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Abstract: In the present article, the application of an artificial neural network (ANN) model whose
function is the development of plastic instability maps of a medium carbon microalloyed steel during
the hot forming process is studied. Secondly, we proceed to create another ANN capable of providing
the recrystallized grain size in the steady state resulting from forming deformation. We start from the
experimental data of a medium carbon microalloyed steel obtained by hot compression tests with
strain rates that vary between 10−4 s−1 and 3 s−1 and in a range of temperatures between 900 ◦C and
1150 ◦C. These experimental data are used to train the proposed ANN and obtain flow curves. Finally,
the processing maps are developed by applying the dynamic materials model (DMM), according
to which the safe hot forming domains and the plastic instability domains of the studied material
are delineated. The comparison between the ANN and the experimental maps is carried out. It is
ascertained that the optimal regions of forging in the ANN maps coincide with those obtained in the
experimental maps. In addition, a study of the influence of the microstructure on the behavior of the
studied steel during hot forming is carried out.

Keywords: artificial neural network; dynamic material model; processing maps; flow behavior;
medium carbon microalloyed steel

1. Introduction

For various decades, medium carbon microalloyed steels have been used in the
manufacturing of industrial parts. These steels are basically C-Mn steels with additions of
conventional microalloying elements such as aluminum (Al), vanadium (V), titanium (Ti)
or niobium (Nb). These microalloying elements contribute to improving the mechanical
properties of these steels by both grain size refinement and precipitation hardening during
component cooling after hot forming, without the need to use heat treatment processes,
which is interesting for several industrial applications [1], such as automotive [2] or railway
transportation applications [3]. Unfortunately, due to the complex relationships involved
in hot forming process modelling and the non-linearity of their flow behavior, there are
very few works in the literature using artificial neural networks (ANNs) to predict the flow
behavior of medium carbon microalloyed steels during the hot forming process. ANN
algorithms are recognized as among the most powerful algorithms in alloy design included
in Machine Learning (ML) techniques [4]. Shina et al. [5] stated that methods to minimize
experiments to predict mechanical properties based on ML techniques are interesting for
the industry, so they developed an ANN for microalloyed steel for the hot rolling–direct
strip combined process. Pan et al. [6] compared five ML algorithms (which included ANNs)
for a Ni-Cr-Mo low-alloy steel to predict flow stress. Ghazani developed an efficient ANN
to predict the flow behavior of Ti-Nb microalloyed steel during hot torsion deformation [2].

The dynamic materials model (DMM) [7,8] is a method capable of characterizing
hot forming processes by analyzing and optimizing the hot formability of numerous
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materials. In the DMM, to characterize the flow behavior of materials, the potential
constitutive law (σ = K

.
ε

m) is used, both in low- and high-stress domains. But, in the
works published by Narayana Murthy et al. [9–11], it has been shown that the potential
constitutive law cannot be used indiscriminately in low- and high-stress domains. It is
well known that it can be used in the analysis of steady-state stresses under low-stress
forming conditions. For this reason, Narayana Murty et al. [9–11] reanalyzed the DMM
and proposed another methodology based on obtaining the energy dissipation efficiency
directly through numerical integration. This methodology can be considered a variant of
the DMM (VDMM). In order to obtain the optimal hot forming zones and, consequently,
safe parts without microstructural defects (cracks, fissures, cavities, etc.), it is necessary
to skillfully and accurately apply the DMM and VDMM methodologies, analyzing the
evolution of flow stress as a function of temperature and strain rate.

Another important parameter is the initial grain size because the microstructure of
a deformed material and its flow curves are very sensitive to this parameter. Numer-
ous studies have confirmed that the final microstructure resulting from microstructural
evolution during the hot forming process has a decisive effect on the final properties of
the conformed material. Thus, in the present work, in addition to temperature, strain
and strain rate, initial grain size is introduced as input data and a control parameter for
the development of an artificial neural network to characterize the hot forming of the
studied steel.

Artificial neural networks (ANNs) are hardware and/or software constructions that
take input information and transform it into an output, generally by applying non-linear
operations. They are simplified calculation models inspired by biological neural networks
of the human brain. An ANN consists of a number of interconnected processing elements
(perceptrons) called neurons. Neurons are organized in different layers, in ways similar
to those in the human brain [4,12]. The processing elements of the neural network are
distributed by layers. In each layer are the set of elements that are on the same level of the
structure. There are input, intermediate and output layers. When applying models based
on ANNs, the following three phases are required:

1. Training phase, also called learning phase, used to adjust the parameters of each
model trained;

2. Validation phase, used to check how well each model adjusts with data unseen before
for the models and to tune the corresponding hyperparameters. A set of test data
is used to provide the unbiased evaluation of the final fit of a model on the training
data set.

