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Abstract: Structures composed of aviation aluminium alloys, characterized by their limited rigidity
and thin-walled configurations, frequently exhibit deformation after processing. This paper presents
an investigation into T-shaped components fabricated from pre-stretched 7075-T7451 aviation alu-
minium alloy sheets, examining the effects of residual stress and the geometrical parameters of
T-shaped components on their deformational behavior. A semi-analytical model, developed to eluci-
date the bending deformation of T-shaped components subjected to residual stress, was validated
through finite element analysis and empirical cutting experiments. The experimental results revealed
that the bending deformation deflection of the T-shaped specimen was 0.920 mm, deviating by a mere
0.011 mm from the prediction provided by the semi-analytical model, resulting in an inconsequential
error margin of 1.2%. This concordance underscores the precision and accuracy of the semi-analytical
model specifically designed for T-shaped components. Moreover, the model’s simplicity and ease of
application make it an effective tool for predicting the bending deformation of thin-walled T-shaped
components under a range of residual stresses and dimensional variations, thereby demonstrating its
significant utility in engineering applications.

Keywords: residual stress; T-shaped components; semi-analytical model; cantilever plate

1. Introduction

Aviation aluminium alloys, characterized by their lightweight properties and high
specific strength, are extensively utilized in the aerospace sector [1]. Structures fabricated
from aluminium alloy sheets, especially those of a thin-walled nature, are predominantly
selected for aviation applications due to their capacity to enhance production efficiency, re-
duce product mass, shorten assembly durations, and decrease manufacturing expenses [2].
Nonetheless, these thin-walled aluminium alloy constructions routinely experience defor-
mation post-manufacture. The accumulation of residual stress acts as a primary determi-
nant of the extensive deformation observed in components, with the degree of deformation
increasing in conjunction with residual stress levels [3]. The origin of residual stresses can be
principally divided into two categories: initial residual stress (IRS) and machining-induced
residual stress (MIRS) [4]. aluminium alloy plates, used as blanks for aerospace constructs,
undergo complex fabrication processes that result in significant, heterogeneous residual
stress fields within the material, termed initial residual stress. Furthermore, the mechanical
machining process, especially cutting operations on thin-walled configurations which
involve extensive material removal and lead to decreased rigidity of the component post-
machining, generates cutting residual stress that further affects component deformation [5].
This type of residual stress is identified as machining-induced residual stress. Additionally,
the likelihood of deformation in thin-walled components is intricately connected to the
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large dimensions of the component [6]. Aerospace structures, often elongated and capable
of extending to several tens of meters in length, show reduced rigidity, making them prone
to deformation following mechanical processing. Such deformation significantly impacts
the precision of aerospace component fabrication, leading to increased production costs
and reduced manufacturing efficiency [7].

Extensive investigations have been dedicated to elucidating the deformation mecha-
nisms and developing predictive models for thin-walled structures. Weber et al. utilized the
finite element method (FEM) to examine the effects of variable wall thicknesses, initial resid-
ual stresses, and machining-induced residual stresses on the deformation characteristics of
integral thin-walled aluminium alloy double-frame components [8]. Using 2219 aluminium
alloy thin-walled ring components as a case study, Li et al. developed a finite element sim-
ulation model based on ANSYS to analyze the deformation patterns during the machining
of thin-walled components under various parameter conditions, concluding that residual
stress within 2219 aluminium alloy ring components significantly affects the machining
deformation of thin-walled structural components [9]. Yao et al., applying FEM techniques,
assessed the impact of residual stress on the deformation of blade structural components
and developed a deformation prediction model based on residual stress [10]. Wang et al.,
concentrating on 7075-T651(GB/T3880.2–2006) aluminium alloy three-frame thin-walled
structural components, proposed an analytical model derived from elasticity theory to
predict the effects of residual stress on deformation through different machining stages [11].
Jiang et al., analyzing multi-frame thin-walled structural components, investigated the
effects of residual stress on deformation and established predictive models using software
platforms such as ADVANTEDGE/DEFORM and ABAQUS [12]. Conducting finite element
analysis, Li et al. modelled the layered milling of straight-face micro-thin-walled features
with varying thicknesses to explore deformation patterns along the height and length
of thin walls [13]. By adjusting the milling depth, Zheng et al. explored the machining
deformation and stress distribution patterns under different cutting thicknesses, proposing
a predictive model for machining deformation under varied milling conditions based on
the theory of elastic deformation [14]. Zhu et al. considered both initial residual stresses
and the operational loads on workpieces, creating a comprehensive model that includes
equilibrium equations and stress boundary conditions through finite element methods to
predict the resulting deformation in workpieces [15]. Ye developed a mechanical model
for the machining deformation of 7075 aluminium alloy integral structural components
using three-frame thin-walled structures and proposed a finite element model for analyzing
the deformation of integral parts, demonstrating that simulation values closely align with
calculated values with an error margin not exceeding 20% [16]. Integrating finite element
analysis with empirical studies, Li et al. examined the impact of different material removal
strategies and initial stress conditions on the deformation of aluminium alloy plates, noting
the significant influence of asymmetric stress states on the deformation of thin plates [17].
Ju introduced a new analytical model based on the energy equation, incorporating the
residual stress field informed by three-dimensional elasticity theory and the principle of
minimum potential energy, using modified Rayleigh-Ritz and pseudoinverse methods to
solve energy equations under various processing conditions for predicting the machining
deformation of thin-walled ring components [18]. Gao et al., using 7075 aluminium alloy
and Ti6Al4V titanium alloy as examples, investigated the effect of bending stiffness and
residual stress on the dimensional stability of frame-like thin-walled workpieces through
the finite element method [19].

Recently, interest has burgeoned in the investigation of the synergistic impact of initial
and machining-induced residual stresses on the deformation behavior of components.
Li et al. utilized the Bayesian network probabilistic graphical model as a framework to
assess the uncertainties involved in the machining deformation of thin-walled entities. This
exploration yielded an algorithmic approach to quantitatively elucidate the uncertainties
associated with these factors, resulting in the development of a predictive deformation
model [20]. Xue et al. focused their study on 2219 aluminium alloy’s thin-walled ring
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components, using both theoretical and finite element methods to analyze the spatial
distribution of initial and machining-induced residual stresses, thereby revealing the de-
formational patterns under the influence of these stresses [21]. Zheng et al. investigated
the effects of initial and machining-induced residual stresses on H-shaped thin-walled
structural components, using finite element analysis [22]. Li et al., in their study, combined
calculations of equivalent stiffness with plate and shell theory principles, proposing a
predictive model that integrates both types of residual stress [23]. Li further advanced the
discussion with a combined theoretical and numerical analysis of machining deformation
mechanisms, establishing a springback model for tensile bending that incorporates the
interplay of bending and machining-induced residual stresses, supported by a numerical
model based on shell elements and submodel analysis techniques [24]. This approach
highlighted that deformation trends are directly linked to the combined effects of cutting
and bending residual stresses. Weber et al., considering the combined effects of initial and
machining-induced residual stresses, advocated for a 3D linear elasticity finite element
model. Applying this to frame-like structural components, they critically analyzed the
impact of milling paths and wall thickness on the deformation of frame-like aluminium
alloy thin-walled structures [25].

