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Abstract: This study conducts a field indoor simulation test, SEM observation, and penetration
test to determine the bearing capacity of the dynamic driving pile in the mudstone foundation. It
comprehensively analyzes the variation laws of structure and strength of mudstone around piles after
piling. Indeed, the strength of mudstone structure is significantly reduced from outside to inside.
Therefore, the numerical simulation of piles in mudstone should consider the actual characteristics
of soil damage around piles. The strength of mudstone after pile driving damage is measured, and
the scatter diagram depicting the relationship between mudstone strength and pile side distance is
produced. Then, the best-fitting curve of the relationship between the strength ratio and the distance
ratio of the simulated pile driving test is established by the nonlinear fitting of multiple curves. A
numerical simulation method is proposed to consider the damaged area and parameters surrounding
the pile. The range of soil damage caused by pile driving in the mudstone foundation is determined
to be two times that of the pile diameter. The disturbance area is divided into four parts on average,
and the width of each part is 0.5d. The simulation results are compared to the conventional approach
of uniform parameter assignment to prove the rationality of the method.

Keywords: mudstone pile; experimental test; driven pile; numerical simulation; stress nephogram

1. Introduction

Mudstone is between hard rock and Quaternary sediments in composition. When the
surrounding environment changes or is affected by some external influence, the nature of
mudstone will vary significantly. The bearing capacity of the mudstone pile is determined by
the supporting force of the soil from the pile’s end to its side. The strength of mudstone after
pile driving is the main factor determining the bearing capacity of mudstone piles [1–4]. In
contrast to ordinary pile foundations, mudstone piles often have an abnormal bearing capacity,
reported in many places in China. The damage to mudstone caused by pile driving cannot be
recovered by thixotropy, so it dramatically affects the bearing capacity of mudstone [5–9].

Iyare et al. [10] studied the mechanical properties of mudstone under uniaxial com-
pression by uniaxial compressive strength. Hu et al. [11] established the interface softening
constitutive model using the indoor direct shear test and combined it with simulation
analysis. The results showed that the concrete-mudstone interface softening weakened
the bearing capacity of the pile. Zhang et al. [12] conducted numerical simulations based
on static load tests of open-ended pipe piles in soft rock areas integrated with the joint
model of soft rock and found that the joint density of soft rock greatly impacts the bearing
capacity of pipe piles. Tian et al. [13] investigated the bond strength between cement
concrete and rock interface utilizing a direct shear test and analyzed the interface shear
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stress in conjunction with numerical simulation. Chen et al. [14] examined the effect of
discontinuity on the strength of four natural rocks of different origins, including mudstone.
In general, cracks decrease the overall strength of rock, which is closely related to rock
properties. Through a large number of indoor model tests, Yuan et al. [15,16] studied the
single pile, and the pile affected by the cyclic load of groundwater level and found that the
loading height of pile body had the greatest influence on soil resistance.

For the numerical simulation of piles in the mudstone foundation, Mayoral et al. [17]
numerically simulated the changes in soil stiffness and lateral soil resistance of the model
pile during multi-directional loading. The simulation results well explained the formation
process of voids around the pile. Wu et al. [18] investigated the pile head load of PHC pipe
piles under high embankments utilizing field tests. They developed a three-dimensional
numerical model, analyzed the occurrence point of the maximum horizontal displacement
of the pile combined with the monitoring data and the simulation results, and predicted
the possible failure modes. Zhang et al. [19] established a hydro-thermo coupled numerical
model to simulate the ground temperature change process after pile foundation construc-
tion. Rooz et al. [20] accurately simulated the interaction between piles and soils by the
adaptive grid method. Qu et al. [21] conducted the numerical simulation of a vertical
end-bearing pile in an inclined foundation to explore the impact of slope topography on
the bearing capacity of a single pile and developed an analysis model of the pile group
effect on a slope. Cheng et al. [22] developed a three-dimensional finite element method
for the lateral cyclic response of large-diameter single piles. The influence of different
cyclic loading modes on the lateral response of large diameter single pile foundation is
systematically studied.

In this paper, the in situ test (standard penetration test), indoor soil triaxial test,
indoor simulated pile driving test, and needle penetration test have all demonstrated
that pile driving in mudstone foundations causes damage to the soil around the pile
and cannot be fully restored. In light of this circumstance, numerical simulation should
assign different parameter values to the damaged area. However, the current numerical
simulation is only assigned according to different soil layers and does not assign according
to different regions. Using mudstone parameters unaffected by pile driving is unreasonable
in the numerical simulation of conventional methods. Consequently, this paper divides
the mudstone damage zone and assigns corresponding parameters using the numerical
simulation method.

