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Andrzej N. Wieczorek and

Marcin Staszuk

Received: 12 March 2024

Revised: 19 April 2024

Accepted: 23 April 2024

Published: 28 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Nano- and Submicron-Sized TiB2 Particles in Al–TiB2 Composite
Produced in Semi-Industrial Self-Propagating High-Temperature
Synthesis Conditions
Aleksey Matveev 1,2,*, Vladimir Promakhov 1, Nikita Schulz 1, Vladislav Bakhmat 1 and Timur Turanov 1

1 Scientific and Educational Center “Additive Technologies”, National Research Tomsk State University,
Lenin Avenue, 36, 634050 Tomsk, Russia; vvpromakhov@mail.ru (V.P.); schulznikita97@gmail.com (N.S.);
bakhmatvr@gmail.com (V.B.); timur.kb2@icloud.com (T.T.)

2 Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 10/4, Akademicheskii
Ave., 634055 Tomsk, Russia

* Correspondence: alekey.9595@mail.ru; Tel.: +7-9095484574

Abstract: This paper investigates the structure and phase composition of Al–TiB2 metal matrix
composites prepared from the Al–Ti–B system powder using self-propagating high-temperature
synthesis (SHS) in semi-industrial conditions (the amount of the initial powder mixture was 1000 g).
The samples produced in semi-industrial conditions do not differ from the laboratory samples, and
consist of the aluminum matrix and TiB2 ceramic particles. The temperature rise leads to the growth
in the average size of TiB2 particles from 0.4 to 0.6 µm as compared to the laboratory samples. SHS-
produced composites are milled to the average particle size of 42.3 µm. The powder particles are
fragmented, their structure is inherited from the SHS-produced Al–TiB2 metal matrix composite.
The obtained powder can be used as the main raw material and additive in selective laser sintering,
vacuum sintering, and hot pressing products. It is worth noting that these products can find their
own application in the automotive industry: brake pads, drums, rail discs, etc.

Keywords: Al–TiB2 metal matrix composites; self-propagating high-temperature synthesis; semi-
industrial conditions; synthesis process; structure and phase composition; nanoparticles

1. Introduction

Transportation of people and cargo by air, land, and water transport must meet modern
economic and environmental requirements [1]. One of these requirements is a lower weight
of structural elements of transport, which improves the transportation performance, fuel
saving, and reduces harmful gas emissions [2,3]. For example, an aircraft weight reduction
by 20% decreases the CO2 emission by 12–16%, which undoubtedly has a positive effect
on the environment and humans. The reduction of the weight indicators of the transport
structure can be gained not only by design improvements, but also by the development
and implementation of novel materials. The structure and phase composition of novel
materials can significantly improve their physical and mechanical properties (relative to
present materials) and provide stable operation at higher temperatures. The creation of
metal matrix composites, comprising a metal/intermetallic matrix and ceramic particles, is
currently one of the key trends in the development of novel materials [4–6]. Dispersion
hardening of metal matrix materials by ceramic particles enhances their physical and
mechanical properties, namely hardness, wear resistance, and strength both at room and
higher temperatures [7,8]. On the other hand, nano- and submicron-sized ceramic particles
are also nucleation centers of crystalline particles in metal alloys that reduce their grain
size and improve their physical and mechanical properties [9–12]. It should be noted that
ordinary alloys cannot reach the physical and mechanical properties of the metal matrix
composites, owing to their more free growth of crystalline particles.
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It is thanks to the unique combination of physical and mechanical properties that
metal matrix composites have found applications in the automotive industry: brake pads,
drums, rail discs, etc. At the same time, intensive growth in the production of passenger
cars is expected (for example, in the Asia–Pacific region, automobile production increased
by 11%). Based on these data, it is assumed that the production of parts for passenger
cars will be one of the main drivers of growth in the market for composite metal matrix
materials. According to work [13], in 2020, the global market for metal matrix composites
and materials based on them is estimated at USD 360 billion. It is projected to grow at a
CAGR of 6.4% from 2020 to 2027. There are currently many ways to obtain metal matrix
composites; for example, the addition of ceramic particles in the melt, hot pressing, and
spark plasma sintering [14–16]. A special focus is the self-propagating high-temperature
synthesis (SHS) technique based on exothermic reactions between mixture components.
SHS is characterized by highly intensive interactions between initial components, which
are accompanied by large amounts of generated heat [17]. This amount of heat avoids the
necessity for using external energy sources during synthesis. Moreover, the SHS technique
ensures control over the structure and phase composition of synthesis products by changing
the initial mixture composition and reaction conditions. For metal matrix composites, the
SHS process provides for in situ structure formation, i.e., during the reaction between the
initial mixture components. In this case, the heat of reaction between ceramic particles is
spent to the metal component melting. At high (>40 wt.%) content, ceramic particles are
separated by the obtained alloy, which forms the matrix material. This largely eliminates
the particle agglomeration and allows producing composite materials with a homogeneous
structure [18].