In summary, current research predominantly focuses on the deformation behavior and
prediction for frame-like, plate-like, and ring-like thin-walled structures under the influence
of residual stresses, with a notable lack of attention towards T-shaped configurations.
Stemming from their origins in plate and beam designs due to superior load-bearing
capabilities, T-shaped components are extensively utilized in various sectors, especially
in aerospace and aviation, where they play crucial roles in aviation engine mounts and
guide vanes, among others. This highlights the essential need for conducting deformation
analysis and predictive modeling for T-shaped structures. Predominantly, current research
methods rely on the FEM and the application of plate and shell theory. However, FEM
requires specific computational hardware and software capabilities, along with extended
computation times, while the use of plate and shell theory is hindered by its complex solving
process, making both methods somewhat impractical for direct engineering applications.
This study concentrates on T-section structural components made from 7075 aluminium
alloy, noted for their reduced rigidity. It adopts an integrated methodological approach
that combines theoretical analysis, finite element modeling, and empirical experimentation
to enable the predictive study of deformation in these T-section structures. Moreover, this
research introduces a semi-analytical model specifically designed to describe the bending
deformation behaviors of T-section structural components when subjected to residual
stresses.

2. Research Framework and Hypotheses

This study delineates an investigation into T-shaped structures fabricated from pre-
stretched 7075-T7451 aviation aluminium alloy sheets manufactured by SOUTHWEST
ALUMINIUM (GROUP) CO, LTD (Chongqing, China). The research is based on the
following hypotheses [26]:

(1) Internal residual stresses are assumed to be uniformly distributed at identical depths
throughout the billet.

(2) Residual stresses within the component are presumed to exist solely in the longitu-
dinal and transverse directions, with any residual stresses in the thickness direction
disregarded.

(3) The study adheres to Kirchhoff’s hypothesis, which is applicable to the small deflection
bending theory of thin plates. A thin plate is defined as having a thickness (h) less than
one-fifth of its minimum characteristic dimension (L), symbolized as h < L/5. The
small deflection bending of thin plates refers to instances where the plate’s maximum
deflection (wmax) is less than one-fifth of its thickness (h), denoted as wmax < h/5.

(4) Residual stresses are treated as internal forces. In addressing the bending deformation
of components subjected to initial residual stresses, an equivalence principle of effect
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is employed, whereby initial residual stresses are analogously considered as external
forces for analysis. Consequently, under this principle, deformations resulting from
the release of residual stresses following material removal are equivalently analyzed
as bending deformations induced by external forces. The methodology for this
equivalence is detailed below.

Assuming the post-processing model as shown in Figure 1, it is hypothesized that
within the rectangular thin plate, there are initial residual stresses distributed along the
thickness in the length direction (Lx) denoted as σx(z), and in the width direction (Ly)
denoted as σy(z). Taking the central plane of the thin plate’s thickness as the reference plane,
the bending moments Mx and My, resulting from the stress components σx and σy acting
on the central plane of the plate’s thickness, can be obtained using Equations (1) and (2).

Mx =

h/2∫
−h/2

σx·z·dz (1)

My =

h/2∫
−h/2

σy·z·dz (2)
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Mx, My are the uniformly distributed equivalent bending moments generated by the
stresses σx, σy, respectively.

Mx and My can be calculated by Equations (1) and (2). The mechanical model of a
rectangular thin plate with distributed moments on all four free edges is shown as Figure 2.
Its bending deformation can be solved using plate and shell theory.
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Figure 2. Rectangular thin plate loaded with bending moments on two opposite edges.

As shown in Figure 2, the geometric center of the rectangular plate is defined as the
coordinate origin. When two sets of opposite edges are subjected to an equal reverse
moments Mx and My respectively, the bending curvature can be expressed with the second
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derivative of the deflection function, bending moment, bending stiffness D, Poisson’s ratio
µ, and modulus of elasticity E.

∂2w(x, y)
∂x2 =

Mx − µMy

D(1 − µ2)
(3)

∂2w(x, y)
∂y2 =

My − µMx

D(1 − µ2)
(4)

D =
Eh3

12(1 − µ2)
(5)

Here, w(x, y) represents the deflection function which is expressed as Equation (6).

w(x, y) =
Mx − µMy

2D(1 − µ2)
x2 +

My − µMx

2D(1 − µ2)
y2 + C1x + C2y + C3 (6)

When the tangent plane of the bent midplane at the origin is selected as the base plane
of the variable w, C1 = C2 = C3 = 0. Equation (6) can be transformed to Equation (7):

w(x, y) =
Mx − µMy

2D(1 − µ2)
x2 +

My − µMx

2D(1 − µ2)
y2 (7)

When My = µMx, Equation (7) can be transformed to Equation (8). It can be seen
from Equation (8) that the midplane is bent into a cylindrical surface, and it’s generatrix is
parallel to the axis y.

w =
Mx

2D
x2 (8)

Through the equivalence method, the equivalent stress situation of the T-shaped
component is depicted in Figure 3. It is quite difficult to solve the deformation problem
using plate and shell theory for the T-shaped component. A characteristic feature of
T-shaped component is the presence of a central stiffener with significant height, which
offers high bending resistance. However, while the web plate of a T-shaped component is
notably thin and positioned far from the central stiffener, it is prone to early buckling before
the entire component does. This observation has prompted the proposal of a novel method
for analyzing the bending deformation of T-shaped components, dividing the analysis
into separate evaluations for the bending deformations of T-beams and plates. Thus, the
method for analyzing the bending deformation of T-shaped sections under residual stress,
as shown in Figure 3, involves a separated approach, including the deformation analyses of
both T-beams and rectangular cantilever plates. The sum of these individual deformations
equates to the total bending deformation of the T-shaped component, as illustrated in
Equation (9).

w = wT + wC (9)
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In Equation (9), wT represents the bending deformation of the T-beam, which can
be calculated using well-established bending equations from mechanics of materials, as
specified in Equation (10).

wT =
Me·l2

2·E·I (10)

Me stands for the applied moment, l indicates the length of the beam, E is the elastic
modulus, and I denotes the moment of inertia relevant to the T-section.