In order to determine the damage range of mudstone around the pile and obtain the
parameters after damage, ABAQUS finite element software was applied to simulate the
static load test stage of the pile driven into mudstone.

2. Experimental Test of Mudstone around Pile Affected by Pile Driving Damage

In situ and indoor simulation tests were performed to determine the reasonable
parameter index of numerical simulation sub-regional assignment.

2.1. In Situ Dynamic Penetration Test and Scanning Electron Microscope
2.1.1. Engineering Geological Conditions of a Test Site

The rock and soil layers of the test site described in this paper are composed primarily
of the Quaternary Holocene artificial filling soil layer and the Holocene diluvium (Q4al+pl),
the Upper Pleistocene alluvial layer (Q3al+pl), and Cretaceous Wangshi Group Hongtuya
Formation(KwH) silty mudstone, with local argillaceous siltstone. Table 1 displays the
distribution of rock and soil layers at the test site.
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Table 1. Test site geotechnical distribution.

Number Name of Soil Layer Thickness of Exposed Layer (m) Bottom Elevation (m) Characteristics of Rock and Soil Layer
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tion (m) 
Characteristics of Rock and Soil Layer 

① backfill 0.4–5.0 1.44–4.17 
Gray brown-yellow brown, local dark brown, slightly 

wet-wet, loose, mainly composed of clay 

③ silty clay 0.7–3.4 1.12–4.17 

Gray brown ~ yellow brown, plastic, local soft, me-

dium compressibility, local soft part with high com-

pressibility 

⑦ silty clay 0.7–4.6 −3.21–1.08 

Gray brown ~ yellow brown, plastic. Ferrous oxides 

were found, occasionally manganese nodules and 

bands on the kaolinite. 

⑮ 
silty mudstone 

full weather zone 
0.4–6.0 −10.69–1.66 

Brick red ~ purple red, the original rock structure can-

not be identified, the core is plastic ~ hard plastic clay, 

with a small amount of breccia, broken block core, 

hand rub easily scattered, dry drilling without water 

can be drilled. 

⑯ 

silty mudstone 

strong weathering 

zone 

0.6–9.8 −12.16–−0.59 

Purple red, structure is still identifiable, the core is 

mainly breccia ~ broken block, sandy core, part. Di-

vided into short columns, broken hands, hammer eas-

ily broken. 

⑰ 

silty mudstone 

middle weathering 

zone 

5.0–10.0 −16.16–−4.69 

Brick red, core columnar ~ long column, local frag-

mentation ~ block, core hammer sound dumb, fragile, 

joint, crack development. 

Six 500 mm diameter test piles were hammered into the ground of the test site. The 

pipe pile type is a prestressed high-strength concrete (PHC pipe pile). The pipe pile wall 

thickness is 125 mm, its length is 14 m, and its concrete strength grade is C80. Standard 

penetration tests before and after piling were carried out beside two test piles. In order to 

reflect the impact of piling, the test position after piling was set to 100–200 mm from the 

pile’s edge. 

2.1.2. Comparison of SEM Test Results 

The mudstone affected by pile driving was drilled from the side of the two test piles 

during the SPT test, while the undisturbed mudstone not impacted by pile driving was 

drilled previously. The SEM images were compared to investigate the influence of pile 

driving on the soil structure around the pile. 

Hitachi TM400 scanning electron microscope was used for observation. Figure 1 il-

lustrates the imaging results of samples extracted from boreholes unaffected by piling. It 

indicates that the microstructure of mudstone unaffected by pile driving is generally a 

uniform flocculation structure. Clay mineral aggregate, quartz, and feldspar overlap, and 

the particle size and pore are uniformly distributed. There was no significant difference 

between mudstone samples obtained from various depths above and below the pile tip. 

