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Abstract: The foundation of materials science and engineering is the establishment of process–micro-
structure–property links, which in turn form the basis for materials and process development and
optimization. At the heart of this is the characterization and quantification of the material’s mi-
crostructure. To date, microstructure quantification has traditionally involved a human deciding
what to measure and included labor-intensive manual evaluation. Recent advancements in artifi-
cial intelligence (AI) and machine learning (ML) offer exciting new approaches to microstructural
quantification, especially classification and semantic segmentation. This promises many benefits,
most notably objective, reproducible, and automated analysis, but also quantification of complex
microstructures that has not been possible with prior approaches. This review provides an overview
of ML applications for microstructure analysis, using complex steel microstructures as examples.
Special emphasis is placed on the quantity, quality, and variance of training data, as well as where
the ground truth needed for ML comes from, which is usually not sufficiently discussed in the
literature. In this context, correlative microscopy plays a key role, as it enables a comprehensive
and scale-bridging characterization of complex microstructures, which is necessary to provide an
objective and well-founded ground truth and ultimately to implement ML-based approaches.

Keywords: artificial intelligence; machine learning; microstructure analysis; metallography; correlative
microscopy; steel

1. Introduction

The term microstructure refers to the inner structure of a material which, on one hand,
stores its genesis and processing history, and, on the other hand, determines all its physical
and chemical properties [1]. The microstructure is considered the central information
carrier [2]. Therefore, the phases contained in the microstructure, including their distribu-
tion, shapes, and sizes, are decisive, and a correct analysis of the microstructure is crucial,
in consideration of the overarching objective of understanding process–microstructure–
property links. In fact, the materials science and engineering (MSE) community is in the
midst of a paradigm change from empirical process–property correlation to microstructure-
based development of new materials [1]. Consequently, characterization, analysis and
quantification of the microstructure are all the more important. A deep understanding
of the microstructure plays an increasingly important role for both quality assurance and
research and development for materials and process optimization. Today’s challenge of an
ever-growing economy, paired with the preservation of resources and the need for a circular
economy in order to counteract climate change, makes the ability to optimize materials
more valuable than ever.

Today, microstructure analysis is still frequently performed manually and often pro-
vides qualitative statements only, making them a bottleneck in microstructure-based materi-
als development and process control. A microstructure analysis pipeline generally consists
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of a metallographic preparation step, followed by contrasting, a segmentation of the mi-
crostructural components and their quantification and classification. Especially for these
latter analysis steps, machine learning (ML) approaches promise substantial benefits [2]. In
fact, ML has already replaced conventional solutions in computer vision and is employed,
for example, for obstacle recognition in autonomous driving [3]. As many human vision
tasks cannot be adequately solved using a simple deterministic, rule-based solution, the
significance of ML lies in the fact that it makes problems accessible to automatic processing
by computers for which full mathematical modeling is hopeless.

Recently, a major focus of ML in MSE has been on the ML-aided materials discovery
and design [4–9] which involves discovering new compounds with promising combina-
tions of properties. However, most of the work explores the “chemical space”, i.e., the
possible chemical combinations of novel materials, with (so far) little emphasis on their
microstructure [10,11]. Additionally, the capabilities of ML-aided analysis of big data
seem to encourage researchers to again focus on process-property-correlations and shift
away from process–microstructure–property-links. Yet the microstructure is an essential
pillar of materials design [12] and its incorporation into materials design processes is
significant, with process–microstructure–property relationships being more relevant than
process-property only relationships [13]. Accordingly, microstructure analysis and quan-
tification are relevant in many different respects: the optimization of new materials with
regard to their microstructure, the quality control of existing materials and the continuous
microstructure-based improvement of existing materials.

While materials become more advanced and their microstructures become increasingly
smaller in size and more complex, consisting of a combination of different phases or
constituents with different substructures [1], tolerances become narrower and quality
requirements more strict, resulting in existing characterization methods reaching their
limits. Microstructure analyses, notably microstructure classification and segmentation,
are still often carried out manually. Not only is this time-consuming, but also subjective
and poorly reproducible. In addition, simple assessments using reference images and
comparison charts, or qualitative estimations of phase fractions do not extract all available
information from the microstructure. While some simple computer-based approaches to
automating these tasks exist, e.g., threshold segmentation, they quickly reach their limits
with complex microstructures.

Accordingly, these approaches represent the limitations for establishing process–
microstructure–property correlations and for microstructure-based material development.
This issue can be tackled with ML-based approaches, allowing an automatization of mi-
crostructure analyses with the ability to treat large amounts of high-dimensional data,
achieving increased objectivity and reproducibility, extracting all relevant information from
the microstructure and enabling new analysis approaches of complex microstructures and
thus bearing previously unused potential.

In fact, recently, ML has experienced a downright hype, reflected in the myriad of
publications concerning artificial intelligence (AI). Despite the resulting acceleration of AI
technology development, this includes examples where ML is applied only as an end in
itself and viewed as a panacea, but with lack of consideration for the required amount and
quality of data, the origin of the ground truth and the complex material-specific questions
and the required domain expertise [14].

This review aims to showcase the possibilities of ML in microstructure analysis and at
the same time to provide more clarity on the ground truth needed to train ML models as well
as the data foundation, e.g., quantity and quality of training data and metallographic aspects
that need to be considered during data acquisition. This is demonstrated using the examples
of complex steel microstructures, where the classic tasks of grain size determination and
phase analysis are investigated.
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2. Domain Related Challenges in Materials Science

The aim of this section is to outline the domain-specific challenges of applying ML
methods adopted from computer science to microscopic, microstructural images. In addi-
tion, a clear terminology of terms related to artificial intelligence should be defined first [15].

2.1. Machine Learning Methods for Microstructure Analysis

• Data science: roughly encompasses all steps in generating meaning and knowledge
from data (data collection, data preparation, model building (including machine learn-
ing methods), application of the models). Data mining denotes the use of statistical
or machine learning methods to detect interesting correlations or knowledge in large
amounts of data.

• Computer vision (CV): broad term for a technology that enables machines to automat-
ically recognize and describe images. Today, the main methods that are used for this
purpose are artificial intelligence and machine learning.

• Artificial intelligence (AI): a branch of computer science which can be understood
as the digitization of human knowledge skills and aims at performing tasks that
normally require human intelligence. Subfields of AI are planning, reasoning and
machine learning.

• Machine learning (ML): Subfield and fundamental method of AI where computers are
enabled to independently learn patterns and regularities from available data without
being specifically programmed for this task.

• ML can generally be divided into two sub-classes, namely, supervised and unsuper-
vised learning. While supervised learning refers to learning based on annotated exam-
ples, unsupervised learning corresponds to finding patterns in the data autonomously,
i.e., training without knowledge of a ground truth or human intervention.

• Deep learning (DL): Method of ML using so-called artificial neural networks (ANNs).
ANNs can not only learn patterns and regularities from available data, but also detect
important features in the data independently.

• Model training and model inference: In supervised ML, the algorithm receives a set
of data and associated expected outcomes and learns a function that maps the input
data to the output. The assignment of this so-called ground truth, i.e., the linking of
the data with the associated expected outcomes by a human expert, is a crucial step
in supervised ML. This learning phase results in a trained model, which can now be
applied to new, unknown data of the same type (inference).

In microstructure analysis, ML tasks, derived from CV tasks, usually fall under the
following categories [16], as visualized in Figure 1:

• Image classification: Identification of the content of an image, e.g., classification of
single-phase microstructures or classification of defects.

• Semantic segmentation: Classification of each pixel of the image, e.g., for segmentation
and subsequent quantification of multi-phase microstructures.

• Object detection: Location of individual objects within the image, e.g., for finding pre-
cipitates in microstructure. In everyday life, object detection is applied in autonomous
driving for obstacle detection.

• Instance segmentation: Assignment of pixels to individual objects by identification
and bounding of an object followed by segmentation of the pixels that belong to said
object, often applied in combination with object detection.
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2.2. Domain Challenges and the Role of the Ground Truth

In supervised ML, a set of training data including the corresponding expected out-
comes is required, with which the model will learn a function projecting the input on the
output. This assignment of the expected outcomes to training data is called ground truth
assignment and is the fundament for supervised machine learning. The terms label and
annotations are also used synonymously with ground truth.

In MSE, as in other disciplines, the assignment of the ground truth represents the
bottleneck for implementing an ML-based analysis. This not only concerns the time
required, which is especially true for manual annotations for segmentation tasks, but
also the challenge of providing an accurate and objective ground truth in view of the
complex fine microstructures that may not always be fully determined. In MSE, this
comes with the need for human domain expertise to decide a priori what to measure or
analyze and create purpose-built datasets and ML models. However, due to its subjective
nature, the required human input can impair the correctness of the algorithm. Simple and
straightforward microstructures usually pose no problems, but this issue becomes relevant
as microstructures are more complex with an inherent increased scope for interpretation.
This data poses a higher risk for subjectiveness, which, in turn, can propagate through the
entire ML workflow. Thus, objectiveness cannot be guaranteed for the final results of the
model, e.g., class definition, image and class assignment or image region annotation. In the
literature, the role of the ground truth is rarely discussed [14], and some publications lack
a relevant materials science background, which can result in questionable methods and
false interpretations [17,18]. Additionally, both methodological guidelines and widespread
understanding within the community about required data are missing.

To better illustrate these challenges, and in order to discuss the dataset size needed
for training a ML model, it is helpful to compare microscopic microstructural images to
the natural scene, that is, everyday images of computer science datasets that are used to
develop and benchmark CV related ML approaches.

Even from a purely computer science perspective and in relation to CV of the natural
scene, everyday images, ML is more than “just some ML code” [19]. From an MSE point
of view, this is all the more true. Whereas data generation, i.e., image acquisition and
the assignment of ground truth, is simple for datasets of natural scenes and everyday
images (e.g., ImageNet, Stanford Dogs Dataset, Cityscapes Dataset [20–22]), the steps for
obtaining the image alone are significantly more complex for microscopic microstructure
images. Image acquisition includes sample selection, sample preparation (grinding and
polishing), sample contrasting (typically chemical etching) and the image acquisition
itself via a suitable microscope (e.g., light optical microscope (LOM) or scanning electron
microscope (SEM)). On the one hand, the final appearance of the microstructure under the
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microscope depends on the experimental settings (e.g., choice of etching reagent, etching
time, microscopy settings) and, on the other hand, may not be fully determined due to the
complexity of the structures and may be evaluated differently by various experts. This
subjective perception can be reinforced by the lack of consistent terminology for describing
microstructures, e.g., in the steel domain for bainitic microstructures [23].