In Equation (9), wc signifies the deformation of the rectangular web plate of the
T-section component.

Cantilever thin plate is an important structural element while its bending has been
one of the most difficult problems in the theory of elastic thin plate for the complexity in
both the governing equation and the boundary conditions. The bending of rectangular thin
plates with various combinations of boundary conditions has been investigated for many
years by different authors [27]. However, the existing solutions are relatively complex
and not convenient for engineering application. Therefore, a solution model for bending
deformation of rectangular cantilever thin plates with simple calculation, convenience, and
high accuracy, is the primary focus of this study.

3. Solution for Bending Deformation of Rectangular Cantilever Plates

When the central rib of a T-shaped structural component possesses significant height,
its web can be viewed as a cantilever plate. This configuration’s load model is illustrated in
Figure 4, where one side is fixed, and the remaining three sides are subjected to uniformly
distributed moments Mx and My. In this context, Mx acts on the free edge, while My is
exerted on the edges parallel to the axis, with My appearing in pairs. It is established that
when Mx and My induce a concave deformation at the center of the plate, Mx and My are
deemed positive, and conversely, negative when the effect is opposite. Utilizing this model,
the controlled variable method is applied, with the finite element software ABAQUS (the
version used in the study is 6.14-2) used to investigate the impact of cantilever length L,
plate width W, plate thickness t, the ratio of cantilever length to plate width (W/L), and
the magnitudes and ratio of Mx to My on the bending deformation of the cantilever plate,
thereby deriving a solution model for the bending deformation of the cantilever plate.

Metals 2024, 14, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 4. Model of rectangular cantilever thin plate. 

3.1. Effect of Moment Magnitude on Cantilever Plate Deformation 
3.1.1. Effect of 𝑀  Value on Rectangular Cantilever Thin Plate Bending Deformation 

Using pre-stretched 7075-T7451 plate material, the dimensions of the cantilever thin 
plate are set to 𝐿 = 𝑊 = 400 mm, 𝑡 = 10 mm. Bending deformation finite element simula-
tions are conducted using the ABAQUS finite element software. The finite element model 
is established as shown in Figure 5., employing eight-node hexahedral linear non-con-
forming elements, with an element size of 2.5 mm × 2.5 mm × 1 mm (the billet is divided 
into ten layers along the thickness direction, each layer being 1 mm thick), totaling 256,000 
elements. Other parameters are as shown in Table 1. To ensure that the thin plate belongs 
to the problem of small deflection bending (the deflection of the plate is less than 1/5 of 
the plate thickness), the applied load should be with in a certain range. For ease of com-
parative analysis, the applied load 𝑀  is set to whole values in 100 N ∙ m, with 𝑀  as a 
variable, tentatively taking thirteen different values for simulation analyses. The 𝑀  val-
ues are set as integer multiples of 𝜇𝑀  (here 𝜇 is the Poisson’s ratio), with the values 
being: −198, −165, −132, −99, −66, −33, 0, 33, 66, 99, 132, 165, 198 N ∙ m. Note that these 
moments are per unit length moments, considered as uniformly distributed moments. 
When applying them as concentrated moments in finite element analysis, the acting 
length must be multiplied. Post-simulation, the maximum deflection values of the canti-
lever thin plate are as shown in Table 2. Since the deflection value of the rectangular can-
tilever plate reaches 1/5 of the plate thickness when value of 𝑀  is 198 N ∙ m, 198 N ∙ m 
is determined as the maximum value of 𝑀  here. 

 
Figure 5. Finite element model of cantilever plate. 

Table 1. Parameters of finite element model. 

Parameter Name Parameter Values 
Unit type Eight node hexahedral linear non conforming mode 
Unit size 2.5 mm × 2.5 mm × 1 mm 

Figure 4. Model of rectangular cantilever thin plate.

3.1. Effect of Moment Magnitude on Cantilever Plate Deformation
3.1.1. Effect of My Value on Rectangular Cantilever Thin Plate Bending Deformation

Using pre-stretched 7075-T7451 plate material, the dimensions of the cantilever thin
plate are set to L = W = 400 mm, t = 10 mm. Bending deformation finite element
simulations are conducted using the ABAQUS finite element software. The finite element
model is established as shown in Figure 5, employing eight-node hexahedral linear non-
conforming elements, with an element size of 2.5 mm × 2.5 mm × 1 mm (the billet is
divided into ten layers along the thickness direction, each layer being 1 mm thick), totaling
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256,000 elements. Other parameters are as shown in Table 1. To ensure that the thin plate
belongs to the problem of small deflection bending (the deflection of the plate is less than
1/5 of the plate thickness), the applied load should be with in a certain range. For ease
of comparative analysis, the applied load Mx is set to whole values in 100 N·m, with My
as a variable, tentatively taking thirteen different values for simulation analyses. The My
values are set as integer multiples of µMx (here µ is the Poisson’s ratio), with the values
being: −198, −165, −132, −99, −66, −33, 0, 33, 66, 99, 132, 165, 198 N·m. Note that these
moments are per unit length moments, considered as uniformly distributed moments.
When applying them as concentrated moments in finite element analysis, the acting length
must be multiplied. Post-simulation, the maximum deflection values of the cantilever thin
plate are as shown in Table 2. Since the deflection value of the rectangular cantilever plate
reaches 1/5 of the plate thickness when value of My is 198 N·m, 198 N·m is determined as
the maximum value of My here.
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Table 1. Parameters of finite element model.

Parameter Name Parameter Values

Unit type Eight node hexahedral linear non conforming mode
Unit size 2.5 mm × 2.5 mm × 1 mm

Number of units 256,000
Material density 2850 kg/m3

Elastic modulus 70.3 GPa
Poisson’s ratio 0.33

Yield limit 455 MPa

Table 2. Deflection values of cantilever plate under different My values.