(a)

 

backfill 0.4–5.0 1.44–4.17 Gray brown-yellow brown, local dark brown,
slightly wet-wet, loose, mainly composed of clay
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(a)

 

silty clay 0.7–3.4 1.12–4.17
Gray brown~yellow brown, plastic, local soft,
medium compressibility, local soft part with

high compressibility
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silty clay 0.7–4.6 −3.21–1.08
Gray brown~yellow brown, plastic. Ferrous oxides
were found, occasionally manganese nodules and

bands on the kaolinite.
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silty mudstone
full weather zone 0.4–6.0 −10.69–1.66

Brick red~purple red, the original rock structure
cannot be identified, the core is plastic~hard

plastic clay, with a small amount of breccia, broken
block core, hand rub easily scattered, dry drilling

without water can be drilled.
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Purple red, structure is still identifiable, the core is
mainly breccia~broken block, sandy core, part.

Divided into short columns, broken hands,
hammer easily broken.
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silty mudstone
middle weathering zone 5.0–10.0 −16.16–−4.69

Brick red, core columnar~long column, local
fragmentation~block, core hammer sound dumb,

fragile, joint, crack development.

Six 500 mm diameter test piles were hammered into the ground of the test site. The
pipe pile type is a prestressed high-strength concrete (PHC pipe pile). The pipe pile wall
thickness is 125 mm, its length is 14 m, and its concrete strength grade is C80. Standard
penetration tests before and after piling were carried out beside two test piles. In order to
reflect the impact of piling, the test position after piling was set to 100–200 mm from the
pile’s edge.

2.1.2. Comparison of SEM Test Results

The mudstone affected by pile driving was drilled from the side of the two test piles
during the SPT test, while the undisturbed mudstone not impacted by pile driving was
drilled previously. The SEM images were compared to investigate the influence of pile
driving on the soil structure around the pile.

Hitachi TM400 scanning electron microscope was used for observation. Figure 1
illustrates the imaging results of samples extracted from boreholes unaffected by piling.
It indicates that the microstructure of mudstone unaffected by pile driving is generally a
uniform flocculation structure. Clay mineral aggregate, quartz, and feldspar overlap, and
the particle size and pore are uniformly distributed. There was no significant difference
between mudstone samples obtained from various depths above and below the pile tip.
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Figure 2. SEM images of drilling samples impacted by piling (magnification 2000 times): (a) Pile 
end; (b) 0.5 m below pile end. 

Comparing Figures 1 and 2, it is easy to observe that although the rock sample unaf-
fected by pile driving has initial defects, its microstructure is uniform. The rock samples 
are affected by dynamic pile driving, and there are damage cracks caused by pile driving 
both above and below the pile end. The results showed that the piling process changes the 
mudstone structure around the pile and that the physical and mechanical parameters will 
vary accordingly. 

2.2. Simulated Indoor Piling and Test Results 
2.2.1. Indoor Simulated Dynamic Piling 

In order to quantitatively test the damage of mudstone around the pile after dynamic 
piling and to obtain the quantitative parameters of numerical simulation, the indoor sim-
ulation piling test was conducted using self-made equipment, as is depicted in Figure 3. 

Figure 1. SEM images of samples unaffected by piling (magnified by 2000 times): (a) 0.5 m above pile
end; (b) 0.5 m below pile end.
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Figure 2 indicates the SEM images of samples affected by dynamic piling. Compared
to the test images taken without pile driving, the microstructure uniformity of mudstone
samples is negatively impacted by pile driving, and the porosity and fracture width increases.
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Comparing Figures 1 and 2, it is easy to observe that although the rock sample
unaffected by pile driving has initial defects, its microstructure is uniform. The rock
samples are affected by dynamic pile driving, and there are damage cracks caused by pile
driving both above and below the pile end. The results showed that the piling process
changes the mudstone structure around the pile and that the physical and mechanical
parameters will vary accordingly.

2.2. Simulated Indoor Piling and Test Results
2.2.1. Indoor Simulated Dynamic Piling

In order to quantitatively test the damage of mudstone around the pile after dynamic
piling and to obtain the quantitative parameters of numerical simulation, the indoor
simulation piling test was conducted using self-made equipment, as is depicted in Figure 3.
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Figure 3 shows that the area of the probe rod in the guide rod type simulated dynamic
pile driving, and the test device is 1 cm2 (11.3 mm in diameter). The length of 200 mm
is utilized to simulate the pile. A 2.5 kg core-piercing hammer drop distance of 30 cm
is employed to provide simulated piling hammering force. The mudstone samples were
collected from the moderately weathered mudstone at the test site. The diameter of the test
sample is consistent with that of the open mold, which measures 90 mm in diameter and
200 mm in height. Packaging rock samples with an open mold (double-pipe) is conducive
to opening the sample for cutting observation and testing after simulated piling.