When implementing an ML-based microstructure analysis, the following questions
must therefore also be answered: How should we deal with variances in metallographic
processes and ambiguities in expert judgements in order to still exploit the advantages ML
promises? Thus, it is paramount to view the ML implementation in a holistic way, with a
focus on metallographic processes and variances and including a well-defined ground truth,
to actually reach the desired accuracy, objectivity and reproducibility of the ML model.

One of the reasons for using ML is that it can handle variances well, as long as they
are represented in the training data. However, although ML has already demonstrated
its potential for a variety of tasks in microstructural analysis, the majority of publications
deal with well-curated datasets, generated under laboratory conditions and exhibiting little
variation (e.g., [17,24–29])—and a general understanding of robustness and generalization,
as well as dataset size, occurring variances and the maximum variance an ML model can
handle, is therefore still lacking.

It is to be assumed that ML models can handle variances well for tasks with clearly
separable foreground and background (e.g., segmentation of grain boundaries), whereas
variances become more critical the more complex the task is (e.g., differentiation of complex
and similar microstructures such as lower bainite and tempered martensite [30]). Neverthe-
less, it is important to understand metallographic processes in terms of the variances that
may occur and to restrict variances if necessary. On the one hand, a parameter space can
be defined for the safe application of the ML model, and on the other hand, by restricting
variances, a faster and more systematic implementation of the ML evaluation is made
possible even with few data. The origin and degree of the variances and the amount of
training data will be discussed in the later application examples.

It is commonly believed that small datasets are generally insufficient for ML model
training, but this is only true to some extent. In fact, excellent results have been achieved
with as few as 10 training images [16]. In terms of the amount of training data, the
comparison of natural scenes and everyday images with microscopic microstructural
images actually shows an advantage for the micrographs. Micrographs can be viewed as
“data-rich”; i.e., they are rich in relevant information. They contain more regions of interest
than natural scene images (e.g., several hundred particles or grains), lack background
that does not contribute to the analysis task, are statistically representative of the material
and its microstructure and are usually captured from a fixed field of view [16]. In this
context, it is also beneficial that microscopic microstructural images usually have higher
resolution, and therefore several image tiles can be created out of one image (or even
have to be, depending on the available GPU RAM), as long as an image tile still covers
the representative microstructural scale [25]. Ultimately, controlling and understanding
material science aspects provides the biggest leverage for a successful implementation of
ML-based microstructural analysis.

2.3. Ground Truth Assignment in a Holistic Approach

For a holistic ML approach in microstructure analysis, the assignment of the ground
truth is an essential step. Simultaneously, complex microstructures pose a problem of caus-
ing disagreements between domain experts, giving rise to the question of how an objective
ground truth can be obtained. Some examples of ground truths are class definition and the
assignment of images to said classes, as well as image region annotation for segmentation,
all fairly difficult for a human domain expert relying solely on visual appearance. One
possible strategy is the performance of round robin tests, consisting of having a group of
several experts individually judge the same images, followed by a majority voting for the
image class [31,32]. While this reduces ambiguities to an extent, round robin tests are still
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limited by uncertainties caused by excessive disagreement between domain experts, such
as regarding bainitic structures in steel [14,23].

Another, more objective, approach for ground truth assignment in micrographs is
correlative microscopy, consisting of a combination of different, usually scale-bridging,
microscopy methods that complement each other to cancel out disadvantages and limits.
For complex microstructures, one single characterization method often is not sufficient to
record all microstructural features relevant for ML, justifying the relevance of a correlative
approach. Generally, the increased expenditure of correlative microscopy is envisaged for
the creation of the ML training dataset only, for creating references, with the goal being the
reduction of the serial evaluation to the simplest microscopy method.

A prominent example of correlative microscopy is the combination of light optical
microscopy (LOM) and/or scanning electron microscopy (SEM) images capturing the
visual appearance of the microstructure with electron backscatter diffraction (EBSD) maps,
the latter providing complementary structural information like misorientation parameters,
grain and phase boundaries, etc. [25,30,33,34]. As the initial measured crystallographic
phases and orientations from EBSD are not based on visual appearance to a human ex-
pert eye, they can be regarded as objective measurement data and thereby as an ideal
complementary source of information.

To ensure that the exact same sample location is imaged with the different methods,
a region of interest (ROI) can be marked, for example with hardness indentations, or
microscopes with shuttle systems can be used. The EBSD measurement is carried out first,
then the sample is etched, and the ROI is imaged in LOM and SEM. Image registration must
then be carried out so that the images taken with the different methods are properly aligned
and can be superimposed. Feature extraction using scale-invariant feature transformation
(SIFT [35]) and feature alignment using the algorithm bUnwarpJ [36] have proven to be
reliable approaches for image registration. Further details on the experimental procedure,
data preparation and registration can be found in [33,37].

On the one hand, the comprehensive, scale-bridging description of the microstruc-
ture based on the correlative data enables the most accurate and objective ground truth
assignment possible and is the fundament for implementing ML-based analysis of complex
microstructures. On the other hand, it can be systematically investigated which method
in the correlative approach can achieve the highest accuracy for the given task or which
method is sufficient or necessary for which level of detail of the analysis. In general, the goal
is always to perform the additional experimental effort of correlative characterization only
once when generating the training data, thereby creating understanding and references,
and reducing the series application, i.e., the inference of the ML model, to the simplest
method (here: LOM). In the following application examples, the way in which correlative
microscopy was used to assign the ground truth is explained in each case.

3. Overview of ML Applications in Microstructure Analysis

The first works on ML in microstructure analysis date back about 15 years and deal,
among other things, with the classification of different graphite morphologies of cast
iron [38,39]. Other milestones in terms of different microstructure representations or the use
of DL that have made a decisive contribution to progress and further development of ML
in microstructure analysis include works from DeCost et al. [40–42], Chowdhury et al. [43],
Gola et al. [44,45] or Azimi et al. [1]. In the meantime, ML methods have been applied to a
wide range of microstructure analysis tasks, and it is difficult to summarize them concisely.
Without claiming to be comprehensive, it can be stated that mainly metallic materials are
dealt with, and there is still a clear focus on steel microstructures [1,25,30,46,47]. However,
there are also case studies on non-ferrous metals such as copper [48], titanium [49–51] or
magnetic compounds [52]. Microstructures of non-metallic materials are only dealt with
occasionally [53]. In the broader context of microstructural analysis, the evaluation of
fracture surfaces (both macroscopic and microscopic, [54,55]) or surface defects [56,57] can
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also be mentioned as areas of application in which ML methods have proven their potential
and will continue to establish themselves.

Due to the large number of publications and the dynamic field of research, it is difficult
to maintain an overview and summarize the methods applied. Nevertheless, a certain
consensus on the employed methods can be observed.

While there are also some compelling approaches to microstructure segmentation
using unsupervised learning [58–62], supervised learning is used for the most part. This
makes sense, because complex microstructures in particular require the algorithm to learn
more complex concepts that can no longer be distinguished by means of unsupervised
learning. Earlier work predominantly used conventional ML, i.e., manual extraction or
engineering of features, in combination with classic ML algorithms (e.g., decision trees,
random forest, support vector machine). The use of image texture parameters as features
for ML is widespread, e.g., Haralick textural features or local binary pattern [45,63–67].
Other features that are used for classification are, for instance, morphological parame-
ters [45], or so-called bags of visual words [40]. All these approaches to feature extractions
are primarily used to classify entire images, image sections, or individual objects from
an image. In the context of this conventional ML, so-called trainable segmentations are
used for segmentation. Various filters (e.g., noise reduction, edge detection, texture filter
and membrane detection) are used to extract feature vectors per pixel from the micro-
scope image, which are then classified using an ML algorithm. A prominent example is
the trainable Weka segmentation of the open-source image processing tool Fiji/ImageJ
(release 2.15.1) [68], which opens up a wide range of applications [24,69]. It works well if
the microstructure constituents can be distinguished on the basis of colors or grey values,
edges or simple textures. It reaches its limits with more complex segmentation tasks, e.g.,
when microstructure constituents consist of several textures or differ purely in their shape.

More recent work predominantly uses deep learning. For classification, the typical
convolutional neural network (CNN) architectures like VGG, Inception and Xception;
densely connected neural networks (DenseNet); and deep residual networks (ResNet)
are used. For semantic segmentation, the popular and widespread U-Net architecture
is used, usually with one of the aforementioned CNN as the backbone of the encoder
being responsible for feature extraction as well as condensing the visual information into a
representative vector, the so-called bottleneck of the U-Net. Since large amounts of data
are required to train a CNN and we are usually operating in a low-data regime in MSE,
transfer learning is predominantly used, typically with the ImageNet data source. A model
trained on a dataset as huge as ImageNet has learned a good representation of low-level
features such as corners, edges, illumination or shapes, and these features can be used
collectively to enable knowledge transfer from source to target domain (here: microstructure
analysis) for which few labeled data exist [70,71]. This type of transfer learning using a
non-domain database has proven successful in practice, but it is still being discussed
whether domain-specific pre-training would be more appropriate. Some studies show
that with a sufficient amount of data, the same results can be achieved with a randomly
initialized network as with ImageNet pre-training [25], or that ImageNet pre-training
works better than random initialization if there are too few training data [25]. Other
studies show that a multi-stage pre-training to bridge the domain gap can bring a slight
improvement [72]. Stuckner et al. [73] in turn carried out domain-specific pre-training on
a dedicated microscope dataset. This showed that domain-specific pre-training is better
than ImageNet pre-training in a very-low-data regime, while the results are comparable
with sufficient training data. The amount of data that can be considered sufficient in this
context cannot be generalized but depends much more on the complexity of the individual
problem to be solved.