Test Code 1 2 3 4 5 6 7 8 9 10 11 12 13

Mx (N·m) 100 100 100 100 100 100 100 100 100 100 100 100 100
My (N·m) −198 −165 −132 −99 −66 −33 0 33 66 99 132 165 198

Deflection w (mm) 2.032 1.907 1.783 1.664 1.547 1.436 1.330 1.228 1.218 1.209 1.199 1.189 1.179

To analyze the trend of deflection values of rectangular cantilever thin plates as a
function of My values, the data from Table 2 is represented graphically in Figure 6. It can
be observed that the curve of deflection values approximates two intersecting straight
lines with different slopes, intersecting at the applied moments of Mx = 100 N·m and
My = 33 N·m. When My > 33 (i.e., µMx), the deflection values w approximately decrease
linearly with an increase in My, showing minimal variation. Conversely, when My < 33 (i.e.,
µMx), the deflection values w approximately increase linearly as My increases negatively.
Moreover, moments are applied as shown in Figure 4 and when My = µMx, the cantilever
thin plate bends in a cylindrical form, with the generatrices of the cylinder parallel to the
Y-axis, as shown in Figure 7. The deflection value under these conditions can be determined
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with Equation (8) to obtain an analytical solution. The result calculated from Equation (8)
is 1.217 mm, consistent with the simulation results (with an error of only 1%).
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3.1.2. Effect of Linear Variation of Moments on the Bending Deformation of Rectangular
Cantilever Plates

To analyze the influence of variations in moments Mx and My on deflection values,
data from Table 1 was utilized as a basis to investigate the trend of deflection changes with
proportional variations in Mx and My. The Mx and My in Table 3 are half those of the
corresponding Mx and My in Table 1, as determined using finite element software to obtain
the deflection values of the cantilever thin plate, as shown in Table 1. It was observed
that the deflection values decreased by half compared to the values in Table 1. Through
multiple analyses, it has been understood that, within the yield limit, when the applied
moments Mx and My are varied linearly, the deflection values also exhibit a linear change
in the same direction.

Table 3. Deflection values of cantilever plate bending deformation when moments are reduced
by half.

Test Code 1 2 3 4 5 6 7 8 9 10 11 12 13

Mx (N·m) 50 50 50 50 50 50 50 50 50 50 50 50 50
My (N·m) −99 −82.5 −66 −49.5 −33 −16.5 0 16.5 33 49.5 66 82.5 99

Deflection w (mm) 1.016 0.953 0.892 0.832 0.774 0.716 0.665 0.614 0.609 0.604 0.599 0.595 0.59
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As demonstrated in Figure 6, after determining the deflection value at the inter-
section point using Equation (8), the deflection values under any moment can be as-
certained by simply calculating the slopes of these two curves. To enhance calcula-
tion precision, the endpoints of the two lines in Figure 6 can be considered, namely, at
My = 6µMx and My = −6µMx. The deflection value of the two endpoints are denoted as
w(Mx,−6µMx) and w(Mx, 6µMx). The slope of the two lines in Figure 6 can be expressed
as

[
w(Mx,−6µMx)− Mx

2D ·L2
]
/(−6µMx − µMx) and

[
w(Mx, 6µMx)− Mx

2D ·L2
]
/(6µMx − µMx)

respectively. The deflection values under any moment can subsequently be calculated
using Equations (11) and (12).

For My ≤ µMx, it is derived as Equation (11).

w =
w·(Mx,−6µMx)− Mx

2·D ·L2

−7µMx
× (My − µMx) +

Mx

2D
·L2 (11)

For My > µMx, it is formulated as Equation (12).

w =
w·(Mx, 6µMx)− Mx

2·D ·L2

5µMx
× (My − µMx) +

Mx

2·D ·L2 (12)

Here, Mx, My are the uniformly distributed equivalent bending moments loaded on

the four free edges as shown in Figure 4, D is bending stiffness, D = E·t3

12(1−µ2)
, µ is Poisson’s

ratio, E is modulus of elasticity, L is the length of the cantilever plate, and t is the thickness
of the cantilever plate.

Deflection w in Table 2 are also calculated according to Equations (11) and (12). The
maximum error between the calculation results and the simulation results is only 1.65%,
which reveals that formula Equations (11) and (12) are reliable.

Although the forms of Equations (11) and (12) are simple, it was impossible to obtain
the maximum deflection value of a rectangular cantilever thin plate with the two equa-
tions. The boundary conditions of the free edges of the cantilever plate are asymmetric,
which results in complex analytical solutions for the deflection values (w(Mx,−6µMx)
and w(Mx,−6µMx)) at both endpoints of the straight line. How to obtain the value of
w(Mx,−6µMx) and w(Mx,−6µMx) has become the key to deflection values under any
moment. Given that the finite element method can handle such complex boundary con-
ditions and provide stable numerical solutions, the finite element method is employed to
obtain the deflection value at these endpoints.

However, the finite element analysis method has limitations and computational com-
plexity, such as its results being affected by the accuracy and type of mesh division. A mesh
type that is too rough may not capture the details of the structure, leading to inaccurate
results, while a mesh type that is too fine usually requires a large amount of computing re-
sources, such as memory and processor resources, which result in high computational costs
and long time. Therefore, when the finite element method is applied to obtain the solution
of w(Mx,−6µMx) and w(Mx, 6µMx), we pay more attention to analyze the influencing
factors of w(Mx,−6µMx) and w(Mx, 6µMx), and the influence laws, in order to obtain a
simple, convenient, and universal mathematical solution model.

3.2. Effect of Cantilever Dimensions on Deformation
3.2.1. Effect of Plate Dimension Ratio (W/L) on Cantilever Plate Bending Deformation

Equations (11) and (12) can be utilized to calculate the deflection values of a cantilever
plate with dimensions 400 mm × 400 mm × 10 mm under any applied moments. The
applicability of these equations when the width of the plate varies is a question that
warrants investigation. Accordingly, this paper analyzes the pattern of deformation of
cantilever plates as the W/L ratio changes.