2.2.2. Penetration Test of Sample Needle after Simulated Indoor Piling

After the indoor simulation piling is finished, the sample after piling is cut open. In
order to prevent the mudstone from collapsing, the pile hole is filled with gypsum after
pulling out the pile rod, and then the sample is cut open with a steel wire saw. In order
to obtain the damage parameters of pile driving on mudstone, the quantitative test was
conducted on the cross-section, and a needle penetration instrument tested the strength of
the mudstone.

The Japanese-made soft rock strength test and needle penetration instrument calculate
the uniaxial compressive strength by testing the needle penetration index of soft rock. This
test can be directly tested on the rock mass and can be tested indoors and outdoors. This
test method is especially suitable for mudstone. It has become the strength test method of
soft rock recommended by the International Rock Mechanics Association (ISRM) [23,24].

The test results were repeated 2–3 times to calculate the average value and eliminate
the measurement error. The physical diagram of the needle penetration instrument and the
test photo in this paper are shown in Figure 4.
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Figure 4. Needle penetrator and test operation chart: (a) needle penetrometer; (b) Needle penetration test.

The strength of mudstone at various points along the cutting edge after simulated
piling was measured by a needle penetration instrument, and the test strength value was
the average value of multiple points. The section was divided into two cases: within the
pile body or at the pile end. Figure 5 reveals the penetration measuring point in the pile
body and end sections. The test result of section strength of one test pile is utilized to create
a stereo image (Figure 6 is the stereogram).
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Figure 6. Diagram of cross-sectional strength of simulated test pile 1 (unit: MPa).

Figure 6 indicates that the penetration strength increases gradually from the pile edge
to the outside. When the penetration range reaches 2.0d (d is model pile diameter), the
penetration strength becomes the strength of undisturbed soil, which is unaffected by pile
driving. Therefore, the damage range of pile driving on mudstone can be estimated to
be about 2.0d. The experimental data measured by penetration are selected for fitting
data analysis to further reveal the damage of pile driving and provide parameters for
numerical simulation. Samples 1 through 8 are illustrated in Figure 7a as groups of test
data represented by symbols of different shapes.
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The distance ratio (s/d) is the proportion of the distance from the penetration test
point to the pile edge to the pile diameter. The strength ratio (R′/R) is the proportion of the
strength measured at this point to the strength of the undisturbed mudstone. The distance
ratio is the abscissa, and the strength ratio is the ordinate, as depicted in Figure 7a.

Based on Figure 7a, the nonlinear fitting of various curve forms is carried out. The
optimum fitting curve of the R′/R-s/d relationship is shown in Figure 7b, and its numerical
model is as follows:

y = 1.01181− 0.76151

1 +
( x

0.76958

)2.73104 (1)

Figure 7b indicates that the fitting curve can be roughly divided into four sections:
0–0.5d is the severe damage, 0.5d–1.0d is the strong damage, 1.0d–1.5d is the light dam-
age, and 1.5d–2.0d is the weak damage, which correspond to the letters A, B, C, and D,
respectively. It is no longer affected after 2.0d.

Determining the damage zone affected by piling provides theoretical and data support
for subsequent zoning assignments and numerical simulation.

3. Establishment of Static Load Model of ABAQUS Pile
3.1. Thoughts on Establishing a Static Load Model of Pile

The above tests show that the soil around the pile forms a specific disturbance-
damaged area during pile driving. With the increase in time upon pile driving, the strength
and modulus of the Quaternary soil in this region gradually recover under the thixotropic
recovery effect. However, the recovery of mudstone upon damage in the disturbed area is
limited. When the rock and soil parameters are assigned, the bearing capacity of the pile is
overestimated if the mudstone parameters in the disturbed area are the same as those in the
undisturbed area. Therefore, when the numerical model of the static load test is established,
the mudstone around the pile is assigned to different regions. Accordingly, it is assumed
that the influence range of mudstone on the pile side is 2.0d, and the influence range below
the pile end is approximately arc-shaped. The strength of mudstone gradually increases
from inside to outside. When the distance is 2.0d, the strength of the mudstone transits to
that of the undisturbed mudstone. The specific method is to divide the disturbance area
into four parts on average, from inside to outside and from 1 to 4 parts, and the width of
each part is 0.5d. The parameter setting of each part is realized, and the schematic diagram
of the model establishment is shown in Figure 8.
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Figure 8. Diagram of numerical simulation modeling.