3. Testing or test phase, used to quantify the ability of each trained model to predict
feasible output data. The chosen model is the one that has the best performance with
the validation set of data.

Recently, new works that use ANN as a robust tool capable of predicting the flow
behavior of medium carbon steels have appeared. Tize Mha et al. [13,14], Quan et al. [15]
Shekh, Kumar and Nath [16] and Ahmadi et al. [17], for different medium carbon steels
with different alloy levels, concluded that ANN models represent the best alternative
to generate flow curves by using experimental data to interpolate or extrapolate points.
Pan et al. [6] concluded that the Random Committee algorithm could predict flow stress
more effectively than ANNs for a Ni-Cr-Mo low-alloy steel.

When using ANN models, the discrepancies are basically in the treatment of data
and the architecture of the network in issues such as input variables, range of values used
for these input variables, number of hidden layers, number of neurons, transfer function,
activation and the initialization of the weights. However, it is common to use yield stress as
the output variable to use a Multi-Layer Perceptron network (MLP) based on Feed-Forward
and with the backpropagation (BP) learning algorithm. The training phase stops when the
mean square error is minimized. For the studied microalloyed steel, the proposed ANN
architecture is similar to that in other works [13,14,16,17].
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The novelties and originalities of great interest of this work are the following:
(i) the contribution to understanding complex flow behavior and studying the dominant
deformation mechanisms that control the microstructure, through grain size control, during
hot forming for a non-studied medium carbon microalloyed steel; (ii) the implementation
of an ANN capable to successfully predict the final grain size for the studied steel; (iii) the
thermodynamic analysis of the deformation conditions that can lead to the appearance of
plastic instabilities in the material.

2. Materials and Methods
2.1. Experimental Procedure

The commercial medium carbon microalloyed steel studied is intended for the forging
sector for automotive components, and its chemical composition is represented in Table 1.

Table 1. Chemical composition of the studied medium carbon microalloyed steel.

%C %Mn %Si %P %S %V %Ti %Al Nppm

0.29 1.19 0.19 0.012 0.025 0.09 0.002 0.011 131

The experimental method used to obtain the experimental data is the same used
in previous works by Alcelay, Al Omar and Prado [18] and Al Omar [19]. For the hot
compression test used to study the flow behavior of the studied steel, two testing machines
were employed, depending on the required true strain rate: an electromechanical machine
for 10−4 s−1 ≤ .

ε ≤ 0.1 s−1 and a servohydraulic machine for
.
ε = 1 s−1 and

.
ε = 3 s−1. The

test temperatures were varied from 900 ◦C to 1150 ◦C. Prior to the hot compression tests,
the cylindrical specimens (which were 11.4 mm in height and 7.6 mm in diameter) were
austenitized for 30 min directly at the test temperatures. Therefore, the initial grain size
at each deformation temperature was different. Moreover, since the number of elements
put into solution or precipitated was different at each test temperature, different alloys
were obtained at each temperature. It must be noted that the aim of this austenitizing
treatment is to determine if the coarsening of precipitates affects the flow behavior, by
comparing the results with results previously published by the authors where specimens
were austenitized for 5 min at the test temperature [18,19].

The austenitizing treatments were carried out in a tube furnace capable of reaching
1500 ◦C and in a protective atmosphere of argon to avoid possible decarburization. The
specimens were introduced directly into the furnace when it reached the test temperature.
The holding time started when the furnace temperature was stabilized. Once the hot com-
pression test was finished, specimens were quenched immediately in water to maintain the
deformed microstructure. The metallographic preparation of the specimens was carried out
for a subsequent measurement of the austenitic grain size. After polishing, the specimens
were subjected to chemical attack in order to reveal the austenitic grain boundaries, and the
grain size was measured by optical microscopy by using a computer-based image analyzer.

In order to avoid the friction effects at the die–specimen contact surface, boron nitride
was used as lubricant only for strain rates of 1 s−1 and 3 s−1. For low-strain-rate tests
(i.e., ≤0.1 s−1), lubrication was finally not used, since it was verified that its effect was
negligible. However, at the strain rate of 0.1 s−1 (maximum strain rate reached in the
electromechanical universal testing machine) and at low temperatures (900 ◦C and 950 ◦C),
it was detected that the deformed specimens had a small barrel shape due to frictional
forces, resulting in a small increase in flow stresses at higher degrees of deformation (from
0.7). Figure 1 shows the initial microstructure of the studied steel austenitized for 30 min at
test temperatures of 1050 ◦C and 1150 ◦C [19].