A constant cantilever length of L = 400 mm and thickness of t = 10 mm were selected.
The width W was varied across nine series: 80 mm, 100 mm, 200 mm, 300 mm, 400 mm,
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500 mm, 600 mm, 700 mm, and 800 mm, resulting in nine plates in total. Each plate was
subjected to the moments listed in Table 1 for simulation analysis, yielding the deflection
values as shown in Table 4. To depict the pattern of change, the data from Table 4 is
graphically represented in Figure 8. It is observed that for each specification of the plate,
the variation pattern of deflection under applied moments is consistent with that shown in
Figure 6, characterized by two intersecting lines of different slopes at the 8th point (applied
moments: Mx = 100 N·m, My = µMx = 33 N·m). The only difference is the slope of the
lines, which varies with the plate dimension. The W/L ratio change results in the change
of its bending stiffness D, which cause different slopes of straight lines. From Table 4, it can
be seen that when W, the width of the plate changes linearly, the deflection of the plates
does not show a linear change pattern, though the plates are subjected the moments of
the same magnitude. This can also be seen from the non-uniform changes of the slopes of
each straight line in Figure 8. It can be concluded that the bending stiffness of a rectangular
cantilever thin plate is not linearly related to the variation of its dimension. The nonlinear
change poses difficulties in solving the problem. It is also noted that irrespective of the
changes in plate W/L ratio, as long as the condition My = µMx is met, Equation (8) can be
used to obtain an analytical solution for the bending deformation of the cantilever plate
under such moments. As long as the deflection values w(Mx,−6µMx) and w(Mx, 6µMx)
at the endpoints of the straight line are obtained, the deflection values of these cantilever
plates can be calculated with Equations (11) and (12).

Table 4. Deflection Values of Cantilever Plates with Different Width Dimensions.

Test Code 1 2 3 4 5 6 7 8 9 10 11 12 13

Mx (N·m) 100 100 100 100 100 100 100 100 100 100 100 100 100
My (N·m) −198 −165 −132 −99 −66 −33 0 33 66 99 132 165 198

w80 (mm) 2.159 2.030 1.896 1.762 1.628 1.495 1.361 1.228 1.100 0.972 0.843 0.715 0.587
w100 (mm) 2.135 2.005 1.875 1.745 1.616 1.486 1.357 1.228 1.107 0.986 0.864 0.743 0.621
w200 (mm) 2.043 1.924 1.806 1.687 1.570 1.456 1.341 1.228 1.144 1.059 0.974 0.890 0.805
w300 (mm) 2.020 1.901 1.783 1.667 1.553 1.442 1.334 1.228 1.182 1.136 1.089 1.043 0.997
w400 (mm) 2.032 1.907 1.783 1.664 1.547 1.436 1.330 1.228 1.218 1.209 1.199 1.189 1.179
w500 (mm) 2.050 1.918 1.788 1.664 1.544 1.431 1.327 1.228 1.250 1.271 1.293 1.315 1.336
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The challenge in calculating deflection values using Equations (11) and (12) arise
from the determination of the slopes in Figure 7. This challenge can be transformed
into the problem of calculating the deflection values at the endpoints of the two lines,
specifically at My = −6µMx and My = 6µMx, denoted as w·(Mx,−6µMx), w·(Mx, 6µMx).
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These deflection values must be obtained through finite element analysis for each instance.
Identifying a pattern in the variation of these deflection values with changes in plate
dimensions would resolve the issue of computing the deflection for a cantilever plate with
a length of 400 mm and a thickness of 10 mm.

To discern the pattern of change in the deflection values at the endpoints of the lines
depicted in Figure 8 with varying plate dimensions, 23 cantilever plates were selected.
These plates have a constant length of L = 400 mm, a thickness of t = 10 mm, and its
W/L ratio is selected in the range of 0.1 ≤ W/L ≤ 10 according to the actual engineering
applications. Considering the uniformity of distribution, the specific width is determined
as 40 mm, 60 mm, 80 mm, 100 mm, 200 mm, 300 mm, 400 mm, 500 mm, 600 mm, 700 mm,
800 mm, 900 mm, 1000 mm, 1200 mm, 1400 mm, 1600 mm, 1800 mm, 2000 mm, 2400 mm,
2800 mm, 3200 mm, 3600 mm, 4000 mm.

After applying torques of Mx = 100 N·m and My = 198 N·m, as well as Mx = 100 N·m
and My = −198 N·m, to these 23 groups of cantilever plates, the simulation results for
deflection values are shown in Table 5. The variation in deflection values as a function of
the plate dimension ratio (W/L) is depicted in Figure 9. The curve labelled f1(x) illustrates
the trend in deflection values with the plate dimension ratio (W/L) when a torque of
Mx = 100 N·m and My = −198 N·m is applied to the cantilever plates; similarly, the curve
labelled f2(x) shows the trend in deflection values with the plate dimension ratio (W/L)
when a torque of Mx = 100 N·m and My = 198 N·m is applied.

Table 5. Deflection values under different plate dimension ratios.

x (W/L) 0.1 0.15 0.2 0.25 0.5 0.75 1 1.25

f 1(x) (mm) 2.230 2.195 2.159 2.136 2.043 2.02 2.032 2.050
f 2(x) (mm) 0.52 0.552 0.586 0.621 0.805 0.997 1.179 1.336

x (W/L) 1.5 1.75 2 2.25 2.5 3 3.5 4

f 1(x) (mm) 2.050 2.048 2.022 1.984 1.938 1.839 1.774 1.743
f 2(x) (mm) 1.460 1.552 1.617 1.662 1.691 1.722 1.734 1.736

x (W/L) 4.5 5 6 7 8 9 10

f 1(x) (mm) 1.727 1.700 1.705 1.694 1.683 1.670 1.656
f 2(x) (mm) 1.735 1.732 1.725 1.715 1.705 1.694 1.683
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From Table 5 and Figure 9, it can be seen that for the curve f1(x), as the plate dimension
ratio (W/L) increases, the deflection value shows a trend of decreasing (0.1 ≤ W/L ≤ 0.75),
increasing (0.75 ≤ W/L ≤ 1), decreasing (1 ≤ W/L ≤ 5), and finally slowly decreasing
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(5 ≤ W/L ≤ 10); For the curve f2(x), as the plate dimension ratio (W/L) increases, the de-
flection value shows a trend of first increasing (0.1 ≤ W/L ≤ 4) and then slowly decreasing
(4 ≤ W/L ≤ 10). It becomes apparent that the relationship between the plate dimension
ratio (W/L) and deflection values is not linear. The data from Table 5 were fitted using MAT-
LAB (the version used in the study is matlab2013a) to derive formulas for calculating deflec-
tion values, presented as Equations (13) and (14). Equation (13) represents the formula for
calculating deflection values under the influence of Mx = 100 N·m and My = −198 N·m,
while Equation (14) for the influence of Mx = 100 N·m and My = 198 N·m.

f1(x) = −5.143×10−7x9+3.127×10−5x8 − 7.896×10−4x7+1.082×10−2x6 − 8.78 × 10−2x5+
4.284 × 10−1x4 − 1.214x3 + 1.816x2 − 1.264x + 2.347

(13)

f2(x) = −8.312 × 10−7x9 + 4.175 × 10−5x8 − 8.942 × 10−4x7 + 1.062 × 10−2x6 − 7.603 × 10−2x5

+3.306 × 10−1x4 − 8.183 × 10−1x3 + 8.685 × 10−1x2 + 3.897 × 10−1x + 2.347
(14)

Here, x represents the dimension ratio (W/L).
From the foregoing analysis, for cantilever plates with a length of L = 400 mm, a

thickness of t = 10 mm, and 0.1 ≤ W/L ≤ 10, the deflection values under any applied
torque can be calculated using Equations (15) and (16).

