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Abstract: The stress path is a critical factor affecting the mechanical properties of saline soils. In order
to study the mechanical properties of saline soils under different stress paths, in situ saline soils in
the Qian’an area of western Jilin province were selected for this study, and triaxial shear tests under
six different stress paths were conducted, including the consolidated undrained triaxial test under
the conventional stress path under the isobaric consolidation condition; the consolidated drained
triaxial test under the conventional, equal p, reduced p, and increased p stress paths under the isobaric
consolidation condition; and the consolidated drained triaxial test under the conventional stress path
under the K0 consolidation condition. The effects of the consolidation conditions, drainage conditions,
and stress paths on the mechanical properties of in situ saline soils were investigated. The results
reveal that the stress–strain relationship curves of soil samples decrease continuously in the order of
increased p, conventional, equal p, and decreased p, and they all show the characteristics of strain
hardening. The stress path curves have the same slope under the same stress path. For different
confining pressures, only the relative positions of the curves are different. Under the conventional
stress path, the slope is 1; under the increased p stress path, the slope is 1/3; under the equal p stress
path, the slope is 3; and under the decreased p stress path, the slope of the curve is −1. For the same
confining pressure, the magnitude relationships of shear strength under the different stress paths are
as follows: increased p > conventional > equal p > decreased p. For the cohesion c and internal friction
angle ϕ, the consolidation condition has a greater effect on the cohesion c and a smaller effect on the
internal friction angle ϕ; the drainage condition has a smaller effect on the cohesion c and a larger
effect on the internal friction angle ϕ; and the stress paths have a greater effect on both cohesion c
and internal friction angle ϕ.

Keywords: stress–strain relationship; shear strength parameters; in situ soil sample; triaxial shear
test; mechanical properties

1. Introduction

The mechanical properties of the soil not only depend on the nature of the soil itself
but also are affected by the stress state, stress path, and other factors, so the engineering
construction project should try to choose the stress path that can truly reflect the soil stress
state, loading method, and drainage conditions for the test [1]. With the development
of railways, highways, power stations, and diversion irrigation projects, saline soil in
cold regions is widely used as the foundation and structure of engineering construction
projects [2–6]. Deep research into the effects of stress path on soil deformation and strength
characteristics is of great significance to the design and maintenance of these projects [7–12].

In 1967, Lamber [13] defined the concept of stress paths and proposed that the defor-
mation and strength properties of soils under different stress paths could be investigated
using the stress path method (SPM). Triaxial tests can be performed for a variety of different
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stress paths, usually with increasing, decreasing, or constant confining pressure or mean
principal stresses to study the differences in the deformation and strength of various types
of soils under different stress paths [14–16]. For different types of soils, many experts and
scholars have studied the mechanical properties under different stress paths.

In the initial research phase, the main study referenced was on the mechanical proper-
ties of stress paths in cohesionless soils such as sandy soils [17–19]. Breth and Schuster [20]
point out that the mechanical properties of the soil are strongly influenced by the stress
path. Xu and Wen [21] found that the shear dilatation of sandy soil was greater under
compression than under tension, and the shear dilatation decreased under decompression
compression, conventional compression, and increased compression, in that order. With
the progress of research and the needs of engineering construction, research on stress paths
in cohesive soils has received more and more attention, and significant progress has been
made in recent years. Silvestri and Diab [22] proposed a new analytical method for the
interpretation of pressuremeter tests in clay soils, where the total and effective stress paths
followed by deformation in the soil can be represented on a shear stress–normal stress
diagram. Chang and Wang [23] studied the mechanical properties of in situ clay under dif-
ferent stress paths and found that the stress–strain relationships of the soils under different
stress paths all showed a nonlinear strain-hardening type with similar curve patterns. Liu
and Shi [24] and Kong and Zang [25] conducted laboratory tests on in situ and remoulded
clays under various stress paths to reveal the mechanical properties of structural in situ soils
under different stress paths. Wang and Chen [26] studied the stress–strain characteristics
of silty clay under multiple stress paths by examining the stress path characteristics of pit
excavation. Huang and Liu [27] conducted an experimental study on the stress paths of
saturated soft clay at different temperatures. As a special soil that is widely studied, many
scholars have also conducted many studies on the mechanical properties of stress paths in
loess. Shi and Liu [28] conducted triaxial tests under equal stress ratio and conventional
conditions and analysed the effects of the two stress paths on the mechanical properties
of loess. Liang and Xie [29] investigated the effect of stress paths on the consolidated
undrained shear strength of Longxi Q3 in situ loess using the total stress method. Jiang and
Hu [30] conducted triaxial compression tests on remoulded and in situ loess under an equal
p stress path, conventional stress path, and reduced p stress path, and the pore distribution
inside the soil before and after the test was measured using the mercury intrusion test,
and the relationship between the mechanical properties and pores was analysed. Using
the mercury intrusion test, Hu and Jiang [31] compared the pore characteristics of the
initial specimens of loess and the specimens after experiencing different stress paths and
investigated the fractal dimensions of the pores. Hou and Li [32] investigated the damage
mechanism of loess slopes using stress path tests. Zhao and Fu [33] explored the mechanical
properties of saturated remoulded loess under vertical loading and an equal shear path.
Many other experts and scholars have made certain analyses and studies on the mechanical
properties and intrinsic relationships of granular soils [34], reinforced soils [35], fly ash [36],
rock piles [37], concrete [38], sandstone [39], red clay [16], and calcareous sand [40] under
different stress paths.