Metals 2024, 14, 554 4 of 19

Metals 2024, 14, x FOR PEER REVIEW 4 of 21 
 

 

  
(a) (b) 

Figure 1. Initial microstructure of studied steel austenitized for 30 min: (a) 1050 °C; (b) 1150 °C. 

Table 2 contains the selected experimental flow curves, for different temperatures 
and strain rates, used for the construction of the ANN. 

Table 2. Selected experimental flow curves for different temperatures and strain rates used for the 
construction of the ANN of the studied steel. 

T (°C) Strain Rates ε  (s−1) 
900 10−4, 5 × 10−4, 10−3, 2 × 10−3, 3 × 10−3, 5 × 10−3, 10−2, 2 × 10−2, 3 × 10−2, 5 × 10−2, 7 × 10−2 
950 2 × 10−4, 5 × 10−4, 10−3, 2 × 10−3, 5 × 10−3, 10−2, 2 × 10−2, 5 × 10−2, 10−1, 1, 3 

1000 
10−4, 2 × 10−4, 5 × 10−4, 6 × 10−4, 7 × 10−4, 10−3, 2 × 10−3, 5 × 10−3, 10−2, 2 × 10−2, 5 × 

10−2,10−1, 1, 3 
1050 10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2, 2 × 10−2, 5 × 10−2, 10−1, 1, 3 
1100 10−4, 2 × 10−4, 3 × 10−4, 5 × 10−4, 10−3, 3 × 10−3, 10−2, 2 × 10−2, 3 × 10−2, 10−1, 1, 3 
1150 1, 3 

2.2. Neural Network Model to Obtain Processing Maps 
2.2.1. Data Preparation 

The experimental raw data were previously treated to facilitate the development of 
an efficient ANN for the different phases. A large number and variety of experimental 
data were available (see Table 2) which required us to unify the selection criteria thereof. 
The input data (inputs) and the output data (outputs) were treated by adopting the fol-
lowing rule: the flow curves used were those that corresponded to the main strain rates, 
that is, 10−4 s−1, 10−3 s−1, 10−2 s−1, 10−1 s−1, 1 s−1 and 3 s−1 (in bold in Table 2), since they were 
curves whose experimental data were repeated at most of the temperatures studied. This 
was applied during the training and validation phase of the ANN. The intermediate strain 
rates were used for the testing phase. In addition, since the ANN requires that both the 
input and output data be between 0 and 1 and in order to accelerate convergence in the 
training phase, we are interested in the data having small values to ensure the settlement 
of the network into a stable solution. First, for T, the logarithms of the experimental values 
are used; then, they are normalized between 0 and 1, as similarly performed by G. Quan 
et al. [15]. For T and σ, the following equation is applied: 

min

max min

0.95
'

1.05 0.95
Z Z

Z
Z Z
-

=
-

 (1) 

where Z are the experimental data (T and σ) in logarithms and Z′ is the normalized value 
of Z, which has a maximum and a minimum value given by Zmax and Zmin, respectively. 

Figure 1. Initial microstructure of studied steel austenitized for 30 min: (a) 1050 ◦C; (b) 1150 ◦C.

Table 2 contains the selected experimental flow curves, for different temperatures and
strain rates, used for the construction of the ANN.

Table 2. Selected experimental flow curves for different temperatures and strain rates used for the
construction of the ANN of the studied steel.

T (◦C) Strain Rates
.
ε (s−1)

900 10−4, 5 × 10−4, 10−3, 2 × 10−3, 3 × 10−3, 5 × 10−3, 10−2, 2 × 10−2,
3 × 10−2, 5 × 10−2, 7 × 10−2

950 2 × 10−4, 5 × 10−4, 10−3, 2 × 10−3, 5 × 10−3, 10−2, 2 × 10−2, 5 × 10−2,
10−1, 1, 3

1000 10−4, 2 × 10−4, 5 × 10−4, 6 × 10−4, 7 × 10−4, 10−3, 2 × 10−3, 5 × 10−3,
10−2, 2 × 10−2, 5 × 10−2, 10−1, 1, 3