To summarize the application examples, classification and semantic segmentation are
mainly used for microstructural analysis tasks. Object detection and instance segmentation
are only used occasionally [16].
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A general recommendation for the use of conventional ML or DL cannot be given. Con-
ventional ML can also be used with smaller amounts of data, as tuning the hyperparameters
is easier and fewer computing resources are required. DL, on the other hand, tends to yield
better results than ML for larger data quantities, can learn feature extraction independently
and offers more options for image processing tasks. However, there are also so-called
hybrid approaches that have become popular over the past several years [41,60,74]. Here,
a pre-trained CNN (usually on ImageNet) serves as a feature extractor, and this feature
vector is then classified using conventional ML algorithms (e.g., support vector machine,
random forest).

In principle, it can be stated that ML/DL approaches that have already proven and
established themselves in computer science and in other disciplines are predominantly used
for microstructural analysis. New, “cutting-edge” methods from computer science tend
to be used only sporadically. Some examples include the application of semi-supervised
ML [75,76], super-resolution approaches [77,78], the use of generative models [79–82], or
the incorporation of Meta’s Segment Anything model [83] into microstructure segmentation
workflows [84]. However, current trends in computer science, e.g., neuro-symbolic AI or
transformer architectures, give us reason to believe that a lot more can be expected here in
the future.

The following examples for ML use in microstructure analysis concern complex steel
microstructures. A summary of these examples can be found in the Supplementary Materi-
als (e.g., used machine learning approach, ground truth, dataset size). Due to its excellent
property combinations and ability to specifically adjust tailor-made microstructures, steel
is still one of the world’s most important engineering and construction materials. Although
the many commercial steel grades differ partially in their chemical composition, the main
difference is in their microstructure. In turn, the microstructure largely determines the
mechanical properties. These fine-tunable microstructures are becoming increasingly fine
and complex, therefore requiring a deep understanding which, in turn, calls for reliable
analysis methods. Therefore, steel is an ideal material for ML case studies.

3.1. Phase Analysis of Two-Phase Steels
3.1.1. Initial Advances in DL Applications for Microstructural Classification in Steel

In 2018, among the earliest realizations of DL techniques in steel microstructure
analysis, Azimi et al. [1] proposed segmentation of steel micrographs for quality appraisal,
showing substantial gains over the previous state-of-the-art methods.

Two-phase steels are examined, their microstructure consisting of a ferritic matrix as
a first phase, considered “background”, and a second “foreground” phase in the form of
pearlitic, martensitic or bainitic objects. Microstructures were analyzed in a correlative
approach, acquiring micrographs from the exact same sample positions in LOM and
SEM, based on Britz et al. [37]. The ground truth was provided in the form of pixel-wise
annotations. To avoid manually outlining the second-phase objects in the SEM image,
the correlative LOM image could be segmented via thresholding into the foreground (all
second-phase objects) vs. the background (ferritic matrix), based on an appropriate etching
method. This binary mask provides location information regarding the objects and can also
be used to further assign different classes. This ground truth for each second-phase object,
performed by materials science experts, was assigned per sample respective micrograph:
every second-phase object in one micrograph belonged to the same class. No bainitic
subclasses were considered. Instead, samples that were neither pearlite nor martensite were
assigned to bainite. The correlative data could be used to investigate which classification
accuracies were possible with LOM and with SEM. In total, five classes were considered:
the background class ferrite and the four foreground classes pearlite (333 objects), bainite
(345 objects), martensite (1253 objects), and tempered martensite (274 objects).

DL was applied in the form of a semantic segmentation, i.e., a pixel-wise classifica-
tion. The fully convolutional neural network (FCNN) employed was based on a work
by Long et al. [85], who proposed an approach similar to that of the VGG16 architecture.
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Data augmentation in form of rotations and a variation in the stride parameters were
used to counteract the initially unbalanced dataset. To achieve a classification of the entire
second-phase object rather than its pixels, a max-voting scheme was afterwards applied to
each object, assigning it to the class of the majority of the pixels.

For SEM images, in terms of the number of correctly classified second-phase objects, an
outstanding classification accuracy of 94% was achieved, which significantly outperformed
previous state-of-the-art methods. In terms of pixel accuracy and mean intersection over
union (mIoU), values of 93.9% and 67.9% were achieved, respectively. An excerpt of the
results can be seen in Figure 2. For LOM images, the object classification accuracy amounted
to only 70.1%, which is, considering the complexity of microstructures, still a good result,
but also clearly shows the limitations of LOM in resolving fine, similar microstructures
like bainite, martensite and tempered martensite. Overall, the proof of concept was highly
successful, especially considering the novelty of DL technologies in MSE at the time.
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martensite, green: tempered martensite, blue: bainite, yellow: pearlite), modified according to [1].
Reprinted from [1].

3.1.2. ML-Based Classification of Bainitic Subclasses in SEM Micrographs

In continuation of the previous work on two-phase steels, Müller et al. [47] considered
bainitic subclasses. The new classes required new annotations, which was the greatest
difficulty in this ML implementation. In the field of steel, bainite has a special position
due to its fine and complex structures, and since the large number of existing classification
schemes also make a standardized description and assessment of bainitic structures difficult.
In order to label the bainitic microstructures present in the samples, the classification scheme
proposed by Zajac et al. [86] was chosen because it is the most convenient to use in common
parlance and best fits the present bainitic structures. In total, seven classes were considered
(see Figure 3): pearlite, martensite and degenerate pearlite, debris of cementite, incomplete
transformation product, upper bainite and lower bainite as five bainitic subclasses, which
can all be present simultaneously in one micrograph.
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In contrast to the previous work of Azimi et al. [1], an object-wise ML classification
based on initial works by Gola et al. [45] was used instead of a semantic segmentation.
The pixel-by-pixel annotations required for semantic segmentation were in practice hardly
realizable due to the required time but also due to uncertainty in manually marking and out-
lining regions and borders of these complex microstructures. By taking an object-by-object
approach, however, objects that could not be clearly assessed could be filtered out before
the ML model training, so that the model was only trained with unambiguous objects. In a
later series application of the ML model, some uncertainty may remain in the classification
of these unclear objects, but the assessment is always identical. With semantic segmentation,
which uses the entire micrograph as input and not just individual objects, these uncertain
objects would still be part of the training data. In combination with unbalanced classes,
this represented too great an obstacle.

In the object-wise approach, first, the entire carbon-rich second phase was segmented.
This segmentation was used as a binary mask to remove the ferritic matrix background
from the micrograph and extract each second-phase object individually. For each individual
second-phase object, image textural features, namely Haralick parameters and local binary
patterns, as well as morphological characteristics of the substructure inside the objects,
were extracted. These features could then be used for ML classification.

In the face of the complexity of bainitic structures and the disagreement between
experts in labeling them, only relying on the visual appearance of the microstructures to the
expert eye can easily introduce a subjective and non-reproducible component into the ML
model. In this work, round robin tests were performed first to determine the best possible
consensus within a group of experts. Furthermore, reference specimens were created, and
correlative characterization was employed, combining SEM micrographs with EBSD maps
showcasing misorientations and types of grain boundaries to increase the understanding
of the different microstructural classes and assign the ground truth as objectively and
reproducibly as possible. The final dataset consisted of almost 4000 annotated objects,
although with imbalanced classes (Table 1).

Table 1. Summary of class distribution in final annotated dataset in [47]. Reprinted from [47].

Class Pearlite (P) Degenerate
Pearlite (DP)

Debris of
Cementite
(DC)

Incomplete
Transformation
Product (ITP)

Upper Bainite
(UB)

Lower Bainite
(LB)

Martensite
(M) Total

No. of objects 772 321 964 856 212 228 550 3903
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For the actual ML classification, the number of features was reduced by removing
correlated features, and the data was standardized in order for all features to have the same
data range, and split into an 80–20% train–test split. The classification was implemented
in the MATLAB Classification Learner app (Version R2021a) by a support vector machine
(SVM). Against the unbalanced classes, data augmentation at the image level could not
be applied in a meaningful way, since the feature extraction process is invariant to typical
augmentations such as flipping or rotating. However, approaches against imbalanced data
at dataset level such as under-sampling, over-sampling or synthetic minority oversampling
technique (SMOTE) did not show any significant effect.

Ultimately, the SVM performed well on the original, imbalanced dataset, and after
feature selection (down to 40 features) and hyperparameter optimization, a classification
accuracy of 82.9% was achieved (see confusion matrix, Table 2). Considering the complexity
of the task and classes and the lack of consensus within the group of experts regarding
bainitic microstructure characterization, this could be considered superhuman performance.

Table 2. Confusion matrix of the best classification model in [47]. Reprinted from [47].

Accuracy 82.9% F1 Score 82.4%

Predicted

P DP DC ITP UB LB M Precision
[%]

True

P 148 3 1 2 1 0 0 96.1
DP 7 33 19 5 0 0 0 50.8
DC 0 11 156 16 3 3 3 81.3
ITP 0 5 26 129 0 1 10 75.4
UB 0 0 3 0 39 1 0 90.7
LB 0 0 3 1 1 40 0 88.9
M 0 1 0 7 0 0 102 92.7

Recall [%] 95.5 62.3 75.0 80.6 88.6 88.9 88.7

F1 Score [%] 95.8 55.9 78.0 77.9 89.7 88.9 90.7

Most misclassifications occurred in the classes degenerate pearlite, debris of cementite
and incomplete transformation products, as those have weaker class boundaries compared
to other classes. In fact, the uncertainty is somewhat inherent, as there are no explicitly
defined class boundaries, and there is bias stemming from the choice of the classification
scheme and the classes. With regard to a series application, it was assumed that in this
special case with highly complex microstructures and classes and a sophisticated feature
extraction process, the model only works with a certain data quality, and therefore certain
procedures and parameters must be specified and adhered to during data generation
(metallography, image acquisition).

3.2. Segmentation of Multi-Phase Steels

As opposed to the above-seen two-phase steels, multi-phase, or complex-phase, steels
present more than two major components, usually containing polygonal ferrite, bainitic fer-
rite and finely dispersed carbon-rich second phases (e.g., cementite, martensite, austenite).
Durmaz et al. [25] proposed a DL segmentation of lath-shaped bainite regions against a
background of polygonal and irregular ferrite containing a carbon-rich second phase.