Using SHS, the research team headed by prof. Promakhov has obtained (Ni–Ti)–TiB2
composite from the powder system 63.5 wt.% NiB + 36.5 wt.% Ti [19]. The composite
structure consisted of the Ni–Ti intermetallic matrix with distributed particles of titanium
diboride (TiB2). It was found that the addition of 5 wt.% SHS-particles NiTi–TiB2 to the
Inconel 625 powder enhanced the hardness and ultimate tensile strength of SLS materials,
respectively, by 40 and 20% as compared to relatively pure Inconel 625 powder [20]. These
results demonstrated the highly efficient use of SHS-produced composites as additives in
selective laser sintering.

According to the literature review, most of the publications in the field of composites
do not go beyond the laboratory experiments. There are experiments with 20 to 50 g
samples, in which synthesis conditions considerably differ from the production process
conditions and do not consider process and ecological parameters. As mentioned above,
the main research tasks include the development of composite materials and their industrial
implementations. The SHS technique is, therefore, the focus of attention; semi-industrial
conditions may significantly affect the structure and phase composition and, consequently,
the physical and mechanical properties of the final product.

In work [18], SHS was used to obtain the Al–TiB2 metal matrix composite from the
Al–Ti–B system powder in laboratory conditions. The composite structure consisted of the
aluminum matrix with uniformly distributed TiB2 particles submicron and nanometer size.

Note that it is nano- and submicron-sized ceramic particles that provide the improve-
ment of physical and mechanical properties for unavailable conventional aluminum and
many other alloys. Thus, the obvious question that arises is whether it is possible to gain
such results when increasing the weight of the initial powder mix up to 1000 g (1 kg) and
approaching semi-industrial SHS conditions.

The aim of this work is to investigate the structure and phase composition of the
Al–TiB2 metal matrix composite produced by SHS from the Al–Ti–B system powder in
semi-industrial conditions.
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2. Materials and Methods

Aluminum (Al), titanium (Ti), and boron (B) powders were used to prepare 1000 g
(1 kg) of the Al–Ti–B system powder. Table 1 shows manufacturers, average particle size,
and purity of these powders.

Table 1. Manufacturers, average particle size, and purity of powders.

Powders Average Particle Size, µm Purity, wt.%

Al (OOO Sual-PM) 100 ≥98.4

Ti (OAO Polema) 140 ≥99

B (OAO Aviabor) 0.6 ≥99.2

The initial powder components were mixed with the amount of 60 wt.% Al, 27.6 wt.%
Ti, and 12.4 wt.% B. The obtained mixture was mechanically blended in the ball mill, as
illustrated in Figure 1a. To understand how the duration of mechanical grinding affects the
particle structure of the initial powder mixture weighing 1000 g, two mechanical grindings
were carried out: 15 min (as presented in [18] for a sample weighing 20 g), and 45 min. The
steel drum was vacuumed and filled with argon to prevent the contents oxidation. Based
on the data obtained in the work [21], it was supposed that after mechanical blending, the
initial powder mix consisted mostly of composite particles with Al, Ti, and B inclusions
(Figure 1b). Next, this powder mix was poured into a graphite crucible without preliminary
compaction. A flammable layer comprising 80 wt.% Ti and 20 wt.% B was poured onto the
powder mix. The flammable layer provided uniform heating of the upper layer of the main
mix and initiated the reaction between the components. The graphite crucible was placed
in the reactor (Figure 1c).
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Figure 1. Flowchart of Al–Ti–B based sample preparation: (a) ball mill, (b) Al, Ti, and B particles,
(c) reactor.