1050 10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2, 2 × 10−2, 5 × 10−2, 10−1, 1, 3

1100 10−4, 2 × 10−4, 3 × 10−4, 5 × 10−4, 10−3, 3 × 10−3, 10−2, 2 × 10−2,
3 × 10−2, 10−1, 1, 3

1150 1, 3

2.2. Neural Network Model to Obtain Processing Maps
2.2.1. Data Preparation

The experimental raw data were previously treated to facilitate the development of an
efficient ANN for the different phases. A large number and variety of experimental data
were available (see Table 2) which required us to unify the selection criteria thereof. The
input data (inputs) and the output data (outputs) were treated by adopting the following
rule: the flow curves used were those that corresponded to the main strain rates, that is,
10−4 s−1, 10−3 s−1, 10−2 s−1, 10−1 s−1, 1 s−1 and 3 s−1 (in bold in Table 2), since they were
curves whose experimental data were repeated at most of the temperatures studied. This
was applied during the training and validation phase of the ANN. The intermediate strain
rates were used for the testing phase. In addition, since the ANN requires that both the
input and output data be between 0 and 1 and in order to accelerate convergence in the
training phase, we are interested in the data having small values to ensure the settlement
of the network into a stable solution. First, for T, the logarithms of the experimental
values are used; then, they are normalized between 0 and 1, as similarly performed by
G. Quan et al. [15]. For T and σ, the following equation is applied:

Z′ =
Z − 0.95 Zmin

1.05 Zmax − 0.95 Zmin
(1)
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where Z are the experimental data (T and σ) in logarithms and Z′ is the normalized value
of Z, which has a maximum and a minimum value given by Zmax and Zmin, respectively.
However, Equation (1) cannot be used to normalize the values due to the values obtained
being too small. To normalize the values, the following equation is used:

.
ε
′
=

5 + log
.
ε − 0.95(5 + log

.
εmin)

1.05(5 + log
.
εmax)− 0.95(5 + log

.
εmin)

(2)

In Equation (2), the value 5 is used so that all normalized values are positive. This
value will depend on the minimum deformation speed that we have in the experimental
data of the studied microalloyed steel. It is not necessary to normalize the deformation ε
since its values are between 0 and 1.

The experimental data used to train and validate the network are presented in Table 3.
From the 33 experimental data base flow curves, 22 random flow curves (66.67%) were
used to train and 5 flow curves to validate (15.15%) the ANN model. For the testing phase,
6 flow curves (18.18%) were used.

Table 3. Experimental data, obtained from experimental flow curves of the studied steel, used for
ANN validation.

.
ε (s−1) Training Validation

10−4 900 ◦C, 1000 ◦C, 1100 ◦C 1050 ◦C

10−3 900 ◦C, 1000 ◦C, 1050 ◦C, 1100 ◦C 950 ◦C

10−2 900 ◦C, 950 ◦C, 1050 ◦C, 1100 ◦C 1000 ◦C

10−1 950 ◦C, 1000 ◦C, 1100 ◦C -

1 950 ◦C, 1050 ◦C, 1100 ◦C, 1150 ◦C 1000 ◦C

3 950 ◦C, 1000 ◦C, 1050 ◦C, 1150 ◦C 1100 ◦C

The flow stress results obtained by validating or testing the network make it possible to
define its reliability. These values are those that correspond to the temperatures and strain
rates that have not been used for the training and validation phases. Table 4 represents the
data used to verify the ANN testing phase.

Table 4. Experimental data of the studied steel used for the ANN testing phase.

.
ε (s−1) Testing

3 × 10−3 900 ◦C

5 × 10−3 950 ◦C

5 × 10−4 950 ◦C, 1000 ◦C, 1050 ◦C, 1100 ◦C

2.2.2. Neural Network Model

The network model used is the Multi-Layer Perceptron (MLP) based on Feed-Forward
and backpropagation (BP), used as a supervised learning algorithm. For training, the
Levenberg–Marquardt algorithm (trainlm) based on backpropagation is applied. The net-
work itself determines the weights randomly. In order to choose the best ANN architecture,
tan-sigmoid and log-sigmoid were compared as a transfer function. The log-sigmoid
transfer function presented the best performance in the numerical experiments carried out
during the training phase. Log-sigmoid was also used by Tize Mha et al. [13,14].

f (x) =
1

1 + e−x (3)
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The number of hidden layers, with their neurons, and the minimum square error (MSE)
determine the highest efficiency in the results for each steel. It is obtained by evaluating
standard statistical indices from the results achieved during the training and validation
phases. The final training tests are carried out.