Saline soil is a regional special soil. For a long time, most studies on the mechanical
properties of saline soil have been based on conventional triaxial tests under isotropic
isobaric conditions. In fact, the mechanical properties of saline soil are related to the
engineering construction working conditions, and the stress–strain relationship varies in
different parts of the soil with different stress paths. Therefore, it is important to conduct
experimental research based on the stress path experienced by the soil in engineering
construction projects to obtain reliable test parameters to ensure the safety of the projects.
Carbonated saline soils are widely distributed in western Jilin province, China, and many
studies have been carried out on carbonated saline soil. Wang and Kong [41] proposed
that the saline soil there is a structural soil. In terms of dispersion, Bao and Wang [42] and
Zhang and Wang [43] researched the dispersion properties of the area and considered the
saline soil in the area a dispersion saline soil. In terms of mechanical properties, Han and
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Wang [44] studied the action of freeze–thaw cycles on the unconsolidated undrained shear
strength of saline soil in western Jilin province, China.

In engineering construction projects, the different construction methods and construc-
tion properties of the project, etc., all lead to changes in the stress state of the saline soil,
which experiences different stress paths in different parts of the soil during the construction
process. The study of the mechanical properties of saline soils under different stress paths
can provide some reference basis for guiding actual engineering construction, although
there are fewer studies on the mechanical properties of carbonate saline soils under different
stress path conditions. Therefore, this study takes in situ saline soil in Qian’an (in western
Jilin province, China) as its object, and triaxial laboratory tests were conducted on in situ
saline soils under different consolidation conditions, different drainage conditions, and
different stress path conditions using a GDS unsaturated triaxial apparatus to investigate
the effects of different stress paths, drainage conditions, and consolidation states on the
mechanical properties of saline soils.

2. Materials and Experimental Program
2.1. Materials

Western Jilin in China is the main carbonated saline soil distribution area, a represen-
tative seasonal frozen soil zone. Qian’an County is a representative distribution point of
saline soil in this area. The saline soil in this area has significant dispersibility and is prone
to damage under the action of water [43]. The average annual evaporation in this area
is much larger than the annual average precipitation, which accelerates the formation of
salinisation. Under the combined effect of infiltration and evaporation, the salt content
is highest at a depth of 40 cm. Therefore, the experimental soil samples for this research
were taken from a depth of 40 cm in Qian’an County. The original saline soil has a water
content of 22.00%, a natural density of 1.85 g/cm3, and a salt content of 0.51%. Table 1
reveals the basic physical properties, and Table 2 shows the chemical properties of the
saline soil. Figure 1 shows the physical parameters of saline soil. From its physical property
parameters, the saline soil here was classified as low liquid-limit clay (CL) on the basis of
the Unified Soil Classification System (USCS) [45].
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Table 1. Basic physical properties.

Soil
Type

Natural
Density
(g/cm3)

Natural Water
Content (%)

Dry
Density
(g/cm3)

Specific Gravity
of Solid

Particles (g/cm3)

Plastic
Limit
(%)

Liquid
Limit (%)

Plasticity
Index

Liquidity
Index

CL 1.85 22 1.78 2.71 17.1 36.66 19.56 0.25

Table 2. Basic chemical properties.