When My ≤ µMx, it is expressed as Equation (15).

w =
f1(

W
L )·Mx

100 − Mx
2D ·L2

−7µMx
× (M y − µMx) +

Mx

2D
·L2 (15)

when My > µMx, it is articulated as Equation (16).

w =
f2(

W
L )·Mx

100 − Mx
2D ·L2

5µMx
× (M y − µMx) +

Mx

2D
·L2 (16)

3.2.2. Effect of Plate Thickness (t) on the Deformation of Cantilever Plates

To analyze the influence of plate thickness (t) on the deformation pattern of cantilever
plates, the dimensions of the plate surface (L, W) were held constant, while the thickness (t)
dimension values were varied to examine the trend in deflection changes.

Table 6 presents data for plates with dimensions L×W× t of 400 mm × 600 mm × 10 mm
and 400 mm × 600 mm × 12 mm. Using ABAQUS, the deflection values under three sets
of torques were analyzed. The obtained deflection values of the cantilever thin plates are
shown in Table 6. From Table 6, it can be observed that when the plate dimensions remain
unchanged and the applied torques are the same, the deflection values of the cantilever
plates are inversely proportional to the cube of their thickness dimension ratios.

Table 6. Variation of deflection with proportional changes in plate thickness.

Applied Torque 400 mm × 600 mm × 10 mm 400 mm × 600 mm × 12 mm ω10
ω12

(
12
10

)3

Mx (N·m) My (N·m) Deflection w10 (mm) Deflection w12 (mm)

100 −198 2.0503 1.193 1.719 1.728
100 33 1.228 0.7107 1.728 1.728
100 198 1.46 0.845 1.728 1.728

Thus, after obtaining the bending deformation deflection of a cantilever plate at a
certain thickness, this pattern can be used to determine the deflection values for any
thickness dimension under the same plate dimensions.

3.2.3. Effect of Proportional Changes in Plate Dimensions on the Deformation of
Cantilever Plates

Plates with dimensions L × W × t of 400 mm × 300 mm × 10 mm and 600 mm ×
450 mm × 10 mm were considered, where the ratio of plate dimensions for these two plates
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is 1.5. The values of torques Mx, My, and the deflection values of the cantilever thin plates
obtained through simulation are presented in Table 7. It is evident that, when the thickness
remains constant and the applied torques are identical, the deflection values of cantilever
plates with proportionally varied plate dimensions are approximately directly proportional
to the square of their dimension ratios.

Table 7. Variation in deflection values with proportional changes in plate dimensions.

Applied Torque Cantilever Plate 400 mm × 300 mm Cantilever Plate 600 mm × 450 mm ω600
ω400

(
600
400

)2

Mx (N·m) My (N·m) Deflection w400 /mm Deflection w600 /mm

100 −198 2.020 4.528 2.242 2.25
100 33 1.228 2.764 2.251 2.25
100 198 0.997 2.251 2.258 2.25

4. Semi-Analytical Model for Rectangular Cantilever Plates

From the preceding analysis, it is understood that based on a cantilever with dimen-
sions L = 400 mm and thickness t = 10 mm, by utilizing Equations (8), (15) and (16) as
a foundation and through various proportional relationships, the bending deformation
deflection values of cantilever plates under any size and any applied torque can be deter-
mined. The semi-analytical solution model for cantilever plates under the effect of residual
stresses is summarized from the analysis process as follows.

Let the geometric dimensions of the cantilever plate be L × W × t. L is the length of
the cantilever, W is the width of the cantilever plate, and t is the thickness of the cantilever
plate. By using Equations (1) and (2) to equate residual stresses and obtaining equivalent
torques Mx and My, their bending deformation deflections can be determined based on the
size relationship between µMx and My, using Equations (17) and (18).

When Mx > 0 and My ≤ µMx, it is derived as Equation (12).

w =
f1(

W
L )·Mx

100 ·
(

L
400

)2
·
(

10
t

)3
− Mx

2D ·L2

−7µMx
× (My − µMx) +

Mx

2D
·L2 (17)

When Mx > 0 and My > µMx, it is derived as Equation (13).

w =
f2(

W
L )·Mx

100 ·
(

L
400

)2
·
(

10
t

)3
− Mx

2D ·L2

5µMx
× (My − µMx) +

Mx

2D
·L2 (18)

Notes that In Equations (12) and (13), if Mx < 0, the signs of Mx and My should be
reversed.

In the formulas,

f1(x) = −5.143 × 10−7x9 + 3.127 × 10−5x8 − 7.896 × 10−4x7 + 1.082 × 10−2x6 − 8.78 × 10−2x5

+4.284 × 10−1x4 − 1.214x3 + 1.816x2 − 1.264x + 2.347 (x = W/L)

f2(x) = −8.312 × 10−7x9 + 4.175 × 10−5x8 − 8.942 × 10−4x7 + 1.062 × 10−2x6 − 7.603 × 10−2x5

+3.306 × 10−1x4 − 8.183 × 10−1x3 + 8.685 × 10−1x2 + 3.897 × 10−1x + 2.347 (x = W/L)

D =
E·t3

12·(1 − µ2)

Here, D represents the bending stiffness, µ is the Poisson’s ratio, E is the modulus of
elasticity, and t is the thickness of the cantilever plate.

To verify the accuracy of the semi-analytical solution model previously discussed,
simulation analysis was conducted using ABAQUS for a cantilever plate with the following
dimensions: length L = 650 mm, width W = 880 mm, and thickness t = 15 mm, subjected
to torques Mx = 62 N·m and My = −54 N·m. The deflection value was calculated to be
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w = 0.801 mm using Equation (17), where E is set as 70.3 GPa and µ as 0.33. The ABAQUS
simulation results, depicted in Figure 10, show a maximum deflection value of 0.784 mm.
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The discrepancy between the semi-analytical solution model and the finite element
simulation analysis results is 2.17%, proving the correctness and precision of the proposed
semi-analytical model.