The architecture of the network adopted is made up of three layers, an input layer
made up of three elements (T, ε and

.
ε), two hidden layers with twelve and nine neurons

and voltage (σ) as the output layer. The architecture of the network, 3-12-9-1, is represented
in Figure 2. The best results were obtained for an MSE of 0.00007. The training phase
stopped after 224 iterations.
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2.2.3. Standard Validation of Results of Neural Network

After the training phase of the network, the performance of the network is checked for
the test curves, and the results obtained must be validated. A number of standard statistical
indices are used to validate the feasibility of the results [20,21]. These methods are able
to show the generalization capacity of network formation. It is quantified in terms of the
correlation coefficient (R), the average relative absolute error (eAARE), the square root of
the mean square error (RMSE), the dispersion index (SI) and the relative error (erel; error
between the experimental data and those obtained by the ANN). These parameters are
defined as follows:

R =

N
∑

i=1

(
Ei − E

)(
Pi − P

)
√(

N
∑

i=1

(
Ei − E

)2 N
∑

i=1

(
Pi − P

)2
) (4)

eAARE =
1
N

N

∑
i=1

⌊
Ei − Pi

E

⌋
· 100% (5)

RMSE =

√√√√ 1
N

N

∑
i=1

(Ei − Pi)
2 (6)

SI =
RMSE

E
(7)

erel =

(
Ei − Pi

Ei

)
· 100% (8)
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where Ei is the experimental value and Pi is the value obtained by using the neural network
model; E and P are the mean values of E and P, respectively; and N is the total number of
data used.

Small values (zero approximation) of eAARE and RMSE mean a good correlation
between predictive and experimental data. However, it is important to note that the highest
values of coefficient R (close to 1) should not always be interpreted as evidence of good
predictive performance of the developed ANN model, because these values do not fully
describe the relationship between the experimental values and those predicted [22,23].
Furthermore, to evaluate the ANN model, standard statistical indices are evaluated and
presented in Table 5.

Table 5. ANN model performance in training, validation and testing phases.

R RMSE (%) eaare (%) SI

Training 0.99781 2.8974 3.5978 0.0007

Validation 0.99377 4.1508 4.7632 0.0637

Testing 0.99059 3.5909 4.3209 0.0553

The error distributions of the flow stress of the neural network model in relation to
the experimental data are shown in Figure 3.
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As can be seen graphically in Figure 3, the values of the flow stress in the training,
validation and testing phases of the ANN reveal that they are very similar to the experi-
mental ones. Most of the points fall along the 45◦ line, and the correlation coefficients for
training, validation and testing are 0.99781, 0.99377 and 0.99059, respectively. These R val-
ues are similar to those in others works to accept the goodness of the correlations between
simulated and experimental data for other medium carbon microalloyed steels [24]. All
the above results indicate that the ANN model has been successfully trained and can be
applied to predict the flow stress behavior of the studied microalloyed steel.

To confirm the accuracy of ANN model performance, statistical analysis of the rela-
tive error is also used. The distributions of the relative error of the ANN model for the
training, validation and testing phases are shown in Figure 4. This figure indicates that the
predictions of the relative errors of the three data sets show a typical Gaussian distribution
and show that are within 10% for more than 95% of the test data (a relative error of 5% is
observed for more than 85% of the training data). Consequently, the good performance in
the prediction of the proposed ANN model is confirmed.
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3. Results
3.1. Application of Dynamic Model of Materials
3.1.1. Flow Curves

The flow curves of the studied steel are represented in Figures 5–8. The experimental
flow curves are typical of materials that undergo dynamic recovery (DRV) and dynamic
recrystallization (DRX), and the same can be said for the curves obtained through the ANN
proposed model. The maximum peak stress (σp) and the peak strain (εp) increase with the
strain rate for a given temperature. As the temperature increases, σp and εp decrease.
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It can be seen that the proposed ANN model gives, under different deformation
conditions, an accurate estimate of the flow curves and that the results are very similar.

Figure 5 represents the experimental flow curves (in black) and those obtained by the
ANN after the training and validation phases (in red) for different temperatures. Figure 6
represents the experimental flow curves (in black) and those obtained by the ANN after
the training, validation and testing phases (in red) for different strain rates. It can be seen
in Figure 5d that the experimental flow curve at 950 ◦C and

.
ε = 0.1 s−1 shows a small

increase in stress from ε = 0.7 due to the frictional effects, as explained in Section 2.1.
Figures 7 and 8 represent the flow curves for the temperatures and strain rates used for the
ANN validation and testing phases, respectively.