A particular emphasis was placed on the sample contrasting and the imaging with the
goal of providing high-quality, low-variance data in order to train a DL model with few
training data. Similarly to previous examples, correlative imaging was carried out using
LOM, SEM and EBSD. EBSD provided complementary information on the grains, grain
boundaries and misorientation parameters, which were decisive for a correct annotation
of the lath-shaped bainite regions, overcoming the limitations of decision-making based
solely on visual appearance. A relatively small dataset, consisting of 51 LOM and 36 SEM



Metals 2024, 14, 553 12 of 24

images, from which several patches per image were extracted as training data (see Table 3),
sufficed for the training of the ML model, taking into account high-quality micrographs
with low variance among each other.

Table 3. Summary of the final annotated dataset used in [25]. Reprinted from [25].

Imaging
Modality

No. of
Micrographs

Resolution of
Micrographs

No. of Extracted
Patches

Resolution of
Patches

LOM 51 1024 × 1024 px 754 256 × 256 px
SEM 36 2048 × 1433 px 413 512 × 512 px

Different DL models were used, one based on Vanilla U-Net architecture and trained
from scratch, and the other consisting of a U-Net with a VGG16 backbone pre-trained on
the ImageNet natural scene image dataset. All segmentation models yielded performances
comparable to expert predictions, speaking in favor of the general robustness of the different
architectures and training strategies. With the reproducibility of the dataset, lower amounts
of data were required for training. The segmentation of the lath-shaped bainite regions was
successful (Figure 4), and errors mainly occurred either at boundaries between regions or
within regions where insecurities within the group of experts could not be ruled out despite
the complementary EBSD information. However, when regarding the different phase
fractions, the variance of the ML-based analysis (of 1–2%) was lower than the variance of
the manual analysis carried out by experts.
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It should be noted that this dataset was tailored to a very specific application. Such
applications are conceivable, for example, in daily quality control, where the same type of
microstructure is always examined, with fixed workflows for sample preparation, sample
contrasting and image acquisition. DL segmentation can then be implemented even with
few training data.

At the same time, however, a weak generalization of this model is to be expected; i.e.,
in the case of deviations from the ideal state of the microstructure images, a lower model
performance can be anticipated. In a follow-up work [72], an additional transferability
study was performed in which a model trained with low-variance data was transferred to
an alternate data domain, i.e., micrographs of the same material but with an alternative
etching method. As a result, it was concluded that in order to carry out a successful domain
transfer, higher variances are required within the source dataset, which can be achieved
by employing image transformation methods more elaborate than basic brightness and
contrast variation [25]. Additionally, the unsupervised domain adaptation was identified
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as a potential useful tool to either increase the robustness of the present model without
additional annotated data or to reduce the workload of manual annotations on the way to
a higher-variance dataset.

3.3. Phase Analysis of Quenched and Tempered Steels

For quenched and tempered steels, the complexity of the analysis is further increased,
partly because there are no clearly separable foreground and background in the micro-
graphs. In the low- to medium-carbon steels investigated by Bachmann et al. [30]., the
microstructure constituents martensite, tempered martensite, lower bainite and upper bai-
nite, which can all be present simultaneously in one micrograph, should be distinguished.

Despite the use of correlative microscopy (LOM and SEM combined with EBSD), pixel-
by-pixel annotations for semantic segmentation were hardly feasible, as the microstructures
contained many regions where a clear and doubt-free assignment to a class is not possible,
and in particular, the identification of the boundaries between the different structural
components was particularly difficult, as they frequently merged into one another due
to their formation process. Instead, Bachmann et al. proposed a patch-wise classification
that was implemented using a sliding window approach, reducing the complex problem
of semantic segmentation to a simple classification task of the individual patches. The
assignment of the ground truth for such individual patches within a micrograph was
possible with certainty, thanks to the high resolution of the SEM and the correlative EBSD
information (image quality, misorientations, grain boundary types). In this way, reference
patches, representative of unambiguous microstructural constituents, were extracted, and
two datasets, optimized for LOM and SEM respectively, were generated. The datasets
contained over 6500 individual patches for SEM and over 2200 patches in the case of the
LOM-optimized dataset.

For both imaging modalities, three separate CNN models were trained on these
datasets, based on three different backbones, namely Xception, ResNet50 and DenseNet201.
The basic idea behind these three models was to take into account the complexity of
the present microstructures by later combining the three models in a majority voting
scheme and thus increasing the confidence in the final prediction. For training, class
weights were considered to counteract the class imbalances, and data augmentation and a
categorical cross-entropy loss were used. All three models yielded similar performances,
with accuracies up to 89% for the LOM and 94% for the high-resolution SEM dataset,
reaching close to a superhuman performance (see Figure 5). It is particularly noteworthy
that the ML models could also capture subtle differences, especially between lower bainite
and tempered martensite, which even trained experts can often only anticipate.

With this patch-wise classification, entire micrographs can be analyzed using a sliding
window approach. A window slides over the micrograph, and at every window position
the extracted patch is classified with the max voting of the three trained models. By
combining different step sizes of the sliding window, a finer classification resolution can be
realized so that the final classification result almost approaches the pixel-level detail of a
semantic segmentation. Low confidence predictions, e.g., ambiguous predictions of the
different models, can also be assigned to a shared class by applying a certain confidence
threshold, representing the uncertainty of specific regions in the micrograph. The pixelated
appearance of the resulting images was then smoothed using a median filter. Figure 6 shows
an example of the application to an entire, unseen micrograph for both imaging modalities.

For this example of quenched and tempered steels as well as for the previous examples
of two-phase and multi-phase steels, the use of correlative microscopy with the additional
EBSD information was crucial in order to obtain annotations for ML and thus to be able to
implement ML in the first place. The EBSD analysis used was still comparatively simple,
i.e., examining parameters of pattern quality, misorientation parameters, or different types
of grain boundaries, and overlaying them with LOM and SEM images. However, there is
still a lot of untapped potential in the analysis of EBSD data, especially in combination with
ML. With regard to steel and especially martensite and bainite, it is possible to delve deeper
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into the formation process and the crystallographic nature of the microstructures, analyzing
for example misorientation angle distributions, variant pairings or Bain groups [87,88].
Variant pairings have already been used in some cases to determine bainite/martensite
proportions globally for a specific measurement region [89,90]. The correlative approach
described here could be taken further in order to automatically generate pixel-by-pixel
annotations for segmenting the LOM/SEM image based on the correlative EBSD data,
possibly also in combination with ML. In addition, the EBSD parameters could be used
to verify existing steel classification schemes or even define alternative schemes using
unsupervised learning.
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Figure 6. Quantification results from patch-wise classification using sliding window technique, with
colored overlay based on LOM (a) and SEM (b), including magnified regions. Correlative microscopy
makes it possible to compare the results from LOM and SEM models and thus to identify the
discrepancies between the predictions based on the different imaging techniques. Colors correspond
to the following classes: green-LB, yellow-M, purple-MST, blue-UB, and red-uncertain. Modified
according to [30]. Reprinted from [30].

3.4. Measurement of Prior Austenite Grain Size

Hot-forming or any type of temperature treatment during steel production gener-
ally occurs in the high-temperature phase, that is, austenite. The development of both
the austenite grain size during these processes and the resulting austenite grain size are
highly significant for the final steel product because they influence the type and prop-
erties of the final microstructure, e.g., phase transformation behavior such as bainite or
martensite formation or final grain size [46]. Additionally, knowledge about austenite
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grain evolution is important for understanding and optimizing associated process like
thermomechanical controlled processing or alloy designs [91]. Considering the microstruc-
ture of the final steel product, since austenite transforms into different room temperature
phases upon cooling, the prior austenite grain (PAG) size cannot readily be measured but
requires reconstruction [46,92].

There are various approaches for this [46]: (i) indirect measurement by laser-induced ul-
trasound, (ii) reconstruction from crystallographic orientation data, (iii) the McQuaid–Ehn
method, i.e., highlighting PAG by preferred oxidation or precipitation, which can be
visualized through etching, (iv) thermal etching and (v) chemical etching, each present-
ing its own process-specific disadvantages and a certain degree of uncertainty in the
PAG determination.

Metallographic determination with picric acid-based etchants, primarily Bechet–Beaujard
etching, is still the most widely used method. However, it is well known that these etchings
can be difficult to reproduce, vary depending on the chemical composition of the steel
being evaluated and are particularly challenging for low phosphorus and/or low carbon
levels [46]. In addition, multiple etching steps combined with back polishing may be re-
quired to achieve sufficient contrast. Ultimately, final microstructural images frequently
show an inhomogeneous contrasting of PAG, with an unwanted contrasting of the substruc-
ture inside the PAG, which is still sufficient for a trained expert to determine a comparative
grain size by means of comparison charts, but not good enough to reliably segment the
grain boundaries and determine a grain size distribution using conventional approaches.

3.4.1. Determination of Prior Austenite Grains after Picric Acid-Based Etching

For a reliable determination of prior austenite grain size (PAGS) and its distribution,
Laub et al. [92] first proposed a modified picric acid-based etching, the micrographs of
which were then segmented using semantic segmentation with deep learning. Steel types
considered were low carbon (0.04 wt. %) that were micro-alloyed with different levels
of niobium.

Due to the aforementioned difficulties of metallographic etching (incomplete contrast-
ing of grain boundaries on the one hand, contrasting of the substructure inside the grains
on the other hand), the annotations required for training the DL model posed the great-
est challenge. Although an expert could anticipate the path of grain boundaries that are
not fully contrasted, a significant subjective component would remain in the annotations.
Therefore, a correlative microscopy approach in which light microscopy was combined
with EBSD was applied for a subset of the dataset. With the EBSD data, a crystallographic
reconstruction of the PAGS was performed, based on a workflow proposed by [93,94]. The
image registration was performed using bUnwarpJ in the open-source image processing
toolbox Fiji and assisted by manual feature selection. These EBSD reconstructions form
the basis for annotations. Due to some artefacts of the EBSD reconstruction, some manual
corrections are usually necessary. In the end, the highest quality of annotations could
be achieved by a combination of EBSD reconstruction and manual outlining. Based on
the experience and references gained with the correlative data, non-correlative data, i.e.,
LOM-only images, could also be manually annotated by the expert in the most accurate,
objective and reproducible way. In addition, the EBSD reconstruction could later be used to
validate the mean grain size and grain size distribution determined by DL segmentation.
The dataset comprised micrographs of 30 samples, of which approximately 20% were in
the form of correlative datasets.