PH Soluble Salt
Content (%)

K+

(mmol/kg)
Ca2+

(mmol/kg)
Mg2+

(mmol/kg)
Na+

(mmol/kg)
SO42−

(mmol/kg)
CO32−

(mmol/kg)
HCO3−

(mmol/kg)
Cl−

(mmol/kg)

7.72 0.51 1.22 12.2 2.4 29.46 2.5 0 35.6 10.7

2.2. Specimen Preparation

The soil sample selected for this study was an in situ saline soil, so it was necessary
to prepare the in situ standard triaxial specimens required for the experiment. The loss
of water and the preservation method of the in situ soil samples can lead to changes in
the structure of the in situ saline soil. Therefore, the in situ soil samples were stored in a
moist environment, and the relevant tests were performed in time to avoid the loss of water
and the disturbance of the in situ saline soil samples during the preservation process. For
the preparation of in situ standard triaxial saline soil specimens, a soil cutter is required
to prepare standard triaxial specimens of 39.1 mm in diameter and 80 mm in height. To
prevent moisture loss from the in situ triaxial specimens, the prepared triaxial specimens
were wrapped with cling film and stored in a moisturising cylinder. In order to reduce the
disturbance to the in situ saline soil triaxial specimens, triaxial tests under different stress
path conditions need to be performed in time.

2.3. Experimental Scheme

The drainage condition, consolidation method, stress path, and confining pressure
were selected as the test variables, and a comprehensive test of the four factors was con-
ducted. Two drainage conditions, drained and undrained, were selected; two consolidation
methods, isobaric consolidation and K0 consolidation, were selected; the stress paths, con-
ventional (constant confining pressure, increasing axial pressure), increased p (increasing
confining pressure, increasing axial pressure, where the increase ratio ∆σ3/∆σ1 = 0.5),
equal p (decreasing confining pressure, increasing axial pressure, constant mean total
stress p), and decreased p (decreasing confining pressure, constant axial pressure), were
selected. Four stress paths and three stress levels of 100, 200, and 300 kPa were chosen
for the confining pressure. Therefore, triaxial shear tests under six different conditions
were conducted for the purpose of the study, including the consolidated undrained triaxial
test under the conventional stress path under the isobaric consolidation condition (CU);
the consolidated drained triaxial test under the conventional (CD), equal p (TC), reduced
p (RTC), and increased p (CTC) stress paths under the isobaric consolidation condition;
and the consolidated drained triaxial test under the conventional stress path under the K0
consolidation condition (K0). Table 3 shows the concrete experimental scheme of the test.

In order to achieve the research purpose of this test, the GDS unsaturated soil triaxial
tester manufactured in the UK was selected for the triaxial shear test. Consolidation
pressure was selected at three levels of 100, 200, and 300 kPa for a total of 18 groups of tests.
The test steps are as follows: first, saturate the sample with a vacuum pumping in a saturator
so the saturation can reach more than 95%, and then perform the consolidation process
with a certain effective consolidation pressure; keep the consolidation pressure constant as
the confining pressure after consolidation; finally, conduct triaxial shear experiments with
different test conditions according to the above experimental scheme, and end the strain
control to 16%.
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Table 3. Experimental scheme of the test.

Triaxial Test Type Experimental Conditions Experiment Description Confining Pressure (kPa)

Consolidated drained

Equal p (TC)
Decrease in confining pressure,

increase in axial pressure, constant
mean total stress p.

100, 200, 300

Conventional (CD)
Constant confining pressure, increase

in axial pressure, increase in mean
total stress p.

100, 200, 300

Reduced p (RTC)
Decrease in confining pressure,

constant axial pressure, decrease in
mean total stress p.

100, 200, 300

Increased p (CTC)

Increase in confining pressure,
increase in axial pressure

(∆σ3/∆σ1 = 0.5), increase in mean
total stress p.

100, 200, 300

K0 consolidation condition
(K0)

Conventional (CD) shear test under
K0 consolidation conditions. 100, 200, 300

Consolidated undrained Conventional (CU)
Decrease in confining pressure,

increase in axial pressure, constant
mean total stress p.