5. Machining Deformation Solution and Experimental Verification for T-Shaped Weak
Stiffness Thin-Walled Component

There are many factors that affect the machining deformation of aviation structural
components, such as blank stress, machining stress, clamping conditions, material charac-
teristics, and cutting path and so on. Complex coupling effects exists among these factors,
and the deformation mechanism is complex. Residual stress is the most prominent impact
factors on the machining deformation of structural components [28]. Nevertheless, it is
necessary to control the various influencing factors during the experimental process to
ensure the accuracy of the experimental results.

5.1. Specimen Preparation and Initial Residual Stress Testing

(1) Specimen Preparation

The experimental specimens were fabricated from 7075-T7451 aluminium alloy pre-
stretched plates, cut from a 50 mm thick 7075-T7451 aluminium alloy pre-stretched large
plate. Two specimens were prepared. One was with dimensions of 400 mm × 300 mm × 50 mm,
milled into a T-shaped component as illustrated in Figure 11 for verification purposes. The
other was 200 mm × 200 mm × 50 mm, designated for the determination of initial residual
stresses.
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(2) Determination of Initial Residual Stress

The initial residual stresses of the specimen, in both the length and width directions,
were measured using the modified layer removal method proposed in reference [29]. This
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method is simple, practical, and consistent with the results obtained by the crack compliance
method. Four strain gauges were affixed to the bottom of the specimen, and the UT7110
static strain gauge from Wuhan YOUTAI Electronic Technology Co., Ltd. (Wuhan, China),
was employed to detect and record the strain data following each layer’s milling.

Layer milling was conducted on the top of the specimen using a 50 mm diameter face
milling cutter, with each test layer milled to a thickness of 2 mm in two phases: rough
milling to a depth of 1.8 mm, and finish milling to 0.2 mm, at a spindle speed of 4000 rpm
and a feed rate of 1000 mm/min. A total of 15 layers, cumulating to 30 mm, were milled
from the specimen. After each layer was milled, the workpiece was released, and a 2-min
wait ensued to allow the strain gauge readings to stabilize before data recording. The
residual stress distribution within the material of the workpiece was ascertained after
processing the strain data. The procedure for detecting residual stress is depicted in
Figure 12, and the experimentally determined residual stresses are presented in Figure 13.
Curve “X-direction” refers to the residual stress in X direction shown in Figure 11 at
different thickness of the specimen, while Curve “Y-direction” refers to the residual stress
in Y direction shown in Figure 11 at different thickness of the specimen.

Metals 2024, 14, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 11. T-shaped component. 

(2) Determination of Initial Residual Stress 
The initial residual stresses of the specimen, in both the length and width directions, 

were measured using the modified layer removal method proposed in reference [29]. This 
method is simple, practical, and consistent with the results obtained by the crack compli-
ance method. Four strain gauges were affixed to the bo om of the specimen, and the 
UT7110 static strain gauge from Wuhan YOUTAI Electronic Technology Co., Ltd.(Wuhan, 
China), was employed to detect and record the strain data following each layer’s milling. 

Layer milling was conducted on the top of the specimen using a 50 mm diameter face 
milling cu er, with each test layer milled to a thickness of 2 mm in two phases: rough 
milling to a depth of 1.8 mm, and finish milling to 0.2 mm, at a spindle speed of 4000 rpm 
and a feed rate of 1000 mm/min. A total of 15 layers, cumulating to 30 mm, were milled 
from the specimen. After each layer was milled, the workpiece was released, and a 2-min 
wait ensued to allow the strain gauge readings to stabilize before data recording. The re-
sidual stress distribution within the material of the workpiece was ascertained after pro-
cessing the strain data. The procedure for detecting residual stress is depicted in Figure 
12, and the experimentally determined residual stresses are presented in Figure 13. Curve 
“X-direction” refers to the residual stress in X direction shown in Figure 11 at different 
thickness of the specimen, while Curve “Y-direction” refers to the residual stress in Y di-
rection shown in Figure 11 at different thickness of the specimen. 

  

Figure 12. Initial Residual Stress Detection Diagram. Figure 12. Initial Residual Stress Detection Diagram.

Metals 2024, 14, x FOR PEER REVIEW 17 of 21 
 

 

  
Figure 13. Initial Residual Stress of the Specimen. 

5.2. Determination of Milling Process Parameters 
The milling cu er selected was a HEYE M2Al 4-flute alloy cu er produce by HEYE 

SPECIAL STEEL CO.,LTD.(Shijiazhuang, China) specifically designed for aluminium ap-
plications, featuring a 20 mm diameter, a 50 mm cu ing edge length, and a helix angle of 
30°. The parameters for the milling process are as follows. 

For rough milling, the parameters included a spindle speed of 𝑛 = 3000 rpm, a feed 
rate of 𝐹 = 1000 mm/min, a depth of cut 𝑎 = 5 mm, and a milling width 𝑎 = 15 mm. 
For fine milling, the parameters were set to a spindle speed of 𝑛 = 3000 rpm, a feed rate 
of 𝐹 = 120 mm/min, a depth of cut 𝑎 = 0.5 mm, and a milling width 𝑎 = 15 mm. 

Throughout the milling process, as the material is continuously removed, the equi-
librium state is disturbed, necessitating the component to undergo deformation to main-
tain balance. Insufficient clamping rigidity can lead to continuous deformation of the com-
ponent during machining, resulting in over-cu ing or under-cu ing, and thus affecting 
the dimensional accuracy of the component. Hence, the choice of clamping scheme signif-
icantly influences the deformation of the component. To counteract this, a clamping 
method that securely holds all four sides is adopted to improve clamping rigidity, thereby 
minimizing the deformation caused by material removal during machining and prevent-
ing the occurrence of over-cu ing and under-cu ing. 

5.3. Application of Residual Stresses 
By comparison analysis Using ABAQUS software, it is found that when the ribs are 

thin, the internal residual stress plays a minimal role to the overall deformation of the 
component. The deformation of the T-shaped component as shown in the Figure 11 is 
mainly caused by the residual stress distributed at the bo om of the component. The con-
tribution of the internal residual stress of the ribs to the overall deformation is less than 
1%, which can be ignored. Thus, to simplify calculations, residual stresses are applied only 
to the web plate. In the X-direction, residual stresses are applied as indicated by the red 
stress curve in Figure 13. Similarly, in the Y-direction, the residual stresses are applied as 
indicated by the black stress curve in Figure 13. 