3.1.2. Experimental Processing Maps Obtained by DMM and VDMM

In the research work carried out by Al Omar [19], the processing maps (energy dis-
sipation efficiency maps and plastic instability maps) of the studied steel were obtained
by using the DMM. The energy dissipation efficiency map reveals the existence of two
domains characterized by maximum efficiency. The first domain occurs in the region of low
temperatures and moderate strain rates (centered at approximately 900 ◦C and 0.0001 s−1).
In this case of low temperatures and intermediate strain rates, it is expected that DRV will
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act; typical flow curves within this domain are characteristic of DRV. In the hot forming
process, both DRX and DRV are considered beneficial mechanisms for the microstructure
and consequently for the mechanical properties of the formed material, as they provide
stable flow and improve the formability of the material [8,19]. The second domain appears
centered at 1100 ◦C and 1 s−1 with a maximum efficiency of approximately 31%; it is the
domain of DRX. This correlation is confirmed by the flow curves obtained under different
combinations of temperature and strain rate in this domain and clearly show continuous
softening with single-peak behavior. For temperatures of 900–950 ◦C and high deformation
speeds, a domain with low efficiency values appears and can be identified with zones that
are not suitable for forming the material studied [8,19].

In relation to the plastic instability [19] map based on the DMM, as is known, the
greater the negative magnitude of the plastic instability parameter (ξ), the greater the
possibility of the appearance of some manifestation of plastic instability. Thus, in order
to always form under stable flow conditions, domains of possible instabilities must be
avoided during hot forming processes. The map represents two zones of stability; one for a
temperature of 900 ◦C and a strain rate of 0.0001 s−1 and the other for 1100 ◦C at 3 s−1.

In Figure 9, the processing maps based on the VDMM are represented. These maps
reveal a domain of plastic instability between 900 and 950 ◦C and high strain rates of
3 s−1; this domain coincides with the domain found in the DMM maps. Despite the small
difference found in the position of the stable domains, good agreement is observed between
the different processing maps built based on the two models, the DMM and the VDMM.
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3.2. Application of ANN to Develop Processing Maps

To check the reliability of the ANN proposed in this work, processing maps were built
based on the DMM (Figure 10) and on the VDMM (Figure 11) by using the flow curves
obtained by the ANN. These maps coincide with those obtained through the experimental
stress–strain curves obtained by applying the DMM and VDMM.

The DRX domain appears at 1100 ◦C and 3 s−1 with an approximate efficiency of
32%, and another DRV domain appears at low temperatures and strain rates, centered
approximately at 900 ◦C and 0.0001 s−1. It is well known that both DRX and DRV domains
are considered safe and are preferred for hot forming processes, because these mechanisms
improve workability by reconstituting microstructure and decreasing the flow stress. In
addition, an instability domain appears at low temperatures and high strain rates (900 ◦C
and 3 s−1) with very low efficiency, and it would be convenient not to conform under these
conditions. These results have been confirmed by microstructural examinations in previous
research studies carried out by the authors [19].
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The similarity between the experimental processing maps and those obtained by
using the ANN suggest, for future research, that the ANN developed in this work can be
implemented in commercial finite element code to more efficiently simulate the hot flow
behavior of medium carbon microalloyed steels.

3.3. ANN to Obtain Recrystallized Grain Size
3.3.1. Experimental Data on Grain Size

The first fourth columns of Table 6 represents the experimental data of the initial grain
size and the final grain size at the deformation of 0.6, corresponding to the stable state, for
different temperatures and strain rates.

Table 6. Experimental initial and final grain sizes for different temperatures and strain rates and data
obtained through ANN in training.

T (◦C)
.
ε (s−1) Gs.INITIAL (µm) Gs.FINAL (µm) ANN (µm)

900 0.0001 11.12 22.2557 21.6098

900 0.0005 11.12 14.81 15.4256

900 0.0020 11.12 12.9680 11.1386
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Table 6. Cont.