Figure 2 presents semi-industrial conditions in the SHS process. The reactor was
evacuated by a pump and filled with argon to a pressure of 5 MPa. The synthesis reaction
was initiated by the localized heating of the flammable layer using a molybdenum hot
filament. BP20/5 thermocouples were introduced in the initial powder mix to measure the
synthesis temperature [22].

After synthesis, 1 kg of the obtained product was ground in a ball mill. A porcelain
container and Al2O3 balls of diameters 10 and 20 mm, respectively, were used for the
grinding. The ground synthesis product was sieved through 200 mesh sieve.

The X-ray diffraction (XRD) analysis of the phase composition was conducted on a
Shimadzu XRD-6000 Diffractometer (Shimadzu Corporation, Kyoto, Japan) using CuKα

radiation. The phase composition was identified by using the Powder Diffraction File (PDF-
4). Rietveld refinement was used for the phase quantification and lattice parameters [23,24].
Energy dispersive X-ray spectroscopy on the scanning electron microscope (SEM/EDX)
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with focused electron beam from Tescan (Tescan, s.r.o., Brno, Czech Republic) was used
to study the sample microstructure. Its particle size was detected in SEM images using
the secant method. The ANALYSETTE 22 MicroTec plus analyzer (Fritsch, Idar-Oberstein,
Germany) was used to detect the particle size of the ground synthesis product.
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Figure 2. Flowchart of semi-industrial SHS process.

3. Results
3.1. Influence of the Powder Mix Weight and Synthesis Conditions on Its Temperature
and Propagation

Figure 3 contains SEM images of the initial Al–Ti–B powder structure after mechanical
blending for 15 and 45 min. After 15 min, the structure consists of deformed particles with
Al, Ti, and B inclusions (see Figure 3a, regions 1, 3, 4, 6, 9). There are also rounded Al and
Ti inclusions without boron (regions 2, 5, 7, 8). After 45 min, the structure includes planes
and irregular particles (Figure 3b). According to the elemental analysis, they comprise Al
and B inclusions (Figure 3b, regions 1–9). These results are consistent with those obtained
in [18], where a similar particle structure is obtained after 15 min mechanical blending
of 20 g Al–Ti–B powder. Thus, a larger weight of the initial powder mix requires longer
mechanical blending.

In Figure 4, we present thermal curves for synthesis of 1000 g (1 kg) of the initial
powder. The peak 1 on these curves describes the exothermic reaction between the initial
powder components, which is accompanied by a large amount of generated heat. This
peak corresponds to synthesis at 1850 ◦C. A comparison of results obtained here and in [18]
shows that the SHS temperature grows by 200 ◦C with increasing weight of the Al–Ti–B
system powder from 20 to 1000 g. This temperature rise is determined mostly by the
larger diameter of the initial powder sample and, consequently, the reacting surface of its
components. This results in a large amount of generated heat and temperature growth.
The same was observed by Borovinskaya et al. [25], who detected the relation between the
temperature and the sample dimension in several systems (for example, in Ti-B, Ti-2B, Ti-C,
etc.). It should be noted that the initial powder mix was poured into the graphite crucible
without a preliminary compaction (bulk density).



Metals 2024, 14, 511 5 of 11Metals 2024, 14, x FOR PEER REVIEW 5 of 11 
 

 
Figure 3. SEM images of 1000 g of initial Al–Ti–B system powder and elemental composition after 
mechanical blending: (a) 15 min, (b) 45 min. 