3.2. Steps of Model Establishment

The numerical model is established according to the field static load test. The diameter
and length of the model pile are consistent with the size of the prefabricated field pile. The
soil layer distribution of the model foundation is the same as that of the field test site (see
Table 1).

(1) Parameter settings of pile-soil components

The load transfer of the precast pile under vertical load is axisymmetric. Therefore,
half of the model was selected for modeling. In order to meet the model’s boundary effect
and truly reflect the soil stress change around the pile during the bearing process, the
circular model pile was modeled as a cylinder with a diameter of 500 mm and a length of
14 m. The model foundation was simulated as a cylinder with a diameter of 16 m and a
depth of 26 m. That is, the soil depth below the pile tip was taken as 12 m.

(2) Constitutive model and parameter selection of different materials

The precast pile has C80 high-strength concrete. Hence, the linear elastic constitutive
model was selected. Pile size and physical and mechanical parameters were set according
to the precast pile’s corresponding size and physical and mechanical parameters. The
Mohr-Coulomb elastic-plastic constitutive model was adopted for mudstone around and
at the pile end. The soil around the upper Quaternary pile was considered following
thixotropic recovery after pile driving, except for the mudstone damage zone. This means
that the same physical and mechanical parameters as that of the undamaged region can
be adopted using the traditional method. Furthermore, the field test geological data were
utilized. The physical and mechanical parameters of the soil layer are shown in Table 2.

Dynamic pile driving disturbance greatly damages the mudstone’s elastic modulus
and internal friction angle. According to the damage theory analysis [25], the elastic
modulus changes continuously during the damage evolution, which is the theoretical basis
for reducing the elastic modulus. Post damage elastic modulus E’ can be estimated using
the strength Rc’ of the mudstone around the pile.
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Table 2. Physical and mechanical parameters of undisturbed soil layer.

Name of Soil Layer Gravity/kN/m3 Elastic Modulus/MPa Poisson’s Ratio Cohesion/kPa Internal Friction Angle/◦ Friction Coefficient

backfill 18 0.01 20
silty clay 19.3 2.73 0.35 22.2 10.2 0.35
silty clay 19.7 2.77 0.33 27.7 12.9 0.35

silty mudstone
full weather zone 20 10 0.20 47.9 17.4 0.4

silty mudstone
strong weathering zone 23 25 0.23 100 40 0.4

silty mudstone
middle weathering zone 24 35 0.20 250 50 0.6

In the damage theory, Lemaitre [26,27] proposed the principle of strain equivalence as
follows: strain induced by stress (nominal stress) on damaged materials is equivalent to
the strain induced by the effective stress (net stress) on non-destructive materials with the
same geometric size. The expression formula is as follows:

ε =
σ

E′
=

σ′

E
=

σ

(1− D)E
(2)

where E and E′ are the elastic moduli of undamaged and damaged materials, respectively,
and D is the damage variable.

The direct explanation of this principle is that the constitutive relation of damaged
materials requires changing the stress in the constitutive relation of the original (undam-
aged) materials into effective stress. Based on this principle, the constitutive relation of the
damaged materials can be expressed by the nominal stress of lossless materials.

E’ = E (1 − D) (3)

This relationship indicates that elastic modulus changes continuously during damage
evolution. That is, the material parameters of the mudstone damage zone caused by pile
driving are reasonably selected.

According to Figure 7b, the relationship that governs the distance between the pile
side and the pile side (represented by the distance ratio s/d) and the strength (represented
by the strength ratio Rc’/Rc) is shown in Figure 9. It can be seen that the range of 2.0d from
the pile edge is divided into four regions. The midpoint curve ordinate of each interval is
shown in the figure, and this value is approximated as the average of the region’s strength
ratio. This is called the reduction coefficient of average compressive strength.
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There is a positive correlation between the uniaxial compressive strength and the
rock’s elastic modulus. He et al. [28] regarded rock specimens as heterogeneous materials
and summarized them according to their different structures. The correlation between
uniaxial compressive strength and elastic modulus of 10 sedimentary rocks classified
according to different structures was established based on the statistical results of the
classification. These established relationships can be used to estimate the elastic modulus
through compressive strength when meeting some conditions. For the damaged mudstone
after pile driving, the development of network fractures can be considered, and its statistical
relationship is a power formula:

E = 0.0707R1.582
c (4)

The above compressive strength reduction factor can be converted into an elastic
modulus reduction factor, and the following formula can be deduced from Formula (4).