T (◦C)
.
ε (s−1) Gs.INITIAL (µm) Gs.FINAL (µm) ANN (µm)

900 0.0100 11.12 11.3415 -

900 0.0500 11.12 9.799 9.8309

900 0.3000 11.12 8.3298 9.7824

950 0.0002 12.63 33.9160 33.4308

950 0.0005 12.63 26.6486 26.5033

950 0.0010 12.63 21.0201 -

950 0.0050 12.63 16.8403 16.6861

950 0.0100 12.63 15.8876 15.4176

950 0.0500 12.63 13.967 14.0240

950 0.3000 12.63 12.3852 12.2633

1000 0.0001 21.1 95 94.8702

1000 0.0002 21.1 76 -

1000 0.0007 21.1 52.4296 52.3033

1000 0.0020 21.1 37.7328 37.5001

1000 0.0100 21.1 27.9388 28.2090

1000 0.0500 21.1 23.9435 23.9700

1000 0.1000 21.1 22.6202 22.3469

1000 0.3000 21.1 21.3700 21.4938

1050 0.0001 77.57 164.8713 165.0638

1050 0.0100 77.57 46.0404 46.0867

1050 0.0200 77.57 40.4298 40.5404

1050 0.0500 77.57 37.4276 37.3475

1050 0.1000 77.57 36.2312 36.1864

1050 0.3000 77.57 33.9519 -

1100 0.0001 117.79 253.4429 253.4109

1100 0.0010 117.79 131.3201 131.3422

1100 0.0100 117.79 70.5940 70.5405

1100 0.0300 117.79 61.9280 61.9516

1100 0.1000 117.79 53.9414 53.9305

1100 0.3000 117.79 49.1312 49.1622

3.3.2. Construction of Neural Network Model to Obtain Grain Size

In the same way as in the previously developed ANN model, temperature and strain
rate were normalized to values between 0 and 1. Grain size values do not need to be nor-
malized. The ANN model is the same as the one previously developed used to determine
the flow curves, that is, the Multi-Layer Perceptron (MLP) based on Feed-Forward and
backpropagation (BP) as a learning algorithm. For training, the Levenberg–Marquardt
(trainl) algorithm is applied, based on the backpropagation (BP) learning algorithm.

The network architecture we adopt is composed of three layers, input, test and val-
idation. The input layer is composed of three elements (T,

.
ε and Gs.INITIAL); two hidden

layers with twelve and nine neurons; and as output layer, we will have the final grain
size, recrystallized (Gs.FINAL). The architecture of the network, 3-11-6-1, is represented in
Figure 12.
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Figure 12. ANN to obtain final grain size.

To develop the ANN to predict the final grain size, few experimental data were used
to train, validate and test the proposed ANN. In total, there were 33 experimental data, of
which we used 28 (84.8%) for training and 5 (15.2%) for validation (Table 7). For testing,
8 data were chosen randomly from unseen data experiments (Table 8). It was proved, by
using these data, that the trend of the evolution of the final grain sizes predicted by the
ANN, as a function of temperature and strain rate, is very similar to the experimental trend.
Therefore, predictive results were obtained without further experimental testing, thereby
allowing us to reduce the amount of costly experimental testing. Finally, by comparing
experimental data and ANN predicted results, it is accepted that both sets of data are
very similar. So, the proposed ANN can be used reliably for predicting the final grain size
obtained during the hot forming process. The best results were obtained for a minimum
square error (MSE) of 0.000005. The training phase stopped after 807 iterations.

Table 7. Results of ANN validation phase.

T (◦C)
.
ε (s−1) Gs.FINAL (µm) ANN (µm) erel (%)

900 0.01 11.3416 10.9527 3.43

950 0.0010 21.0201 21.9764 4.55

1000 0.0002 76 82.6071 −8.69

1050 0.0500 23.9436 23.9700 −0.11

1100 0.3000 33.9519 32.3338 4.76

Table 8. Results of ANN testing phase.

T (◦C)
.
ε (s−1) Gs.INITIAL (µm) Gs.FINAL (µm) ANN

900 0.0001 11.12 21.6098

900 0.001 11.12 12.8276

900 0.01 11.12 10.9527

900 0.1 11.12 9.8426

950 0.0001 12.63 3.4371

950 0.001 12.63 21.9764

950 0.01 12.63 15.4176

950 0.1 12.63 12.848
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Table 8. Cont.