In Figure 4, we present thermal curves for synthesis of 1000 g (1 kg) of the initial 
powder. The peak 1 on these curves describes the exothermic reaction between the initial 
powder components, which is accompanied by a large amount of generated heat. This 
peak corresponds to synthesis at 1850 °C. A comparison of results obtained here and in 
[18] shows that the SHS temperature grows by 200 °C with increasing weight of the Al–
Ti–B system powder from 20 to 1000 g. This temperature rise is determined mostly by the 
larger diameter of the initial powder sample and, consequently, the reacting surface of its 
components. This results in a large amount of generated heat and temperature growth. 
The same was observed by Borovinskaya et al. [25], who detected the relation between 
the temperature and the sample dimension in several systems (for example, in Ti-B, 
Ti-2B, Ti-C, etc.). It should be noted that the initial powder mix was poured into the 
graphite crucible without a preliminary compaction (bulk density). 

At the same time, the density of powder samples obtained by cold uniaxial compac-
tion in [18] from 20 g of the Al–Ti–B powder was higher than the bulk density. Yeh and 
Chen [26] reported that the SHS temperature grew with increasing density of the initial 
sample. However, in our experiment, the SHS temperature in the Al–Ti–B system powder 
with the bulk density and 1000 g weight was higher than that of the powder with 20 g 
weight. As mentioned above, the increase in the weight and volume of the initial powder 
mix led to the growth in the heat generation during the synthesis process due to the 
larger reacting surface. It was assumed that this heat compensated for the lower contact 
between the powder components associated with the reduced density of the initial 
powder mix that accompanied the higher temperature than in laboratory conditions. This 
allowed us to conduct stability and complete synthesis in conditions approaching 
semi-industrial ones, i.e., without preliminary compaction of the initial powder mix. 
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At the same time, the density of powder samples obtained by cold uniaxial compaction
in [18] from 20 g of the Al–Ti–B powder was higher than the bulk density. Yeh and Chen [26]
reported that the SHS temperature grew with increasing density of the initial sample.
However, in our experiment, the SHS temperature in the Al–Ti–B system powder with the
bulk density and 1000 g weight was higher than that of the powder with 20 g weight. As
mentioned above, the increase in the weight and volume of the initial powder mix led to
the growth in the heat generation during the synthesis process due to the larger reacting
surface. It was assumed that this heat compensated for the lower contact between the
powder components associated with the reduced density of the initial powder mix that
accompanied the higher temperature than in laboratory conditions. This allowed us to
conduct stability and complete synthesis in conditions approaching semi-industrial ones,
i.e., without preliminary compaction of the initial powder mix.

In Figure 4a, the temperature slightly lowers after peak 1 and then grows again
(peak 2). This is conditioned by the intense heat absorption in the adjacent regions, where
the remaining amount of heat results in the temperature growth. This phenomenon is
detected in [27]: it is reported that endothermic processes are stipulated by the melting and
dissolution of the initial mixture components. Afterwards, the temperature drops, and the
syntheses product is cooled (region 3). The heat absorption by adjacent regions can cause
wave front destabilization and spin wave propagation. It is noteworthy that the synthesis
process conducted in the graphite crucible does not allow us to observe the wavefront
propagation. At the same time, the surface of the synthesis product in Figure 4b,c has lines
four separated by pores. Their formation can probably be attributed to localization reaction
centers and their motion along a helical path. The temperature gradient appears on the
boundaries of reaction centers and unreacted region, which results in the pore formation.
These lines are typical for the spin wave propagation. Based on these data and the results
obtained in [27], we find that the Al content of 60 wt.% of the initial Al–Ti–B system leads to
an intense absorption of the large amount of heat necessary for its melting. This facilitates
the wavefront destabilization and spin wave formation (Figure 4d, region 5). In work [18],
the Al–Ti–B system powder, consisting of 60 wt.% Al and weighing 20 g, also demonstrates
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the spin wave propagation during the synthesis process. In conclusion, the wavefront
propagation in the Al–Ti–B system powder does not change with the weight of the initial
powder mix increasing from 20 to 1000 g.
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3.2. Influence of the Powder Mix Weight and Synthesis Conditions on Structure and
Phase Composition

The SEM images in Figure 5 demonstrate the structure of the SHS product preliminary
treated in 5 vol.% HCl solution. The structure consists of irregular rounded particles (region
1) distributed in the matrix (region 2). The particle size ranges between 0.17 and 4 µm,
while the average size is 0.61 µm. The particle size distribution is contributed largely by
0.5 µm particles.