E′/E = (Rc
′/Rc)

1.582 (5)

The average elastic modulus reduction coefficient of the four disturbing damage zones
on the pile side given in Figure 9 can be calculated using this relationship, as shown in
Table 3.

Table 3. Elastic modulus reduction coefficient of mudstone in disturbed damage zone.

Area 1 2 3 4

Compressive strength
reduction factor 0.247 0.610 0.868 0.946

elastic modulus
reduction factor 0.109 0.458 0.802 0.922

(3) Definition of the model contact surface

The contact property is set as the contact between the surfaces. Indeed, the contact
surface property setting significantly impacts the model’s calculation results. In the model,
the interface between the precast piles and different soil layers should be defined, including
the interface between the pile side and the mudstone and the interface between the pile
end and the mudstone.

When setting the pile-soil contact surface between the pile body and the soil layer
or mudstone, the contact pair should be defined according to the stiffness of the contact
surface. The pile surface with large stiffness is set as the main surface, and the soil surface
and mudstone surface with smaller stiffness are set as the slave surface. The pile-soil contact
surface is divided into tangential and normal directions, and the tangential direction is
defined as the Coulomb shear model. It is assumed that, when there is normal pressure
between the contact surfaces, the contact surface can transfer the tangential stress, namely
friction. Normality is defined as the most widely used hard contact in ABAQUS. That is,
the contact surface is assumed to be in a closed compression state to transfer the normal
pressure. When the contact surface is separated and there is a gap, the normal pressure is
no longer transferred, and the constraints on the corresponding nodes are removed.

Because there is only normal pressure transfer at the pile end and no tangential load
transfer exists, the pile end position is only set up in the normal upward hard contact. In
order to easily converge the model in the numerical calculation, the ‘elastic slip deformation’
is introduced in ABAQUS, allowing a small amount of relative slip deformation when the
surface is bonded together, which is generally set to 0.5% of the unit typical length.

The friction coefficient µ of the pile-soil interface was determined using the following
formula given by Randolph:

ψ = tan−1(
sinϕ · cosϕ

1 + sin2 ϕ
) (6)
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µ = tanψ (7)

where ϕ is the soil internal friction angle, ψ is the pile-soil interface friction angle, also
called the external friction angle of soil.

(4) Boundary condition setting

In this study, the X and Y displacements at the soil’s outer edge around the pile and
the X, Y, and Z displacements at the pile end soil are set to zero. According to the symmetry
of the pile foundation structure under vertical load, only half of the pile-soil system test size
was modeled and calculated, and the axial plane (symmetry plane) of the pile foundation
was set as zero.

(5) Analysis step settings

The initial stress balance of pile and soil greatly influences the subsequent simulation.
ABAQUS can automatically add the initial analysis step geo and the initial stress condition
in the subsequent load setting, which can truly reflect the initial stress state. The load
analysis step was selected for the static and general cases. In order to ensure the accuracy
of calculation and smooth iteration, the maximum increment step was set to 100, the initial
increment step was set to 0.1, and the minimum and maximum increment steps were set to
1 × 10−5 and 0.2, respectively. Moreover, a displacement control load was applied. Due to
the large deformation between the pile end and the soil during the simulation of static load
and to prevent the unit overlap and grid distortion, NLGEOM was set to on, which opens
the geometric nonlinear switch to make the displacement calculation more accurate.

(6) Mesh subdivision

The control grid attribute was hexahedron, and the structure division technology was
used to divide the grid. The unit type is C3D8R, 8-node linear hexahedron unit, reduction
integral, and sand leakage control. The pile-soil model established in ABAQUS is shown in
Figure 10.

(7) Selection of iterative algorithm

The default Newton-Raphson iteration method in ABAQUS was used to solve the
nonlinear equations.
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4. Realization of Numerical Simulation of Pile Static Load Test

In this numerical simulation experiment, two groups of different modeling methods
are compared. Modeling method 1: the physical and mechanical parameters of mudstone
in the damaged area are the same as those in the undamaged one, in which the influence
of the damaged area is not considered, and this modeling method is consistent with the
traditional modeling method. Modeling method 2: The physical and mechanical parameters
of mudstone in the damaged area are specially assigned. The field investigation report
details the physical and mechanical characteristics of the soil layer and mudstone in other
areas, considering the influence of the damaged area. This paper proposes a new method
for modeling the static loading protocol on pile driving.