100, 200, 300

3. Results and Discussion
3.1. Stress–Strain Relationship

Stress–strain relationships in soils are the basis of soil deformation and strength, and
the evolution of pores and rearrangement of soil aggregates are strongly influenced by
stress paths. This affects the stress–strain behaviour of the soil on a macroscopic scale
and influences the interlocking forces between soil particles. Figure 2 shows the stress–
strain relationship curves of in situ saline soils under different confining pressures under
isobaric consolidation and K0 consolidation conditions. The following conclusions can
be drawn from Figure 2: (1) Under the two consolidation conditions, the stress–strain
relationship curve gradually shifts upward with the increase in the confining pressure,
and the shear strength of the specimen gradually increases, indicating that the confining
pressure increases the shear strength of the soil by improving the compressive rigidity of
the saline soil. (2) Regarding the degree of strain hardening, under different confining
pressures, the degree of strain hardening under isobaric consolidation conditions is stronger
than that under K0 consolidation conditions, which is due to the fact that K0 consolidation
conditions can maintain the structural properties of the specimens better than isobaric
consolidation conditions, and their compaction effect is weaker, so the degree of strain
hardening is weaker. (3) Comparing the relative positions of the curves under the two
consolidation conditions, the deviatoric stress q values under the isobaric consolidation
condition are smaller than those under the K0 consolidation condition in the early stage
of axial strain under different confining pressures because the structural properties of the
specimens under the K0 consolidation conditions are stronger than those under the isobaric
consolidation conditions. With the development of axial strain, the values of deviatoric
stress q at the destruction of the specimens under isobaric consolidation are larger than
those under K0 consolidation, which indicates that the shear strength of the soil is increased
under isobaric consolidation compared with K0 consolidation.

The relationship curve of deviatoric stress q–axial strain ε1 for in situ saline soils under
different confining pressures with different drainage conditions is shown in Figure 3. From
the figure, it can be seen that the stress–strain curves for the consolidated drained conditions
are all located above the stress–strain curves for the consolidated undrained conditions
under the same confining pressure, indicating that the shear strength under the drained
conditions is greater than that under the undrained conditions. This difference is related to
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whether the soil is drained during the shear stage, which occurs as a result of the draining
process in the shear stage, which makes the water content in the soil lower. Additionally, the
specimen becomes denser during the shear stage, and the occlusion between soil particles
is enhanced, which leads to an increase in friction, so the shear strength increases. On the
other hand, because the test soil sample is saline soil, the presence of salt in the soil makes
the double electric layer thinner and more structural under the reduced water content,
resulting in the shear strength of the specimen under the drained conditions being greater
than that of the specimen under the undrained conditions.
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The relationship curve of deviatoric stress q–axial strain ε1 for in situ saline soils under
the four different stress paths of conventional (CD), equal p (TC), reduced p (RTC), and
increased p (CTC) are shown in Figure 4. It can be seen from the figure that the stress–strain
relationship curves of the soil under the same confining pressure increase sequentially in
the order of reduced p (RTC), equal p (TC), conventional (CD), and increased p (CTC). With
the development of axial strain, the stress–strain relationship curve tends to level off the
earliest under the reduced p (RTC) stress path, and then the stress paths under equal p
(TC), conventional (CD), and increased p (CTC), in that order. When the deformation of
the specimen develops into damage, the relationship between the magnitude of the shear
strength under the four different stress paths is increased in the order of p (CTC) > conven-
tional (CD) > equal p (TC) > reduced p (RTC). After isobaric consolidation, the stress–strain
relationship curves under different stress paths showed strain-hardening characteristics,
and the strain-hardening degree gradually decreased in the order of increased p (CTC),
conventional (CD), equal p (TC), and reduced p (RTC), which was related to the size of the
confining pressure at the end of the shear stage.
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Soil deformations occur under different stress paths, among which, the soil can be
compressed and dense under the action of spherical stress p, thus producing a constraint
effect. The spherical stress p decreases continuously in the order of increased p (CTC),
conventional (CD), equal p (TC), and reduced p (RTC). Under the reduced p (RTC) stress
path, the constraint effect of the soil gradually decreases with the decreasing spherical
stress p, and plastic deformation is produced under lower axial-strain conditions. Therefore,
the reduced p (RTC) stress–strain curve enters a flat state the earliest. Comparing the
four different stress paths, the confining pressure decreases under the reduced p (RTC)
and equal p (TC) stress paths, the constraint effect gradually decreases, the interparticle
friction decreases, and a lower deviatoric stress is required to produce the corresponding
deformation; the confining pressure remains unchanged under the conventional (CD) stress
path; and the confining pressure increases under the increased p (CTC) stress path, the
constraint effect increases, the interparticle friction increases, and higher deviatoric stress is
required to produce the corresponding deformation, so the shear strength of the specimen
is larger. Under the same confining pressure, as the magnitude relationship of spherical
stress p increases in the order of p (CTC) > conventional (CD) > equal p (TC) > reduced p
(RTC), its constraint effect weakens, and the compaction effect also weakens, which leads
to the strain-hardening characteristic of the stress–strain curve also weakening.
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3.2. Stress Path

