s, the daily maximum temperature was 39.3 °C, and 
the daily minimum temperature was 4 °C. 

 
Figure 14. Photo of the hygrograph site. 

Figure 13. Photo of the special GNSS antenna used in the field.

Based on the application of the GNSS deformation monitoring system, the maximum
vertical deformation, transverse deformation, and longitudinal deformation of the main
beam of the Chongqing Nanjimen Railway Bridge were monitored from 1 January 2023 to
31 December 2023. It was found that the deformation of the main beam at the measuring
point was not abnormal within the theoretically calculated deformation envelope. The
interval of the change in the vertical GNSS deformation of the upper 10 upstream sides
of the main beam monitoring section was [−411.4, 88.6], and the amount of change was
500.0 mm.

5.2.4. Application of an Environmental Monitoring System
A temperature and humidity sensor was used to measure the changes in the ambient

temperature of the bridge, and the changes in the wind speed and direction at the bridge
site were measured with a wind speed and direction instrument, which provided a basis
for the analysis of the working environment of the bridge and an evaluation of the driving
safety. The ambient temperature measurement points were arranged at the closing section
of themain span of themain bridge, and thewind speed anddirectionmeasurement points
were arranged at the top of tower P3 and the closing section of the main span of the main
bridge. The on‑site installation diagram is shown in Figures 14 and 15.
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Figure 15. Field photo of the anemometer.

Based on the ambient temperature monitoring system and the wind speed and di‑
rection monitoring system, the temperature and wind speed and direction of Chongqing
Nanjimen Railway Bridge were monitored from 1 January 2023 to 31 December 2023. It
was found that the maximumwind speed at the measurement point of the middle span of
the main bridge was about 17.3 m/s, the daily maximum temperature was 39.3 ◦C, and the
daily minimum temperature was 4 ◦C.

5.3. Application of the Derived Equation for the Calculation of the Cable Force with Dampers
5.3.1. Error Analysis of the Formula for Calculating the Cable Force of a Cable‑Stayed
Cable with a Damper

The direct calculation method, the equivalent cable length method, and the derived
formula for the calculation of the force of a cable‑stayed cable with a damper were used
to calculate the force of a cable‑stayed cable (NMC16‑NM27) of the Chongqing Nanjimen
Railway Bridgewith a length of over 200m, as shown in Figure 16; the detailed parameters
of the damper are shown in Table 5; the results were analyzed and verified, and they are
shown in Table 6.

Equation (14) of this paperwas used to calculate the cable force of the cable. As shown
in Table 6 and Figure 16, for the cable with a damper, the maximum error of the cable force
calculatedwith the direct calculationmethodwith respect to the theoretical cable forcewas
5.5%, and the total cable force was too large. The maximum error of the equivalent cable
length method was −7.2%, and the total calculated cable force value was small, which
proved that using the equivalent cable length method to calculate the cable force could not
effectively solve the influence of the damper on the cable force. The maximum error of the
cable force obtained by using the derived formula of the cable with a damper was 3.9%,
which was lower than that of the equivalent cable lengthmethod and the direct calculation
method. It was proved that the cable calculation formula was effective, and the calculation
accuracy was higher than that of the direct calculation method and the equivalent cable
length method.
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Table 5. Information on the damper parameters.

Types
Maximum

Damping Force
(kN)

Damping Index α Damping Factor C KN/(m/s)0.4 Maximum Stroke x (mm)

Linear viscous
dampers 2700 0.3 3000 ±650

Table 6. Comparison of the calculation results of the three methods.

Number
Designed
Cable Force

(kN)

Actual Calculated Cable Force (kN) Error Relative to the Theoretical Force

Direct
Calculation
Method

Equivalent
Cable
Length
Method

Cable Force
Calculation
Method with
Dampers

Direct
Calculation
Method

Equivalent
Cable
Length
Method

Cable Force
Calculation
Method with
Dampers

NSC16 3106 3281 3086 3178 5.6% −0.6% 2.3%
NSC17 5075 5217 4915 5109 2.8% −3.2% 0.7%
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NSC22 5103 5285 4995 5152 3.6% −2.1% 1.0%
NSC23 5124 5175 4897 5037 1.0% −4.4% −1.7%
NSC24 5141 5115 4845 5077 −0.5% −5.8% −1.3%
NSC25 5019 5058 4795 5018 0.8% −4.5% 0.0%
NSC26 6406 6677 6333 6636 4.2% −1.1% 3.6%
NSC27 5336 5454 5177 5411 2.2% −3.0% 1.4%
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5.3.2. Analysis of the Influence of Bending Stiffness on the Calculation
In this study, Equation (14) was used to calculate the cable force of a cable‑stayed

cable, and the influence of the bending stiffness was not considered in the calculations. In
order to reduce the deviation between the calculated cable force and the measured cable
force, the bending stiffness of the 12 cables mentioned above was corrected according to
Equation (15) in Section 3.4, and the calculations are shown in Table 7.