4.1. Ground Stress Balance

Firstly, the stress balance is carried out, followed by submitting the initial and step-geo
to the task in ABAQUS, and the results of the in situ stress balance of soil are obtained.
Figures 11 and 12 reveal the vertical stress and displacement after in situ stress balance.
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Figure 11 indicates that the initial vertical stress of soil is uniformly distributed at the
same depth and increases gradually from top to bottom, with the change of numerical value
also representing the variation of the soil layer from top to bottom. In addition, Figure 12
demonstrates that, after the in situ stress is balanced, the vertical displacement of soil is
small, with a magnitude of −4–−5. The vertical displacement of soil under gravity stress
can be considered to be close to zero. In summary, the in situ stress equilibrium results of
soil are correct, and the initial stress conditions of soil are consistent with the load, boundary
conditions, and soil state. In the current model, the original stress state of soil is considered.

4.2. Numerical Simulation Loading of Static Load Test

In the numerical simulation, the maximum load value is 4500 kN, with a 450 kN
increment per stage. For ease of comparison with field tests, the same loading conditions
as that of the field tests are used.

5. Analysis of Numerical Simulation Results
5.1. Comparative Analysis of Numerical Simulation and Measured Static Load Test Curves

The equilibrium displacement of the pile’s top should be considered in the equilibrium
analysis step that follows the simulation test. The stress and settlement of the pile’s top are
extracted by executing the command [Tools]/[XYData]/[Create]. Then multiply the pile’s
top stress by its area to get the concentrated force. Finally, the relationship curve between
pile top load Q and settlement s is depicted in Figure 13.
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Figure 13 compares the load-settlement curve of the field test with ABAQUS simulation
results. It indicates that the static load curve of numerical simulation without considering
the influence of disturbance damage area differs significantly from the measured curve,
and the pile’s top load corresponding to the same settlement is considerably higher than
the field measured value. The static load test curve of numerical simulation considering
the influence of disturbance damage zone agrees well with the measured curve. The load-
settlement curves exhibit slow variation and have no obvious inflection point. When the
pile’s top load increases to 4500 kN, the final settlement of the pile foundation is 14.08 mm,
which is the settlement considering the influence of damage in the disturbance area, and
it is close to the final settlement of the field static load test. The settlement of the pile
foundation is only 6.99 mm without considering the damaging effect of the disturbance
zone, which is quite different from the field test results presented in this paper.

Figure 13 shows the static load analysis of the pile driven into a mudstone foundation
using numerical simulation. The disturbance caused by the pile driving on mudstone
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surrounding the pile should be considered. Otherwise, the bearing capacity of the pile
foundation will be overestimated. In addition, the rationality of the numerical simulation
method taking into account the damage disturbance of mudstone is verified.

5.2. Stress Analysis of Mudstone at Pile End

This paper analyzes the numerical simulation test, focusing on the stress characteristics
of mudstone damaged by the bearing layer at the pile end, and the following further
analysis is conducted on the pile’s end area damaged by disturbance. Figure 14a represents
the stress nephogram of the pile considering the damaged area derived by ABAQUS finite
element software. The top load of the pile is 4500 kN. Because the gradient of the stress
value in the finite element software is difficult to control, the number of stress bubbles in
mudstone is low, and the stress diffusion law is difficult to observe.

The stress values of all grid nodes on the stress cloud YOZ surface are extracted to
change this situation, and the data steps are as follows:

(1) First, determine a surface that extracts the cloud image, and then click Tool-Display
Group-Manager to create a new display group.

(2) Click on the node in the left toolbar for creating the display group and pick it up from
the viewport in the following method. Click the cloud surface to pick up. Click the
mouse button, and then click to save as a new file name.

(3) Close all of the above windows. Click the query value options. Click the file saved before.
The system will query the eigenvalues of the points and save them to the desktop.

(4) Open the excel table to process data. Click the separator. Click Finish once all the
delimiters are checked. Delete data on the same coordinates from the exported data
to obtain the required XYZ data.