Because the triaxial tests under the five different test conditions of conventional (CD),
equal p (TC), reduced p (RTC), increased p (CTC), and K0 in this test all used the test method
of consolidation and draining, for this test method, because it is necessary to maintain the
pore water pressure at 0 at all times during the experiment, resulting in two stress paths of
total stress and effective stress that are the same, in order to facilitate the analysis, the total
stress path was chosen for the analysis of the stress path under the consolidated undrained
conditions (CU).

The relationship between the stress path curve and the stress path of the specimen
under different confining pressure conditions is shown in Figure 5. From the figure, it can
be seen that the change characteristics of the curves under different stress paths under the
same confining pressure show obvious differences, but the initial positions are the same
from left to right for the stress path curves under the conventional (CD), equal p (TC),
reduced p (RTC), and increased p (CTC) stress paths.

(1) Under the conventional stress path, the stress paths under the consolidated undrained
(CU), consolidated drained (CD), and K0 consolidated (K0) triaxial test conditions
appear to overlap, and the three are similar, and the stress path curves show a linear
increasing trend because the confining pressure σ3 remains constant and the axial
pressure gradually increases under this stress path, and the slope of the stress path
curve is calculated to be 1 because ∆σ3 = 0.

(2) For the equal p (TC) stress path, because the confining pressure is the same in the
triaxial shear test, i.e., σ2 = σ3, the spherical stress p = (σ1 + σ2 + σ3)/3 of the soil
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sample remains constant under the equal p (TC) stress path condition, i.e., (σ1 + 2σ3)/3
remains constant, so that ∆σ1 = −2∆σ3, and the slope of the stress path curve can be
calculated to be 3.

(3) For the reduced p (RTC) stress path, the axial pressure remains unchanged, i.e.,
∆σ1 = 0, and the confining pressure decreases, and the slope of the stress path curve
can be calculated as −1.

(4) For the increased p (CTC) stress path, σ3 increases and σ1 increases, and the ratio of
both increases is ∆σ3/∆σ1 = 0.5. In the triaxial test, σ2 = σ3; therefore, ∆σ1 = 2∆σ3,
and the slope of the stress path curve can be calculated as 1/3.
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Under different stress path conditions, the stress path curve of the specimen varies
with the confining pressure as shown in Figure 6. It can be seen that under the same
stress path, the slopes of the stress path curves of the in situ saline soils are the same,
and they show parallel characteristics under different confining pressures, and different
confining pressures only have different relative positions on the curves. Under the confining
pressures of 100 kPa, 200 kPa, and 300 kPa, the p values at the starting points of the stress
path curves under the different paths are 100 kPa, 200 kPa, and 300 kPa, indicating that
the initial confining pressure value is the starting value of the stress path curves, and there
are no obvious inflection points on the stress path curves under the four stress paths of
conventional (CD), equal p (TC), reduced p (RTC), and increased p (CTC).
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3.3. Shear Strength

According to the specification standard, the shear strength is taken as follows: when
the stress–strain relationship curve of the specimen is strain-hardened, the deviatoric stress
value at 15% of the axial strain is taken as the shear strength value of the specimen. In order
to better represent the shear strength variation of the specimen, it is shown in Figure 7.
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Under the same path, the shear strength of the soil gradually increases with the
increase in the confining pressure, which is consistent with universal research law, because
the gaps between soil particles decrease under the confining pressure, which makes the
friction between soil particles increase, and the soil becomes more compact. Saline soil
is a special soil because of the presence of salt in the soil, and under conditions of higher
confining pressure, the drainage increases and the water content is relatively low as a
result of the thinning of the double electric layer caused by the salt. Additionally, the
force between soil particles is enhanced, which makes the confining pressure have an
enhanced effect on the shear strength such that greater force is required when damage to
the specimen occurs; thus, the shear strength of the soil sample is continuously enhanced
with the increase in the confining pressure.