Table 7. Influence of the flexural stiffness of the cable.

Cable Number Original Cable
Length (m) S (EI = 0 (kN)) S0 (EI ̸= 0 (kN)) ζ

NSC16 208 3178 3178 1.00
NSC17 218 5109 5109 1.00
NSC18 228 5230 5230 1.00
NSC19 238 5218 5218 1.00
NSC20 248 4469 4469 1.00
NSC21 259 5008 5008 1.00
NSC22 269 5152 5152 1.00
NSC23 279 5037 5037 1.00
NSC24 289 5077 5077 1.00
NSC25 300 5018 5018 1.00
NSC26 310 6636 6636 1.00
NSC27 321 5411 5411 1.00

After the coefficient correction, it was found that when the cable was long, the influ‑
ence of the bending stiffness on the accuracy of the measured cable force was almost zero
and could be ignored. Therefore, when calculating the cable force of a long and thin cable,
the influence of flexural stiffness should not be considered.

5.4. Intelligent Cloud Platform Application
To improve the scientific management of bridges and monitor the operational status

of the cable‑stayed cables in real time, this study established an intelligent cable force mon‑
itoring platform using the Chongqing Nanjimen Railway Bridge as a case study. An eval‑
uation and early warning mechanismwas established based on Equations (16) and (17), as
shown in Figure 17.
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Figure 17 shows that the use of sensors and data acquisition and transmission sys‑
tems to collect real‑time data in the field can greatly improve the collection efficiency and
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accuracy and can save labor costs. Then, the data were uploaded to the data processing,
analysis, and storage system through cloud technology, analysis, and storage, the complex
data were refined, and the cable force monitoring value was obtained after calculation and
analysis. Finally, the cable force monitoring value was entered into the evaluation and
early warning system. After systemic research and judgment, the real‑time operation sta‑
tus of the cable could be presented to the user’s front end simply and clearly. The intelli‑
gent cable force monitoring platform had the functions of fine analysis and efficient data
processing, which could effectively improve the level of digitization of bridge monitoring
and provide technical support for the scientific management of bridges.

6. Conclusions and Prospects
6.1. Conclusions

Relying on the microwave radar method, a derived formula for calculating the cable
force with a damper (length ≥ 200 m), and an intelligent cable force monitoring platform
for the Chongqing Nanjimen Railway Bridge after a real bridge test, this study obtained
the following conclusions:
1. Measuring the force of a cable with a damper based on microwave radar is an effi‑

cient and reliable method. The actual engineering experiments showed that the devi‑
ation rate of the cable force measurements was only 0.6% for a cable with a damper
over 200 m in length. At the same time, the measurement angle could be freely ad‑
justed, and the measurement penetration was stronger than that of the traditional
method. It was proved that the measurement accuracy, efficiency, and applicability
of microwave radar for cable force measurement were superior to those of traditional
monitoring methods. This has wide application prospects in the field of cable force
monitoring for slender cables with dampers.

2. Considering the problem of calculating the cable force of cable‑stayed cables with
dampers, the presented formula is feasible and can effectively improve the accuracy
of the calculation of the cable force. Three calculation methods were used to calcu‑
late the force of 12 cable‑stayed cables with dampers in the mid‑span of the north
side of the Chongqing Nanjimen Railway Bridge. The maximum cable force error of
the calculation formula for the force of a cable‑stayed cable with dampers was only
3.9%, which was lower than 7.1% for the direct calculation method and 5.8% for the
equivalent cable length method, which proved that the derived calculation formula
was reliable, effective, and accurate. It has reference value in the field of cable force
calculation for cable‑stayed cables with dampers.

3. The intelligent cable monitoring platform integrating monitoring, evaluation, and
early warning has the functions of real‑time monitoring, real‑time analysis, and real‑
time early warning, and it can provide technical support for the scientific manage‑
ment and maintenance of bridges.

4. However, microwave radar is susceptible to electromagnetic interference in the en‑
vironment, resulting in measurement errors. In the presence of occlusions or space
constraints, the measurement accuracy will be reduced. Therefore, it should not be
used in an environmentwith strong electromagnetic interference, occlusions, or space
restrictions. The measurement distance and frequency should be paid attention to in
the measurement process to ensure the penetration of the signal and the accuracy of
the measurement results.

6.2. Prospects
In this study, an assessmentmethod for cable forcemeasurement based onmicrowave

radar and a calculation method for the cable force with a damper were studied to some
extent, but there are still the following deficiencies:
(1) The research results in this study showed the achievement of efficient and

high‑precision measurement of long cables with dampers, but the influence of the
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cable diameter was not taken into account, and the measurement of short cables with
dampers was not studied; further research will be carried out in follow‑up work.

(2) The calculation formula for a stayed cable with a damper derived in this study fully
considers the influence of the damper, and the calculation resultswere in linewith the
expectations, but the influence of the damper was ignored when solving the model.
The influence of the damper will be further studied in subsequent work.
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