T (◦C)
.
ε (s−1) Gs.INITIAL (µm) Gs.FINAL (µm) ANN

1000 0.0001 21.1 94.8702

1000 0.001 21.1 45.5325

1000 0.01 21.1 28.209

1000 0.1 21.1 22.3469

1050 0.0001 77.57 165.0638

1050 0.001 77.57 83.6777

1050 0.01 77.57 46.0867

1050 0.1 77.57 36.1864

1100 0.0001 117.79 253.4109

1100 0.001 117.79 131.3422

1100 0.01 117.79 70.5405

1100 0.1 117.79 53.9305

3.3.3. ANN Results

The last column of Table 6 shows the results obtained by the ANN after the training
phase. In this last column, the rows without values were used for the ANN validation
phase and are presented in Table 7. The relative error was calculated by using Equation (8).

The results obtained by the ANN can be compared with the experimental results
shown in Figures 13 and 14. In these figures, it is clearly observed that the range of high
temperatures and very low strain rates exhibit grain growth, and as the strain rate increases,
the grain is refined. In this case, the initial grain size is different at each temperature.
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Regardless of the theories that attempt to explain these processes through nucleation
and growth mechanisms during DRX, the existence of grain refinement for single-peak
recrystallization is evident.

The interpretation of the domains that appear in the processing maps of the studied
microalloyed steel can be performed by using the flow curves associated with each do-
main, as well as the evolution of grain size with temperature and strain rate. Therefore,
the broad domain, observed in the processing maps, located at low strain rates repre-
sents single-peak dynamic recrystallization in the temperature range between 900 ◦C and
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950 ◦C, while at higher temperatures (950 ◦C), this same domain is representative of cyclic
dynamic recrystallization. The domain located at high strain rates and high temperatures
represents the process of single-peak dynamic recrystallization. The microstructure of the
specimens deformed at T = 1100 ◦C and

.
ε = 0.3 s−1, as represented in Figure 15 [19]. In these

microstructures, it is noteworthy that considerable reconstitution of the microstructure due
to DRX processes and perhaps also additional post-dynamic processes is evident.
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4. Conclusions

This work focused on the study of dominant deformation mechanisms that control
the microstructure, through grain size control, during the hot plastic deformation of a
medium carbon microalloyed steel. A contribution of great interest and originality is the
thermodynamic analysis of the deformation conditions that can lead to the appearance of
plastic instabilities in the material.

Two artificial neural network (ANN) models were used successfully. The first was
used to develop the processing maps for a medium carbon microalloyed steel subjected to a
hot forming process. The second model is capable to determine the recrystallized grain size
in a steady state. The ANN is trained by using temperature, strain, and strain rate as input
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data and flow stress as target or output data. The network model used is the MLP (Multi-
Layer Perceptron) and backpropagation (BP) learning algorithm. For network training, the
Levenberg–Marquardt (trainlm) algorithm is applied, based on the backpropagation (BP)
learning algorithm. The processing maps of the studied steel were developed based on the
dynamic materials model (DMM) and its variant (VDMM). In these maps, it was possible to
define safe areas for forming and areas to avoid. These results are of great industrial interest
because they allow for choosing the most appropriate control parameters to carry out the
forming process with full guarantees of success and reliability. The comparison between
the experimental processing maps and those of the ANN show a very high similarity, which
demonstrates the robustness and reliability of the ANN proposed in this work.

In relation to the ANN model proposed to determine the recrystallized grain size, the
same method was used as in the first ANN, with the difference that, in this case, very few
data were available to train and validate the network. However, the ANN results are very
close to the experimental ones, so it is considered that the training, validation and testing
were satisfactory. The graphs obtained in relation to the recrystallized grain size follow the
trend of other studies carried out, so it can be confirmed that the results obtained by using
the proposed ANN are correct.

Artificial neural networks are an efficient method to simulate the flow behavior of
materials subjected to hot forming processes to determine the control parameters necessary
to carry out safe forming without plastic instabilities. In addition, this method allows for
predicting the evolution of the shaped microstructure through grain size.

The obtained results and the ability of the proposed ANN to predict safe domains and
optimize process forming parameters facilitate hot forming process efficiency improvement
through the modifications of the forming sequences and the heating strategies. Also, the ca-
pability of the proposed ANN of predicting flow curves for unseen deformation conditions
can significantly ease the path for future research works to develop a promising numerical
computing tool in designing hot forming processes for other medium carbon microalloyed
steels with different chemical compositions without need to carry out experimental tests
that are time- and cost-consuming. At an industrial level, this is particularly interesting for
processes that involve multiple stages of deformation.

Finally, to have a deeper understanding of the control mechanisms of the complex flow
behavior of medium carbon microalloyed steel, more microstructural research is needed,
especially transmission and scanning electron microscopy and EBSD analysis to identify
the dominant deformation mechanisms.
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