The XRD pattern and EDX mapping of the surface of SHS products obtained from
the Al–Ti–B powder are presented in Figure 6. These products contain TiB2 and Al phases.
Crystal lattice parameters of these phases do not qualitatively differ from each other and are
comparable with those of reference Al and TiB2 phases [28,29]. There are also traces of the
Al3Ti intermetallic phase, while EDX mapping of the SHS product structure (Figure 6b–e)
shows Ti and B elements nearby the detected particles. At the same time, the matrix consists
of Al and also Ti elements in some areas.
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size distribution in the matrix (d).

When comparing these data with XRD patterns, we found that SHS products, resulting
from exothermic reactions from the Al–Ti–B system powder, consisted of TiB2 particles
distributed in the matrix based on Al and Al3Ti inclusions. When comparing these re-
sults with those achieved in [18] for 20 g of the initial powder mix, we observed a slight
growth (from 0.4 to 0.6 µm) in the average size of TiB2 particles for 1000 g from the initial
powder. That change was attributed to the temperature rise, which led to the growth
in TiB2 crystalline particles and, thus, in the average particle size [30]. It is worthwhile
to note that, in work [18], the synthesis of the Al–Ti–B system with 20 g weight did not
result in the formation of Al–Ti intermetallic compounds. Based on the data presented
herein, we suggested that the formation of intermetallic compounds was associated with a
stoichiometry deviation during the mixture preparation with larger particle size. As a result
of the results obtained, it was established that increasing the mass of the sample from 20 to
1000 g does not lead to a significant change in the phase composition and structure of the
synthesis products. Therefore, it can be assumed that increasing the volume of the resulting
mixture will not complicate the technological process, nor will it lead to economic costs.
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Figure 6. XRD pattern with phase composition (a) and EDX mapping (b–e) of SHS product obtained
from 1000 g of the Al–Ti–B system powder.

As mentioned earlier, metal matrix composites can be used in selective laser sintering
as the main powder material or additive. In this regard, after synthesis of 1000 g of the
ceramic sample, it is necessary to comminute it.

Figure 7 presents the particle size distribution of the Al–TiB2 metal matrix composite,
SEM images of its particles, as well as an EDX analysis of the surface structure of these
particles. The particle size after milling ranges from 0.5 to 95 µm, and their average size is
42.3 µm. The powder particles are fragmented, and their surface consists of TiB2 inclusions.

The obtained powder can be used as the main raw material or additive in SLS, vacuum
sintering, and hot pressing. In addition, the plasma-spheroidizing method can be used for
this powder to improve its flow through a nozzle during fabrication [31].
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4. Conclusions

This work investigated the structure and phase composition of the Al–TiB2 metal
matrix composite produced from the Al–Ti–B system powder in semi-industrial SHS
conditions. In total, 1000 g of the Al–Ti–B system powder (60 wt.% Al) was mechanically
blended in a ball mill. The obtained mixture was placed in the graphite crucible without a
preliminary compaction. The synthesis process was performed in the constant pressure
reactor in argon medium. Summing up the results, it can be concluded that:

- The synthesis temperature in 1000 g of the Al–Ti–B system powder was 200 ◦C higher
than that in 20 g samples synthesized in laboratory conditions;

- The final product did not differ from that obtained in laboratory conditions, and
consisted of the Al matrix and TiB2 ceramic particles. There were, however, Al3Ti inter-
metallic particles, probably due to the semi-industrial conditions of the SHS process;

- The growth in the SHS temperature provided the increase in the larger average size of
TiB2 particles from 0.4 to 0.6 µm, as compared to that of the laboratory samples;

- SHS-produced composite was comminuted to 42.3 µm particles, which were frag-
mented and had the structure inherited from the Al–TiB2 composite;

- The obtained powder can be used as the main raw material or additive in SLS, vacuum
sintering, and hot pressing.
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