For model training, the images were sliced into patches (8000 in total), and then
divided into a 70–20–10% train–test–validation split and subjected to data augmentation.
The ML model was implemented using the Keras library, and several backbones were
tested—namely DenseNet, VGG16, VGG19, ResNet and Inception—of which DenseNet
delivered the most promising results and was subsequently chosen for the final model.
Jaccard loss and intersection over union (IoU) were chosen as metrics. Furthermore, the
model’s performance was validated on previously unseen entire micrographs. The model
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yielded an accuracy (IoU) of 72–73%, and inference on previously unseen images was
successful (Figure 7). Through post-processing, e.g., area-opening plus watershed, the
segmentation result can be further improved.
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as less pronounced PAG boundaries (upper row) and the corresponding results of the segmentation
pipeline as overlays with the input image (lower row). Previously unpublished examples from the
work of [92]. Adapted from Ref. [92].

Overall, the model bore decisive advantages over previous standard PAG reconstruc-
tions as it allowed a more detailed result and was efficient, reproducible and flexible to
higher variances, improving its generalizability and robustness.

3.4.2. Determination of Prior Austenite Grains after Nital Etching

The combination of picric acid-based etching with DL segmentation allows for quan-
tification of PAGS with unprecedented quality and robustness. Although established as a
standard etchant for PAG analysis, picric acid-based etching still represents an additional
effort compared to other steel etchants or is no longer used at all in some laboratories due
to safety concerns [95]. Therefore, Bachmann et al. [46] investigated in a case study to what
accuracy the PAGS can be determined with a simple Nital etching. Nital, a mixture of
ethanol and nitric acid, is one of the standard etchants for analyzing the microstructures
of non- and low-alloyed steels. It is very popular because of its simplicity and ease of
use. Nital was not originally intended for PAG contrasting, but it still can reveal some
information about it: PAG can either be seen directly due to topography differences or
recognized indirectly based on orientations of martensitic and bainitic laths or sub-units.
However, since all other hierarchical microstructural features are also contrasted, PAG
segmentation in Nital-etched micrographs can also only be achieved by DL.

Compared to manual annotations of the PAG in LOM micrographs after picric acid
etching, the annotations after Nital etching are subject to even greater uncertainty or are
hardly possible at all. To perform annotations, and thus to enable a PAG determination in
Nital-etched LOM micrographs in the first place, a correlative approach [33] was also used
here. This time, LOM was combined with EBSD as well as SEM. As in the previous example,
the EBSD reconstructions formed the basis of the annotations (Figure 8). Manual corrections
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were also made here based on the grain boundaries visible in LOM and SEM. Due to the
etching attack on all hierarchical structures by the Nital etching, SEM imaging was also
required here, as its higher resolution enables a better topography contrast, by which some
grain boundaries that are not visible in the LOM can still be recognized. Experimental
procedure for data acquisition, EBSD reconstruction and registration were carried out as
in the previous example. The final dataset was comprised of 13 samples with correlative
data (LOM and SEM images for all 13 samples, EBSD reconstructions for 8 samples) and
corresponding annotations, resulting in 1420 individual patches for ML model training
after tiling.
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Figure 8. Correlative LOM (a,b), SEM (c) and EBSD images (image quality overlayed with inverse
pole figure, (d)) of the identical sample region. Images b-d are overlayed with the final PAG annota-
tions (black outlines), based on crystallographic reconstruction from EBSD and manual corrections.
Previously unpublished examples from the work of [46]. Adapted from Ref. [46].

As pre-processing, the images are split into patches after downscaling them to achieve
a higher density of features per patch. Data augmentation was employed to counteract
data scarcity. The ML model consisted of a U-Net combined with the segmentation models
package in Keras, using a DenseNet backbone (as the best from several backbones tested)
pre-trained on ImageNet. Intersection over Union was used as accuracy metric, combined
with a loss function of a weighted dice loss plus Jaccard loss to counteract the class im-
balance (PAG boundaries vs. rest of the microstructure). The model yielded a 73% and
70% IoU for the training and the validation split, respectively, as well as corresponding
respective F1 scores of 82% and 80% as a conservative estimation of the performance.
Furthermore, the model was tested on unseen entire micrographs, with one example shown
in Figure 9.
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Figure 9. Original LOM image (left) with respective PAG determined by the DL workflow (middle)
and the comparison (right) between segmentation result after postprocessing (blue) with the respec-
tive ground truth (green). Black grain boundaries represent the agreement between prediction and
ground truth. Previously unpublished examples from the work of [46]. Adapted from Ref. [46].

Through post-processing, e.g., area-opening plus watershed, the segmentation map
could be further improved. In addition to the established IoU metric, the model perfor-
mance was assessed by comparing the mean grain size and grain size distribution from
the post-processed DL segmentation map to the ground truth, i.e., mean grain size and



Metals 2024, 14, 553 18 of 24

grain size distribution of the EBSD reconstruction. The grain size distributions showed
a comparable pattern, with an average error (over three samples) of 9% for the number
fraction mean grain size and 6.1% for the area fraction mean grain size, clearly showing the
high quality of the DL model. It should be noted here that this is probably a systematic
error towards a slight underestimation of the grain size, as some grain boundaries were
erroneously reconstructed during post-processing by watershed. At this point, however, it
should be noted that even the EBSD reconstruction does not represent the absolute truth
and that every method for PAGS determination is associated with a certain degree of
uncertainty, since austenite is no longer present in the final microstructure. The model
also exhibited a notable robustness to etching artifacts, as illustrated by the example in
Figure 10.
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Figure 10. LOM image (left) with a blue overlay of the respective PAG determined by the DL
workflow (right). Despite pronounced etching artifacts and stains, the model is able to detect the
partially hidden PAG boundaries. Previously unpublished examples from the work of [46]. Adapted
from Ref. [46].

The PAGS determination directly from Nital-etched LOM images is now the simplest
and fastest method of metallographic PAGS measurement and is characterized by the
simpler and more reproducible application of Nital etching compared to the commonly
used picric acid-based etchings. Nevertheless, it must be noted that for the application of
this model in a Nital-etched LOM image, a certain basic level of contrasting of PAG must
be visible, and it still has to be investigated, depending on which chemical composition
of the steel or manufacturing parameters this basic contrasting of PAG can be the case in
Nital-etched images.

4. Application in Materials Development and Process Optimization

The combination of AI and ML technologies with domain expertise in materials science
and engineering paves the way for new developments in both microstructure research and
materials characterization. This allows the automatization of simple tasks on one hand, and,
on the other, the analysis of complex microstructures where no satisfactory methods exist
yet. It is important to note that, however, ML technologies are no panacea and are by no
means supposed to replace the human expert, but more so to assist and relieve them. In fact,
expert knowledge is necessary to implement any ML-based analysis in materials science. A
holistic approach is required for a successful use of ML in the long run, comprising all steps
needed to obtain micrographs, including approaches like correlative microscopy, and the
assignment of the ground truth. This requires fundamental expertise in metallography and
microstructure quantification. Furthermore, a deep understanding and control of materials
science aspects have more leverage than ML parameter optimization.
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Thus, ML-based segmentation and classification can form a solid base for an im-
proved microstructure quantification that is automated, reliable, objective, and reproducible,
paving the way towards process–microstructure–property correlations and microstructure-
based materials development.

Using correlative microscopy allows to benchmark how exact a LOM-only quantifica-
tion is, and ideally, provides a gain in knowledge that enables to reduce further analysis to
a single—i.e., the simplest (here LOM)—characterization method. Even though LOM-based
analysis might present some inaccuracies, ML allows us to further use LOM as a standard
method in applications where, for example, a SEM examination is not possible due to time
constraints or availability. Potential inaccuracies can be counterbalanced by the high speed
at which large portions of data can be analyzed.

ML technologies also represent a step towards high-throughput microstructure anal-
ysis, which is automated, efficient, objective and reproducible—i.e., applicable to large
amounts of data in a short time. This allows a rapid creation of a large database with
which correlations can be established—essentially, showcasing the links between the mi-
crostructure and the processing history or further properties including, for instance, an-
nealing processes [41], fracture energy [60], fatigue strength [96] or others. Based on
ML-based microstructure analysis, ML methods can also be used to establish these process–
microstructure–property links. Forward models for example predict the output from the
current state (input data) in a system, essentially modelling forward dynamics, while
inverse models aim to predict the input that leads to a desired output. When applied to
process–microstructure–property links, a forward model can yield materials properties
from descriptors, while an inverse model can be used predict an optimal material or process
from desired characteristics [97,98].

5. Challenges and Open Research Questions

ML has absolutely demonstrated its potential for a variety of tasks in microstructural
analysis. With the help of this review, we hope not only to have provided an overview of
possible applications, but also to have achieved a better understanding and sensitization
with regard to ground truths, data quantities and data variances. These are points that
are often not sufficiently discussed. Properly implemented, i.e., with a focus on objective
ground truth and an understanding of the variances that occur, we can achieve robust,
reliable ML models and use ML to open up completely new avenues in the quality, quantity
and efficiency of microstructure analysis. However, just as with other applications in
science, engineering and our everyday lives, the same applies to microstructure analysis:
the quality of current and future AI systems can easily lure people into overestimating their
capabilities, underestimating their weaknesses and limitations, and thus, using them in
potentially problematic or even harmful ways. Therefore, we shall use ML models only
within their intended limits and design spaces.

In the context of variances and robustness, it is interesting to investigate whether
metadata, e.g., metallographic or microscopic metadata (e.g., etching, image acquisition
conditions in the SEM) or manufacturing information, can improve ML classification and
segmentation by explaining certain variances and eliminating the need for the ML model
to learn them from additional training data. However, it must also be investigated whether
the use of metadata can introduce a potential bias and how large the harmful effect of
missing or incorrect metadata would be, e.g., with the help of adversarial examples. A first
suggestion for the fusion of image data and microscopic metadata in a CNN has already
been made by Stiefel et al. [99].

