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Abstract: In this work, the impact of ErF3 submicroparticles on the microstructure and mechanical
properties of the A359 alloy was studied. ErF3 particles provided a homogeneous structure in castings
produced via the casting method. The modifying effect of ErF3 particles on the structure of Al–Si
alloys is realized through the mechanism of restraining the crystallization front and is achieved
through the reduction in the formation of clusters of iron phases and eutectic lamellar silicon. It was
found that the addition of 1 wt% ErF3 to the A359 alloy leads to a decrease in the average grain size
by 21% and an increase in the yield strength by 14%, in tensile strength by 16%, in the microhardness
of Al15(FeMn)3Si2 phase by 34% and in the Al15(FeMnCr)3Si2 phase by 7%. The heat treatment of the
A359 alloy with ErF3 particles increased the yield strength by 36% and the tensile strength by 34%.
The absence of an effect of ErF3 particles on the hardness values of the A359 alloy, as well as on the
fracture process of the A359 alloy, was observed. The negative influence of ErF3 particle agglomerates
and clusters on the strength characteristics of the investigated alloys was observed. Approaches for
further exploring the potential of ErF3 particles as a strengthening phase in cast aluminum alloys of
the Al–Si system were proposed.

Keywords: casting; aluminum; silicon; rare earth elements; erbium; erbium fluoride; dispersion
strengthening; heat treatment; structure; strength

1. Introduction

Casting is a versatile method of industrial aluminum production, widely utilizing
Al–Si alloys due to their high liquid fluidity and specific strength, coupled with low cost [1].
Despite the advantages of Al–Si alloys, there is a need to enhance the mechanical properties
of cast aluminum alloys for weight reduction, increased reliability, and fuel efficiency
in the designs of transportation vehicles, including cars and aviation. High mechanical
properties in aluminum alloys are achieved through microalloying (up to 0.5 wt%) with
scandium, which provides an increase in yield strength of up to 80% and tensile strength of
up to 45% [2–4], through the modification of the grain structure [5] and through dispersion
strengthening [6]. Due to the high cost of Sc in deformable Al–Mg alloys, its concentration
is reduced by adding cheaper Zr [7–13]. However, the combination of Sc and Zr is not
effective in Al–Si cast alloys [14], and the modifying effect of Sc is only revealed at high
concentrations (up to 1 wt%) as part of it enters the composition of the silicon eutectic
and the rest forms the AlSc2Si2 phase, which initiates the growth of needle-like iron-rich
Al5FeSi phase [15–17]. Therefore, the addition of 0.4–0.8% Sc increases the yield strength
by 8–20% and the ultimate tensile strength by 11–35% in both as-cast and heat-treated
conditions [18–20].
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Currently, various approaches are being developed for the alloying of Al–Si alloys
and other cast aluminum alloys with rare-earth metals (REMs), such as zirconium [21,22],
cerium [23], lanthanum [24], and erbium [25–28], with similar mechanisms to scandium
that affect the strength properties of aluminum alloys. The most interesting one is the use of
erbium due to its market price being 32 times lower than scandium and its ability to form
an Al3Er phase that has similar parameters of a crystal lattice to aluminum [29]. This phase
is expected to effectively refine the alloy structure by creating additional crystallization
centers. Due to the differences in melting temperatures between aluminum (660 ◦C) and
erbium (1529 ◦C), master alloys based on aluminum (typical for all REMs) are utilized for
erbium’s introduction to alloys. These master alloys are produced via methods, such as the
direct alloying or hydriding of REMs [30], using metallic erbium as a raw material. Erbium
is found in natural minerals in the form of an oxide [31], which, through an intermediate
compound of fluoride or chloride, is synthesized into metallic erbium.