For the same initial confining pressure, the shear-strength magnitude relationships
of saline soils under different stress paths are shown as follows: increased p (CTC) > con-
ventional (CD) > equal p (TC) > reduced p (RTC). This can also be explained by examining
the effect of the above confining pressure on specimen strength. Comparing the changes
in spherical stress p under the different stress paths, the spherical stress p increases and
the confining pressure σ3c increases under the increased p (CTC) stress path; under the
conventional (CD) stress path, the spherical stress p increases and the confining pressure
σ3c remains unchanged; under the equal p (TC) stress path, the spherical stress p remains
unchanged and the confining pressure σ3c decreases; and under the reduced p (RTC) stress
path, the spherical stress p decreases and the confining pressure σ3c decreases, which leads
to the magnitude of shear strength under the different stress paths showing the following
order: increased p (CTC) > conventional (CD) > equal p (TC) > reduced p (RTC). In addition,
the increasing spherical stress p leads to more drainage in the shear stage, which leads
to the thinning of the double electric layer caused by salt in the saline soils, making the
bonding force stronger and leading to the increase in shear strength.

4. Shear Strength Parameters

Among the strength theories of soil, the Mohr–Coulomb strength theory is the most
widely used, which uses the two indicators of cohesion (c) and internal friction angle
(ϕ) to express shear strength. The shear strength parameters of soil are widely used in
geotechnical engineering design, and there are differences in the shear strength of soil
under different stress paths; therefore, it is of great practical engineering importance to
study the shear strength parameters of soil under different stress paths. Under different
stress paths, the Mohr–Coulomb strength criterion is still applicable, so this section finds
out the shear strength values of soils under different stress path conditions according to the
corresponding codes and plots of the Mohr–Coulomb strength envelopes for in situ saline
soils under different stress paths.

The stress path method is used to solve the shear strength parameters under different
stress path conditions. For the equal p (TC), reduced p (RTC), and increased p (CTC) stress
paths, σ3 and σ1 are loaded according to the test design criteria, and σ3f and σ1f at the time
of specimen damage are used in the Mohr circle plotting.

The values of cohesion c and internal friction angle ϕ in different conditions were
obtained from the stress Molar circles plotted under different conditions according to the
triaxial test data, as shown in Figure 8 below.

According to Figure 8 above, the shear strength parameters under different conditions,
cohesion c and internal friction angle ϕ, are obtained, and the specific results are shown in
Table 4 below.

Table 4. Cohesion c and internal friction angle ϕ under different conditions.

Shear Strength
Parameters CU CD K0 RTC TC CTC

c (kPa) 27.93 27.78 20.32 14.24 7.50 25.36
ϕ (◦) 15.98 16.57 17.00 24.08 22.76 10.63
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From Table 4, it can be seen that (1) comparing the shear strength parameters under
the two conditions of undrained and drained, the drainage condition has a smaller effect on
the cohesion c and a larger effect on the internal friction angle ϕ during the shear process,
where the internal friction angle ϕ is larger under the drained conditions than under
the undrained conditions; (2) comparing the shear strength parameters under the two
conditions of isobaric consolidation and K0 consolidation, the effect of the consolidation
condition on the cohesion c is larger and the effect on the internal friction angle ϕ is smaller,
and the cohesion c under the K0 consolidation condition is smaller than that under the
isobaric consolidation condition; and (3) comparing the shear strength parameters under
the four different stress path conditions of conventional (CD), equal p (TC), reduced p
(RTC), and increased p (CTC), after isobaric consolidation, the stress paths have a greater
effect on both cohesion c and internal friction angle ϕ during the drained shear stage.