Since annotations continue to represent the bottleneck in the implementation of ML-
based microstructure analysis, approaches that require less training data or simpler annota-
tions or that can also use unlabeled data (e.g., weakly supervised learning, semi-supervised
learning, unsupervised domain adaptation) are very interesting and relevant for future
work [25,72,100,101]. In particular, a combination of such approaches with annotated data
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from correlative microscopy, which involves a certain amount of additional experimental
work, would be attractive.

With regard to the effort of manual annotations, synthetic data generation should also
be mentioned. Its advantage is that the ground truth is usually also generated when the data
aregenerated. In addition, data of rarely occurring classes or events can be created efficiently.
However, there is still a lack of general understanding and established approaches as to
which synthetic data of which complexity can be generated with which methods. Current
work ([102,103] among others), which often uses data-driven methods such as generative
models like GAN to create synthetic microstructures, is unsuitable because it also requires
a minimum amount of data. Thus, they are not practically applicable to real-world use
cases with little available data. Model- or rule-based approaches [104,105] or texture
synthesis approaches, e.g., based on non-parametric example-based algorithms for image
generation [106] seem more promising.

As the often-mentioned black box character of AI/ML systems is still sometimes
cited as a reason not to use AI/ML [107], approaches from computer science to improve
their trustworthiness, often-termed as “trustworthy AI” or “explainable AI” [108,109] are
interesting. In the course of the continuous development and advancement of AI/ML
approaches in informatics, trends such as neuro-symbolic AI are also to be observed
and when or how they will find their way into microstructural analysis. A promising
approach is the so-called Vision Transformer (ViT) [110], similar architectures for image
processing inspired by the successful application of transformer models in natural language
processing, which achieved better results in some benchmark datasets than the previously
used CNN [110]. A competition in the further development of CNN and ViT architectures
might be expected here [111].

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/met14050553/s1, Supplementary materials include a table summarizing
the presented application examples (used machine learning approach, ground truth, dataset size,
data variance, design space for applying the machine learning model).

Author Contributions: Conceptualization, M.M., B.-I.B. and M.S.; methodology, M.M. and B.-I.B.;
software, M.M. and B.-I.B.; validation, M.M. and B.-I.B.; formal analysis, M.M. and B.-I.B.; investiga-
tion, M.M. and B.-I.B.; resources, M.M. and B.-I.B.; data curation, M.M. and B.-I.B.; writing—original
draft preparation, M.M., B.-I.B. and M.S.; writing—review and editing, M.M., B.-I.B. and M.S.; vi-
sualization, M.M. and B.-I.B.; supervision, D.B. and F.M.; project administration, D.B. and F.M.;
funding acquisition, D.B. and F.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors thank steel manufacturer Aktien-Gesellschaft der Dillinger Hüt-
tenwerke for the strategic collaboration in which the majority of the application examples presented
were elaborated and implemented.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Azimi, S.M.; Britz, D.; Engstler, M.; Fritz, M.; Mücklich, F. Advanced steel microstructural classification by deep learning methods.

Sci. Rep. 2018, 8, 2128. [CrossRef]
2. Britz, D.; Webel, J.; Gola, J.; Steimer, Y.; Muecklich, F. Practical Metallography of Low Carbon Steels—New approaches in

Preparation, Imaging and Analysis of Microstructures. Microsc. Microanal. 2018, 24, 2226–2227. [CrossRef]
3. Khan, A.; Laghari, A.; Awan, S. Machine Learning in Computer Vision: A Review. EAI Endorsed Trans. Scalable Inf. Syst. 2018,

8, e4. [CrossRef]
4. Tehrani, A.M.; Oliynyk, A.O.; Parry, M.; Rizvi, Z.; Couper, S.; Lin, F.; Miyagi, L.; Sparks, T.D.; Brgoch, J. Machine Learning

Directed Search for Ultraincompressible, Superhard Materials. J. Am. Chem. Soc. 2018, 140, 9844–9853. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/met14050553/s1
https://www.mdpi.com/article/10.3390/met14050553/s1
https://doi.org/10.1038/s41598-018-20037-5
https://doi.org/10.1017/s1431927618011613
https://doi.org/10.4108/eai.21-4-2021.169418
https://doi.org/10.1021/jacs.8b02717
https://www.ncbi.nlm.nih.gov/pubmed/30010335


Metals 2024, 14, 553 21 of 24

5. Liu, Y.; Niu, C.; Wang, Z.; Gan, Y.; Zhu, Y.; Sun, S.; Shen, T. Machine learning in materials genome initiative: A review. J. Mater.
Sci. Technol. 2020, 57, 113–122. [CrossRef]

6. Szymanski, N.J.; Zeng, Y.; Huo, H.; Bartel, C.J.; Kim, H.; Ceder, G. Toward autonomous design and synthesis of novel inorganic
materials. Mater. Horiz. 2021, 8, 2169–2198. [CrossRef]

7. Liu, Y.; Zhao, T.; Ju, W.; Shi, S. Materials discovery and design using machine learning. J. Mater. 2017, 3, 159–177. [CrossRef]
8. Raccuglia, P.; Elbert, K.C.; Adler, P.D.F.; Falk, C.; Wenny, M.B.; Mollo, A.; Zeller, M.; Friedler, S.A.; Schrier, J.; Norquist, A.J.

Machine-learning-assisted materials discovery using failed experiments. Nature 2016, 533, 73–76. [CrossRef] [PubMed]
9. Cai, J.; Chu, X.; Xu, K.; Li, H.; Wei, J. Machine learning-driven new material discovery. Nanoscale Adv. 2020, 2, 3115–3130.

[CrossRef]
10. Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature

2018, 559, 547–555. [CrossRef]
11. Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; Park, C.W.; Choudhary, A.; Agrawal, A.; Billinge, S.J.L.; et al.

Recent advances and applications of deep learning methods in materials science. npj Comput. Mater. 2022, 8, 59. [CrossRef]
12. Callister, W.D.; Rethwisch, D.G. Fundamentals of Materials Science and Engineering: An Integrated Approach; Wiley: Hoboken, NJ,

USA, 2015; p. 964.
13. Molkeri, A.; Khatamsaz, D.; Couperthwaite, R.; James, J.; Arróyave, R.; Allaire, D.; Srivastava, A. On the importance of

microstructure information in materials design: PSP vs. PP. Acta Mater. 2022, 223, 117471. [CrossRef]
14. Müller, M.; Britz, D.; Mücklich, F. Machine Learning for Microstructure Classification: How to Assign the Ground Truth in the

Most Objective Way. Am&p Tech. Artic. 2021, 179, 16–21. [CrossRef]
15. Russel, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2010.
16. Holm, E.A.; Cohn, R.; Gao, N.; Kitahara, A.R.; Matson, T.P.; Lei, B.; Yarasi, S.R. Overview: Computer Vision and Machine Learning

for Microstructural Characterization and Analysis. Met. Mater. Trans. A 2020, 51, 5985–5999. [CrossRef]
17. Park, H.; Öztürk, A. Machine Learning Approach on Steel Microstructure Classification. In Proceedings of the EKC 2019

Conference Proceedings: Science, Technology, and Humanity: Advancement and Sustainability, Vienna, Austria, 15–18 July 2019.
[CrossRef]

18. Larmuseau, M.; Sluydts, M.; Theuwissen, K.; Duprez, L.; Dhaene, T.; Cottenier, S. Compact representations of microstructure
images using triplet networks. npj Comput. Mater. 2020, 6, 156. [CrossRef]

19. Sculley, D.; Holt, G.; Golovin, D.; Davydov, E.; Phillips, T.; Ebner, D.; Chaudhary, V.; Young, M.; Crespo, J.F.; Dennison, D. Hidden
technical debt in machine learning systems. Adv. Neural Inf. Process. Syst. 2015, 28, 2503–2511.

20. ImageNet. Available online: https://www.image-net.org/update-mar-11-2021.php (accessed on 26 March 2024).
21. Stanford Dogs Dataset. Available online: https://www.kaggle.com/datasets/jessicali9530/stanford-dogs-dataset/ (accessed on

26 March 2024).
22. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes

Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [CrossRef]

23. MAarnts, P.; Rijkenberg, R.A.; Twisk, F.A. Microstructural Quantification of Multi-Phase Steels (Micro-Quant); European Comission:
Luxembourg, 2011. [CrossRef]

24. Bulgarevich, D.S.; Tsukamoto, S.; Kasuya, T.; Demura, M.; Watanabe, M. Pattern recognition with machine learning on optical
microscopy images of typical metallurgical microstructures. Sci. Rep. 2018, 8, 2078. [CrossRef]

25. Durmaz, A.R.; Müller, M.; Lei, B.; Thomas, A.; Britz, D.; Holm, E.A.; Eberl, C.; Mücklich, F.; Gumbsch, P. A deep learning
approach for complex microstructure inference. Nat. Commun. 2021, 12, 6272. [CrossRef] [PubMed]

26. MetalDAM—DaSCI. Available online: https://dasci.es/transferencia/open-data/metal-dam/ (accessed on 25 April 2024).
27. Han, B.; Wan, W.-H.; Sun, D.-D.; Dong, C.-C.; Zhao, L.; Wang, H.-Z. A deep learning-based method for segmentation and

quantitative characterization of microstructures in weathering steel from sequential scanning electron microscope images. J. Iron
Steel Res. Int. 2022, 29, 836–845. [CrossRef]

28. Muñoz-Rodenas, J.; García-Sevilla, F.; Miguel-Eguía, V.; Coello-Sobrino, J.; Martínez-Martínez, A. A Deep Learning Approach to
Semantic Segmentation of Steel Microstructures. Appl. Sci. 2024, 14, 2297. [CrossRef]

29. Preußner, J.; Bellmer, M.J. Mit dem Rasterelektronenmikroskop (REM) Erzeugte Aufnahmen von Bruchflächen von Metallen für eine
Spätere Statistische Auswertung; Fraunhofer-Gesellschaft FhG: Munich, Germany, 2018. [CrossRef]

30. Bachmann, B.-I.; Müller, M.; Britz, D.; Staudt, T.; Mücklich, F. Reproducible Quantification of the Microstructure of Complex
Quenched and Quenched and Tempered Steels Using Modern Methods of Machine Learning. Metals 2023, 13, 1395. [CrossRef]