(5) Redraw using the drawing software Origin and adjust the numerical stress gradient
to draw a more regular pile end mudstone vertical stress nephogram. The stress is
shown in Figure 14b.
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Figure 14b demonstrates that the maximum stress is in the mudstone at the bottom
of the pile, while the maximum stress at the pile’s end is about 2.5–3 MPa, accounting for
about 13% of the pile’s top load. It shows that the pile side friction bears most of the pile’s
top load at this time, while the pile’s end force is small. For the pile with hard mudstone at
the end of the pile and limited damage, the pile still has bearing potential on the whole.
However, for the pile with uneven weak mudstone, it is also possible that the subsequent
load will soon reach its ultimate bearing capacity.
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The stress value in mudstone gradually decreases from the pile’s end to the outside,
showing the stress transfer law in mudstone. It can be seen from Figure 14b that the stress
diffusion form in mudstone is the circular arc outward diffusion from the bottom of the
pile, which is consistent with the soil stress state at the pile’s end, as reflected by the circular
hole expansion theory in the theoretical calculation method. When the stress value exceeds
1.2 MPa, the stress nephogram under the pile end and bottom move downward like the
hardcore, and the angle between the stress distribution curve and the horizontal direction
is approximately (45◦ + ϕ/2), which is also consistent with the Terzaghi ultimate bearing
capacity theory.

5.3. Mudstone Displacement Analysis at the Pile Tip

After the static load numerical simulation test, the vertical displacement nephogram
of mudstone at the pile’s end considering the damaged area is derived, as shown in
Figure 15a. Since the finite element software is challenging to control the gradient of
vertical displacement value, the number of displacement bubbles (isolines) is relatively
small. Therefore, the vertical displacement of each node on the YOZ surface is extracted,
and the extraction method is the same as for vertical stress. Figure 15b indicates the vertical
displacement of mudstone at the pile’s end.
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Figure 15b provides the following conclusions. (1) The vertical displacement of mud-
stone at the bottom of the pile tip is about 5.6 mm, accounting for 39% of the displacement
at the pile’s top. When the pile’s top is loaded to 4500 kN, the pile’s top displacement
is mainly due to the elastic compression of the pile’s body. The soil at the pile’s end has
played a role and produced a certain displacement. Under such a large displacement
of the pile’s end, the pile side friction has reached a sufficient level, and the pile’s end
resistance must now primarily support the increased load. If the pile’s end soil has a high
degree of damage degradation, immersion softens adjacent to the weak interlayer. The
soil at the end of the pile will soon reach its limit, resulting in a significant increment
settlement. (2) The numerical value indicates that the vertical displacement of mudstone at
the pile’s end decreases gradually from the pile’s end to the outside, which is similar to
the stress distribution cloud diagram and illustrates the development trend of mudstone
displacement at the pile’s end.

6. Conclusions

In this paper, the problem of abnormal bearing capacity of the driven pile in the
mudstone foundation is studied. In situ tests and indoor simulation tests are carried out.
Besides, damage theory is introduced for analysis, and numerical simulation considering
the characteristics of pile damage area is adopted. From multiple perspectives, the main
conclusions are as follows:

(1) The numerical modeling method for simulating the mudstone foundation’s static load
test of pile driving is proposed based on field tests, indoor simulations, and damage
theory. This method considers the range of mudstone damaged area and the value
of parameters after damage, which is more in line with the actual rock and soil layer
situation after dynamic pile driving.

(2) The range of the disturbed damage zone of mudstone is delimited, and the disturbed
damage zone is refined. The use of strength ratio and distance ratio is actually the
normalization of soil strength around the pile. It is a reasonable method to reduce the
calculation parameters in the affected area.

(3) A numerical model of static load test of mudstone driven pile is developed. This
method is divided into two kinds of numerical models according to the disturbance
damage zone and the non-disturbance damage zone. By comparing the simulation
results with the field static load test results, it is found that the numerical simulation
static load test curve considering the influence of disturbance damage area is con-
sistent with the measured curve. However, the settlement of the pile top without
considering the influence of the disturbance damaged area is too small. Only about
half of the former pile bearing capacity is high. When the numerical simulation is used
to predict the bearing capacity of a pile driven into mudstone, the bearing capacity of
the pile will be overestimated if the disturbance damage to mudstone around the pile
is not considered.

(4) The simulation results show that the stress value in the mudstone at the pile end
decreases gradually from the pile end to the outside, which conforms to the stress
diffusion law. The vertical displacement at the pile end is the largest, with a gradual
decrease from the pile end outward and downward.

The numerical simulation of the pile damage zone is better if the statistical damage
model can be directly embedded in the user subroutine UMAT of ABAQUS, which can be
used as the direction of future research.
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