The same milling process is employed for both the top and bo om surfaces to ensure 
a consistent distribution of residual stresses. According to the milling residual stress back-
propagation (BP) neural prediction model provided in the literature [5], the equivalent 
residual stress value in the feed direction is −85.83 MPa, and perpendicular to the feed 
direction, it is −66.87 MPa. Consequently, identical milling-induced residual stresses are 

Figure 13. Initial Residual Stress of the Specimen.

5.2. Determination of Milling Process Parameters

The milling cutter selected was a HEYE M2Al 4-flute alloy cutter produce by HEYE
SPECIAL STEEL CO, LTD (Shijiazhuang, China) specifically designed for aluminium
applications, featuring a 20 mm diameter, a 50 mm cutting edge length, and a helix angle
of 30◦. The parameters for the milling process are as follows.
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For rough milling, the parameters included a spindle speed of n = 3000 rpm, a feed
rate of F = 1000 mm/min, a depth of cut ap = 5 mm, and a milling width ae = 15 mm.
For fine milling, the parameters were set to a spindle speed of n = 3000 rpm, a feed rate of
F = 120 mm/min, a depth of cut ap = 0.5 mm, and a milling width ae = 15 mm.

Throughout the milling process, as the material is continuously removed, the equilib-
rium state is disturbed, necessitating the component to undergo deformation to maintain
balance. Insufficient clamping rigidity can lead to continuous deformation of the com-
ponent during machining, resulting in over-cutting or under-cutting, and thus affecting
the dimensional accuracy of the component. Hence, the choice of clamping scheme sig-
nificantly influences the deformation of the component. To counteract this, a clamping
method that securely holds all four sides is adopted to improve clamping rigidity, thereby
minimizing the deformation caused by material removal during machining and preventing
the occurrence of over-cutting and under-cutting.

5.3. Application of Residual Stresses

By comparison analysis Using ABAQUS software, it is found that when the ribs are
thin, the internal residual stress plays a minimal role to the overall deformation of the
component. The deformation of the T-shaped component as shown in the Figure 11 is
mainly caused by the residual stress distributed at the bottom of the component. The
contribution of the internal residual stress of the ribs to the overall deformation is less than
1%, which can be ignored. Thus, to simplify calculations, residual stresses are applied only
to the web plate. In the X-direction, residual stresses are applied as indicated by the red
stress curve in Figure 13. Similarly, in the Y-direction, the residual stresses are applied as
indicated by the black stress curve in Figure 13.

The same milling process is employed for both the top and bottom surfaces to ensure
a consistent distribution of residual stresses. According to the milling residual stress back-
propagation (BP) neural prediction model provided in the literature [5], the equivalent
residual stress value in the feed direction is −85.83 MPa, and perpendicular to the feed
direction, it is −66.87 MPa. Consequently, identical milling-induced residual stresses are
applied within the top and bottom 0.12 mm thick surface layers of the web plate, with
−85.83 MPa in the X-direction and −66.87 MPa in the Y-direction.

5.4. Calculation of Bending Deformation

Using Equations (1) and (2), the equivalent torque per unit length on the cantilever
plate in the Y-direction was determined to be 93.20 N·m, and in the X-direction, it was
40.38 N·m, i.e., Mx = 40.38 N·m and My = 93.20 N·m. By employing Equation (18),
the bending deformation of the cantilever plate was calculated to be wC = 0.696 mm.
Furthermore, using Equation (10), the bending deformation of the T-beam was calculated
to be wT = 0.235 mm. Therefore, the total bending deformation of the T-shaped component
is calculated as w = wT + wC = 0.931 mm.

The ABAQUS simulation resulted in a deformation of 0.912 mm, as depicted in
Figure 14, with a discrepancy of 0.019 mm between the calculated and simulated deformations.

5.5. Experimental Verification

The cutting experiment was conducted on the Shenyang VMC580B vertical machining
centre produced by GENERTEC SHENYANG MACHINE TOOL(Shenyang, China). After
milling the specimen into the T-shaped component as shown in Figure 11, the deformation
of the large flat surface (bottom surface) of the T-shaped component was measured using the
MQ8106 Coordinate Measuring Machine (CMM) produced by Xi’an Edwards (Xi’an, China),
with a measurement accuracy of 0.0025 mm over 250 mm, as depicted in Figure 15. The
experimentally measured flatness error of the bottom surface of the T-shaped component
was 0.920 mm. This value differs from the theoretical calculation by only 0.011 mm, an
error margin of merely 1.2%, indicating a very close match. This outcome confirms the
accuracy of the semi-analytical solution model established for T-shaped components.
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6. Conclusions and Prospect

This paper begins with the structural characteristics of T-shaped components, inves-
tigates the problem of solving for bending deformation of T-shaped section components
under the influence of residual stresses, and arrives at the following conclusions.

(1) For T-shaped components with relatively thin webs, the calculation of bending de-
formation under residual stresses can be decomposed into the solutions for bending
deformation of T-beams and cantilever plates. The sum of these deformations repre-
sents the total bending deformation of the T-shaped component.

(2) The small deflection bending problem of rectangular cantilever thin plates belongs
to linear elastic problems. Its maximum deflection value is related to its geometric
dimension and moments subjected. For a rectangular cantilever plate with certain
geometric dimension, its deflection value can be solved according to w = Mx

2D x2

when the uniformly distributed moments meet My = µMx. While My ̸= µMx, the
deflection w exhibits a linear variation pattern to My. And the slopes are different
when My > µMx and My < µMx. The deflection w of rectangular cantilever thin
plate shows a non-linear variation patterns to the variation of its dimension ratio
(W/L).

(3) An analysis of the impact of residual stresses within the cantilever plate on its dimen-
sional changes and bending deformation has been conducted. This analysis has led to
the establishment of a semi-analytical predictive model for the bending deformation
of rectangular cantilever plates.
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(4) Experimental validation has confirmed that the semi-analytical solution model devel-
oped for T-shaped structural members can accurately calculate the bending deforma-
tion of T-shaped thin-walled components under the action of residual stresses. The
model demonstrates high solution accuracy and possesses significant engineering
application value.

The study focused mainly on the bending deformation of cantilever thin plate and
T-shaped aviation aluminium alloy components under residual stress. In the future, the
coupling effects between residual stress and other factors, such as temperature changes
and load effects, should be considered. Research on coupling effects would prompt the
comprehensive understanding of the bending deformation behavior of aviation aluminum
alloy components.
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