31. Frieß, J. Entwicklung einer Reproduzierbaren Gefügeanalyse von Graphitmorphologien in Gusseisen mit Kugelgraphit, Ergebnisse; Univer-
sitätsbibliothek der RWTH Aachen: Aachen, Germany, 2021. [CrossRef]

32. Iren, D.; Ackermann, M.; Gorfer, J.; Pujar, G.; Wesselmecking, S.; Krupp, U.; Bromuri, S. Aachen-Heerlen annotated steel
microstructure dataset. Sci. Data 2021, 8, 140. [CrossRef] [PubMed]

33. Müller, M.; Britz, D.; Mücklich, F. Scale-bridging Microstructural Analysis—A Correlative Approach to Microstructure Quantifi-
cation Combining Microscopic Images and EBSD Data. Pract. Met. 2021, 58, 408–426. [CrossRef]

https://doi.org/10.1016/j.jmst.2020.01.067
https://doi.org/10.1039/d1mh00495f
https://doi.org/10.1016/j.jmat.2017.08.002
https://doi.org/10.1038/nature17439
https://www.ncbi.nlm.nih.gov/pubmed/27147027
https://doi.org/10.1039/d0na00388c
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41524-022-00734-6
https://doi.org/10.1016/j.actamat.2021.117471
https://doi.org/10.31399/asm.amp.2021-01.p016
https://doi.org/10.1007/s11661-020-06008-4
https://doi.org/10.1007/978-981-15-8350-6
https://doi.org/10.1038/s41524-020-00423-2
https://www.image-net.org/update-mar-11-2021.php
https://www.kaggle.com/datasets/jessicali9530/stanford-dogs-dataset/
https://doi.org/10.1109/cvpr.2016.350
https://doi.org/10.2777/83656
https://doi.org/10.1038/s41598-018-20438-6
https://doi.org/10.1038/s41467-021-26565-5
https://www.ncbi.nlm.nih.gov/pubmed/34725339
https://dasci.es/transferencia/open-data/metal-dam/
https://doi.org/10.1007/s42243-021-00719-7
https://doi.org/10.3390/app14062297
https://doi.org/10.24406/fordatis/164
https://doi.org/10.3390/met13081395
https://doi.org/10.18154/RWTH-2021-05961
https://doi.org/10.1038/s41597-021-00926-7
https://www.ncbi.nlm.nih.gov/pubmed/34040011
https://doi.org/10.1515/pm-2021-0032


Metals 2024, 14, 553 22 of 24

34. Shen, C.; Wang, C.; Huang, M.; Xu, N.; van der Zwaag, S.; Xu, W. A generic high-throughput microstructure classification and
quantification method for regular SEM images of complex steel microstructures combining EBSD labeling and deep learning.
J. Mater. Sci. Technol. 2021, 93, 191–204. [CrossRef]

35. Feature Extraction—ImageJ. Available online: https://imagej.net/Feature_Extraction (accessed on 22 April 2024).
36. BUnwarpJ—ImageJ. Available online: https://imagej.net/BUnwarpJ (accessed on 22 April 2024).
37. Britz, D.; Webel, J.; Gola, J.; Mücklich, F. A Correlative Approach to Capture and Quantify Substructures by Means of Image

Registration. Pract. Met. 2017, 54, 685–696. [CrossRef]
38. De Albuquerque, V.H.C.; Cortez, P.C.; de Alexandria, A.R.; Tavares, J.M.R. A new solution for automatic microstructures analysis

from images based on a backpropagation artificial neural network. Nondestruct. Test. Eval. 2008, 23, 273–283. [CrossRef]
39. Velichko, A. Quantitative 3D Characterization of Graphite Morphologies in Cast Iron Using FIB Microstructure Tomography; Universität

des Saarlande: Saarbrücken, Germany, 2008.
40. DeCost, B.L.; Holm, E.A. A computer vision approach for automated analysis and classification of microstructural image data.

Comput. Mater. Sci. 2015, 110, 126–133. [CrossRef]
41. DeCost, B.L.; Francis, T.; Holm, E.A. Exploring the microstructure manifold: Image texture representations applied to ultrahigh

carbon steel microstructures. Acta Mater. 2017, 133, 30–40. [CrossRef]
42. DeCost, B.L.; Lei, B.; Francis, T.; Holm, E.A. High throughput quantitative metallography for complex microstructures using deep

learning: A case study in ultrahigh carbon steel. Microsc. Microanal. 2019, 25, 21–29. [CrossRef]
43. Chowdhury, A.; Kautz, E.; Yener, B.; Lewis, D. Image driven machine learning methods for microstructure recognition. Comput.

Mater. Sci. 2016, 123, 176–187. [CrossRef]
44. Gola, J.; Britz, D.; Staudt, T.; Winter, M.; Schneider, A.S.; Ludovici, M.; Mücklich, F. Advanced microstructure classification by

data mining methods. Comput. Mater. Sci. 2018, 148, 324–335. [CrossRef]
45. Gola, J.; Webel, J.; Britz, D.; Guitar, A.; Staudt, T.; Winter, M.; Mücklich, F. Objective microstructure classification by support

vector machine (SVM) using a combination of morphological parameters and textural features for low carbon steels. Comput.
Mater. Sci. 2019, 160, 186–196. [CrossRef]

46. Bachmann, B.-I.; Müller, M.; Britz, D.; Durmaz, A.R.; Ackermann, M.; Shchyglo, O.; Staudt, T.; Mücklich, F. Efficient reconstruction
of prior austenite grains in steel from etched light optical micrographs using deep learning and annotations from correlative
microscopy. Front. Mater. 2022, 9, 1033505. [CrossRef]

47. Müller, M.; Britz, D.; Staudt, T.; Mücklich, F. Microstructural Classification of Bainitic Subclasses in Low-Carbon Multi-Phase
Steels Using Machine Learning Techniques. Metals 2021, 11, 1836. [CrossRef]

48. Abouelatta, O.B. Classification of Copper Alloys Microstructure using Image Processing and Neural Network. J. Am. Sci.
2013, 9, 213–223. Available online: http://www.jofamericanscience.orghttp//www.jofamericanscience.org.25 (accessed on
28 March 2024).

49. Rao, H.; Liu, D.; Nan, J.; Wang, J. Machine learning assisted microtextured regions segmentation in a near-α titanium alloy. Mater.
Lett. 2024, 363, 136292. [CrossRef]

50. Baskaran, A.; Kane, G.; Biggs, K.; Hull, R.; Lewis, D. Adaptive characterization of microstructure dataset using a two stage
machine learning approach. Comput. Mater. Sci. 2020, 177, 109593. [CrossRef]

51. Zhao, P.; Wang, Y.; Jiang, B.; Wei, M.; Zhang, H.; Cheng, X. A new method for classifying and segmenting material microstructure
based on machine learning. Mater. Des. 2023, 227, 111775. [CrossRef]

52. Choudhary, A.K.; Jansche, A.; Grubesa, T.; Trier, F.; Goll, D.; Bernthaler, T.; Schneider, G. Grain size analysis in permanent magnets
from Kerr microscopy images using machine learning techniques. Mater. Charact. 2022, 186, 111790. [CrossRef]

53. Kondo, R.; Yamakawa, S.; Masuoka, Y.; Tajima, S.; Asahi, R. Microstructure recognition using convolutional neural networks for
prediction of ionic conductivity in ceramics. Acta Mater. 2017, 141, 29–38. [CrossRef]

54. Bastidas-Rodriguez, M.X.; Polania, L.; Gruson, A.; Prieto-Ortiz, F. Deep Learning for fractographic classification in metallic
materials. Eng. Fail. Anal. 2020, 113, 104532. [CrossRef]

55. Tsopanidis, S.; Moreno, R.H.; Osovski, S. Toward quantitative fractography using convolutional neural networks. Eng. Fract.
Mech. 2020, 231, 106992. [CrossRef]

56. Zhou, S.; Chen, Y.; Zhang, D.; Xie, J.; Zhou, Y. Classification of surface defects on steel sheet using convolutional neural networks.
Mater. Teh. 2017, 51, 123–131. [CrossRef]

57. Yun, J.P.; Shin, W.C.; Koo, G.; Kim, M.S.; Lee, C.; Lee, S.J. Automated defect inspection system for metal surfaces based on deep
learning and data augmentation. J. Manuf. Syst. 2020, 55, 317–324. [CrossRef]

58. Tsopanidis, S.; Osovski, S. Unsupervised machine learning in fractography: Evaluation and interpretation. Mater. Charact. 2021,
182, 111551. [CrossRef]

59. Kunselman, C.; Sheikh, S.; Mikkelsen, M.; Attari, V.; Arróyave, R. Microstructure classification in the unsupervised context. Acta
Mater. 2022, 223, 117434. [CrossRef]

60. Kitahara, A.R.; Holm, E.A. Microstructure Cluster Analysis with Transfer Learning and Unsupervised Learning. Integr. Mater.
Manuf. Innov. 2018, 7, 148–156. [CrossRef]

61. Kim, H.; Inoue, J.; Kasuya, T. Unsupervised microstructure segmentation by mimicking metallurgists’ approach to pattern
recognition. Sci. Rep. 2020, 10, 17835. [CrossRef] [PubMed]

https://doi.org/10.1016/j.jmst.2021.04.009
https://imagej.net/Feature_Extraction
https://imagej.net/BUnwarpJ
https://doi.org/10.3139/147.110484
https://doi.org/10.1080/10589750802258986
https://doi.org/10.1016/j.commatsci.2015.08.011
https://doi.org/10.1016/j.actamat.2017.05.014
https://doi.org/10.1017/s1431927618015635
https://doi.org/10.1016/j.commatsci.2016.05.034
https://doi.org/10.1016/j.commatsci.2018.03.004
https://doi.org/10.1016/j.commatsci.2019.01.006
https://doi.org/10.3389/fmats.2022.1033505
https://doi.org/10.3390/met11111836
http://www.jofamericanscience.orghttp//www.jofamericanscience.org.25
https://doi.org/10.1016/j.matlet.2024.136292
https://doi.org/10.1016/j.commatsci.2020.109593
https://doi.org/10.1016/j.matdes.2023.111775
https://doi.org/10.1016/j.matchar.2022.111790
https://doi.org/10.1016/j.actamat.2017.09.004
https://doi.org/10.1016/j.engfailanal.2020.104532
https://doi.org/10.1016/j.engfracmech.2020.106992
https://doi.org/10.17222/mit.2015.335
https://doi.org/10.1016/j.jmsy.2020.03.009
https://doi.org/10.1016/j.matchar.2021.111551
https://doi.org/10.1016/j.actamat.2021.117434
https://doi.org/10.1007/s40192-018-0116-9
https://doi.org/10.1038/s41598-020-74935-8
https://www.ncbi.nlm.nih.gov/pubmed/33082434