Regarding the shear strength parameters of in situ saline soils under different drainage
conditions, the drainage condition has a greater effect on the value of internal friction angle
ϕ and a smaller effect on the value of cohesion c because of the draining effect during the
shear stage, which makes the water between soil particles drain, and the water between
particles has a certain lubricating effect; with the occurrence of drainage, the lubricating
effect is weakened and the friction effect is enhanced, resulting in the value of internal
friction angle ϕ under the drained conditions being larger than the internal friction angle ϕ
under the undrained conditions.

Regarding the shear strength parameters of in situ saline soils under different initial
consolidation conditions, the effect of the initial consolidation condition on cohesion c
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is larger, and the effect on the value of internal friction angle ϕ is smaller. Regarding
the comparison of shear strength under two the conditions of isobaric consolidation and
K0 consolidation, the strength under isobaric consolidation is greater than that under K0
consolidation, so the values of cohesion c obtained from isobaric consolidation are also
greater than the values of cohesion c under K0 consolidation, indicating that the difference
in shear strength mainly comes from the difference in cohesion c.

As a special soil, saline soil is also a cohesive soil, and the mineral particles are mostly
flat in shape, forming different binding water in different parts and thus making the saline
soil show certain anisotropy. The binding water is different from gravitational water, which
is more strongly combined with soil particles and can influence and transfer the force
between particles. This effect is made more obvious by the presence of a variety of soluble
salt components in saline soil soils, and the corresponding soil structure is changed. As a
result of the presence of salts, the double electric layer thickens and various electrochemical
forces as well as the occlusion between particles are reduced, which leads to a decrease in
the strength of saline soils and makes them more affected by the change in stress state.

In general, for the value of cohesion c, the cohesion c under the equal p (TC) stress
path is the smallest, and the cohesion c under the reduced p (RTC) and increased p (CTC)
stress path conditions increases sequentially, and the cohesion c under the conventional
(CD) stress path is the largest. For the value of the internal friction angle ϕ, the internal
friction angle ϕ is the largest under the reduced p (RTC) stress path and decreases under
the equal p (TC), conventional (CD), and increased p (CTC) stress paths because spherical
stress p is decreasing under the reduced p (RTC) stress path, but the axial pressure remains
unchanged, resulting in radial expansion of the soil, and this process makes the energy
absorbed by the soil particle friction increase, thus maximising the value of internal friction
angle ϕ under the reduced p (RTC) stress path.

5. Conclusions

In this paper, the mechanical properties of Qian’an saline soils under different stress
path conditions were investigated. Standard triaxial specimens of in situ saline soils were
prepared in a laboratory, and then triaxial shear tests were conducted under six different
stress path conditions. The mechanical properties of the saline soils under different stress
path conditions were investigated, and the specific conclusions are as follows:

(1) Regarding stress–strain relationships: The stress–strain relationships of the specimens
all showed strain-hardening characteristics. Regarding the stress–strain relationship
curves when the specimens were damaged, those under K0 consolidation condi-
tions were all located above those under the isobaric consolidation conditions. The
stress–strain curves under the drained conditions are all located above those of the
undrained conditions. The stress–strain curves of the soil under the different stress
path conditions are shifted upward in the following order: reduced p (RTC), equal p
(TC), conventional (CD), and increased p (CTC).

(2) Regarding stress path characteristics: The stress path curves under the same stress
path have the same slope and do not have obvious inflection points. Under the
conventional stress path, the slope is 1; under the increased p stress path, the slope is
1/3; under the equal p stress path, the slope is 3; under the decreased p stress path, the
slope of the curve is −1. For different confining pressures, only the relative positions
of the curves are different. Under the same consolidation pressure, the left to right
order is as follows: reduced p (RTC), equal p (TC), conventional (CD), and increased
p (CTC).

(3) Regarding shear strength: Under the same confining pressure, the relationship be-
tween the magnitude of the shear strength of saline soil under different stress paths is
expressed in the following order: increased p (CTC) > conventional (CD) > equal p
(TC) > reduced p (RTC).

(4) Regarding shear strength parameters: In the shear stage, the drainage condition has
a smaller effect on the cohesion c and a larger effect on the internal friction angle ϕ;
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the consolidation condition has a greater effect on the cohesion c and a smaller effect
on the internal friction angle ϕ; and the stress paths have a greater effect on both
cohesion c and internal friction angle ϕ.
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