Metals 2024, 14, 553 23 of 24

62. Na, J.; Lee, J.; Kang, S.-H.; Kim, S.-J.; Lee, S. Label-free grain segmentation for optical microscopy images via unsupervised
image-to-image translation. Mater. Charact. 2023, 206, 113410. [CrossRef]

63. Gupta, S.; Sarkar, J.; Kundu, M.; Bandyopadhyay, N.; Ganguly, S. Automatic recognition of SEM microstructure and phases of
steel using LBP and random decision forest operator. Measurement 2019, 151, 107224. [CrossRef]

64. Tsutsui, K.; Terasaki, H.; Uto, K.; Maemura, T.; Hiramatsu, S.; Hayashi, K.; Moriguchi, K.; Morito, S. A methodology of steel
microstructure recognition using SEM images by machine learning based on textural analysis. Mater. Today Commun. 2020,
25, 101514. [CrossRef]

65. Webel, J.; Gola, J.; Britz, D.; Mücklich, F. A new analysis approach based on Haralick texture features for the characterization of
microstructure on the example of low-alloy steels. Mater. Charact. 2018, 144, 584–596. [CrossRef]

66. Liu, X. Microstructural Characterisation of Pearlitic and Complex Phase Steels Using Image Analysis Methods. Ph.D. Thesis,
University of Birmingham, Birmingham, UK, 2014.

67. Müller, M.; Britz, D.; Ulrich, L.; Staudt, T.; Mücklich, F. Classification of Bainitic Structures Using Textural Parameters and
Machine Learning Techniques. Metals 2020, 10, 630. [CrossRef]

68. Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Seung, H.S. Trainable Weka Segmentation:
A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. [CrossRef] [PubMed]

69. Müller, M.; Britz, D.; Mücklich, F. Application of Trainable Segmentation to Microstructural Images Using Low-alloy Steels as an
Example. Pract. Met. 2020, 57, 337–358. [CrossRef]

70. Aggarwal, C.C. Neural Networks and Deep Learning; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2018.
[CrossRef]

71. Tammina, S. Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images. Int. J. Sci. Res.
Publ. 2019, 9, 143–150. [CrossRef]

72. Goetz, A.; Durmaz, A.R.; Müller, M.; Thomas, A.; Britz, D.; Kerfriden, P.; Eberl, C. Addressing materials’ microstructure diversity
using transfer learning. npj Comput. Mater. 2022, 8, 27. [CrossRef]

73. Stuckner, J.; Harder, B.; Smith, T.M. Microstructure segmentation with deep learning encoders pre-trained on a large microscopy
dataset. npj Comput. Mater. 2022, 8, 200. [CrossRef]

74. Ling, J.; Hutchinson, M.; Antono, E.; DeCost, B.; Holm, E.A.; Meredig, B. Building data-driven models with microstructural
images: Generalization and interpretability. Mater. Discov. 2017, 10, 19–28. [CrossRef]

75. Kunselman, C.; Attari, V.; McClenny, L.; Braga-Neto, U.; Arroyave, R. Semi-supervised learning approaches to class assignment
in ambiguous microstructures. Acta Mater. 2020, 188, 49–62. [CrossRef]

76. Chen, D.; Sun, D.; Fu, J.; Liu, S. Semi-Supervised Learning Framework for Aluminum Alloy Metallographic Image Segmentation.
IEEE Access 2021, 9, 30858–30867. [CrossRef]

77. Jung, J.; Na, J.; Park, H.K.; Park, J.M.; Kim, G.; Lee, S.; Kim, H.S. Super-resolving material microstructure image via deep learning
for microstructure characterization and mechanical behavior analysis. npj Comput. Mater. 2021, 7, 96. [CrossRef]

78. Wang, W.; Wang, H.; Yang, S.; Zhang, X.; Wang, X.; Wang, J.; Lei, J.; Zhang, Z.; Dong, Z. Resolution enhancement in microscopic
imaging based on generative adversarial network with unpaired data. Opt. Commun. 2022, 503, 127454. [CrossRef]

79. Pütz, F.; Henrich, M.; Fehlemann, N.; Roth, A.; Münstermann, S. generating input data for microstructure modelling: A deep
learning approach using generative adversarial networks. Materials 2020, 13, 4236. [CrossRef]

80. Molitor, D.A.; Kubik, C.; Becker, M.; Hetfleisch, R.H.; Lyu, F.; Groche, P. Towards high-performance deep learning models in tool
wear classification with generative adversarial networks. J. Mater. Process. Technol. 2022, 302, 117484. [CrossRef]

81. Fokina, D.; Muravleva, E.; Ovchinnikov, G.; Oseledets, I. Microstructure synthesis using style-based generative adversarial
networks. Phys. Rev. E 2020, 101, 043308. [CrossRef]

82. Nguyen, P.C.H.; Vlassis, N.N.; Bahmani, B.; Sun, W.; Udaykumar, H.S.; Baek, S.S. Synthesizing controlled microstructures of
porous media using generative adversarial networks and reinforcement learning. Sci. Rep. 2022, 12, 9034. [CrossRef]

83. Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment
Anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023;
pp. 3992–4003. [CrossRef]

84. Li, C.; Han, X.; Yao, C.; Ban, X. MatSAM: Efficient Extraction of Microstructures of Materials via Visual Large Model. arXiv 2024,
arXiv:2401.05638.

85. Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 2017, 39, 640–651. [CrossRef]

86. Zajac, S.; Schwinn, V.; Tacke, K. Characterisation and Quantification of Complex Bainitic Microstructures in High and Ultra-High
Strength Linepipe Steels. Mater. Sci. Forum 2005, 500–501, 387–394. [CrossRef]

87. Morito, S.; Huang, X.; Furuhara, T.; Maki, T.; Hansen, N. The morphology and crystallography of lath martensite in alloy steels.
Acta Mater. 2006, 54, 5323–5331. [CrossRef]

88. Takayama, N.; Miyamoto, G.; Furuhara, T. Effects of transformation temperature on variant pairing of bainitic ferrite in low
carbon steel. Acta Mater. 2012, 60, 2387–2396. [CrossRef]

89. Terasaki, H.; Miyahara, Y.; Hayashi, K.; Moriguchi, K.; Morito, S. Digital identification scheme for steel microstructures in
low-carbon steel. Mater. Charact. 2017, 129, 305–312. [CrossRef]

https://doi.org/10.1016/j.matchar.2023.113410
https://doi.org/10.1016/j.measurement.2019.107224
https://doi.org/10.1016/j.mtcomm.2020.101514
https://doi.org/10.1016/j.matchar.2018.08.009
https://doi.org/10.3390/met10050630
https://doi.org/10.1093/bioinformatics/btx180
https://www.ncbi.nlm.nih.gov/pubmed/28369169
https://doi.org/10.3139/147.110640
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.29322/ijsrp.9.10.2019.p9420
https://doi.org/10.1038/s41524-022-00703-z
https://doi.org/10.1038/s41524-022-00878-5
https://doi.org/10.1016/j.md.2018.03.002
https://doi.org/10.1016/j.actamat.2020.01.046
https://doi.org/10.1109/access.2021.3059505
https://doi.org/10.1038/s41524-021-00568-8
https://doi.org/10.1016/j.optcom.2021.127454
https://doi.org/10.3390/ma13194236
https://doi.org/10.1016/j.jmatprotec.2021.117484
https://doi.org/10.1103/physreve.101.043308
https://doi.org/10.1038/s41598-022-12845-7
https://doi.org/10.1109/ICCV51070.2023.00371
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.4028/www.scientific.net/msf.500-501.387
https://doi.org/10.1016/j.actamat.2006.07.009
https://doi.org/10.1016/j.actamat.2011.12.018
https://doi.org/10.1016/j.matchar.2017.05.021


Metals 2024, 14, 553 24 of 24

90. Tsutsui, K.; Terasaki, H.; Maemura, T.; Hayashi, K.; Moriguchi, K.; Morito, S. Microstructural diagram for steel based on
crystallography with machine learning. Comput. Mater. Sci. 2019, 159, 403–411. [CrossRef]

91. Li, X.; Lu, G.; Wang, Q.; Zhao, J.; Xie, Z.; Misra, R.D.K.; Shang, C. The Effects of Prior Austenite Grain Refinement on Strength
and Toughness of High-Strength Low-Alloy Steel. Metals 2022, 12, 28. [CrossRef]

92. Laub, M.; Bachmann, B.-I.; Detemple, E.; Scherff, F.; Staudt, T.; Müller, M.; Britz, D.; Mücklich, F.; Motz, C. Determination of grain
size distribution of prior austenite grains through a combination of a modified contrasting method and machine learning. Pract.
Met. 2022, 60, 4–36. [CrossRef]

93. Bachmann, F.; Hielscher, R.; Schaeben, H. Texture analysis with MTEX—Free and open source software toolbox. Solid State
Phenom. 2010, 160, 63–68. [CrossRef]

94. Niessen, F.; Nyyssönen, T.; Gazder, A.A.; Hielscher, R. Parent grain reconstruction from partially or fully transformed microstruc-
tures in MTEX. J. Appl. Crystallogr. 2022, 55, 180–194. [CrossRef]

95. Britz, D.; Steimer, Y.; Mücklich, F. A New Approach for Color Metallography: Through Controlled Conditions to Objective
Microstructure Analysis of Low-Carbon Steels by LePera-Etching. In Symposium Commemorating 100 Years of E04 Development of
Metallography Standards; ASTM International: West Conshohocken, PA, USA, 2019; pp. 130–151. [CrossRef]

96. Noraas, R.; Somanath, N.; Giering, M.; Oshin, O. Structural Material Property Tailoring Using Deep Neural Networks. arXiv 2019.
[CrossRef]
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