However, it is possible to introduce ex situ micro- and nanoparticles into the metal
melt to improve the mechanical properties of Al–Si alloys. Depending on their type and
size, such particles can have a modifying [32], strengthening [33,34], or combined [35] effect
on the structure and physicomechanical properties of aluminum–silicon alloys. Previous
studies have shown positive effects of scandium fluoride particles on the mechanical prop-
erties of the A356 alloy [36], including simultaneous increases in yield strength, tensile
strength, and ductility. These mechanical behavior characteristics are related to significant
differences in physical characteristics (thermal conductivity, electrical conductivity, the
coefficient of the thermal linear expansion (CTLE)) between the matrix and strengthening
particles. The higher the degree of mismatch between the CTLE coefficients of the particles
and matrix, the higher the density of geometrically forced dislocations formed around
the particles during alloy crystallization [36]. The formed dislocations contribute to the
increase in the strength properties of the alloy due to the entanglement of linear defects
and the hindering of their movement under material loading. The CTLE of erbium fluoride
(11 × 10−6 K−1 [37]) is half that of aluminum (23 × 10−6 K−1 [38]), which can positively af-
fect the mechanical properties of Al–Si alloys. The use of erbium fluoride as a strengthening
phase will allow the optimization of the technological process of obtaining high-strength
alloys based on Al–Si, since erbium fluoride is an intermediate product in the production of
metallic erbium (Figure 1). Thus, the aim of this work is to investigate the effect of erbium
fluoride particles on the structure and physicomechanical properties of the aluminum
alloy A359.
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Figure 1. Two methods of obtaining erbium alloys: alloying using the hydrogenation technology
RZM (1–9) or dispersion strengthening with ErF3 particles (1, 2→5–7→9).

2. Materials and Methods

The production of Al–ErF3 master alloy. To produce erbium fluoride, an aqueous
solution of erbium oxynitride was poured into a solution of hydrofluoric acid (HF) in
combination with vigorous stirring.

Er(NO3)3 + 3HF→ ErF3↓ + 3HNO3.
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The resulting solution was washed with distilled water until the pH reached 6–7. The
presence of nitrate ions was determined using a qualitative reaction with diphenylamine.
Filtration was performed using a vacuum Buchner funnel and a “blue ribbon” filter. The
gel-like erbium fluoride was dried in an oven at 70 ◦C for 12 h, followed by annealing in a
furnace at 800 ◦C for 1 h. The resulting erbium fluoride was loaded into a planetary ball
mill with WC balls (3 mm in diameter) at a balls to ErF3 mass ratio of 3:1. Erbium fluoride
was crushed at a frequency of 14 Hz in air for 2 h. An aluminum powder with a purity of
99.7% and an average particle size of 105 µm was added to the ball mill at an Al to ErF3
ratio of 9:1, along with ceramic balls at the same ratio to obtain a homogeneous mixture
of Al–ErF3. Mixing was performed at a frequency of 10 Hz for 4 h, followed by sieving
through a 150 µm mesh. The resulting mixture was pressed into a mold with a diameter of
13 mm at a pressure of 390 MPa.

The Production of Al–Si–ErF3 Alloys. The studied alloys were produced by casting
into a steel mold followed by heat treatment, according to the regime (T6): hardening with
incomplete artificial aging. The industrial aluminum alloy A359 (Al 85.1–91.6%; Si 8–11%,
Mn 0.2–0.5%; etc.) was used as the starting material for the study. In the experiment, 1.71 kg
of the alloy was placed in a graphite–chamotte crucible and melted in a vertical muffle
furnace at a temperature of 780 ◦C with a hold time of 2 h. The crucible with the melt was
moved to an open-type furnace to maintain the temperature. After the mechanical removal
of slag from the melt surface, Al–ErF3 master alloy preheated to 200 ◦C was introduced
into the melt, weighing 190 g (amount of 1 wt%). One minute after the introduction of the
master alloy, the melt was stirred with an original mixing device [39] for 2 min. The melt at
a temperature of 705–720 ◦C was fed into the gate of the original steel coquille [40] heated
to a temperature of 170–190 ◦C (Figure 2). Two castings of a rectangular cross-section of
100 × 150 × 10 mm were cast from one crucible (the gate and feeder areas were not used in
the experiments). The method for obtaining the initial alloy without erbium was similar.
For the heat treatment of the obtained alloys, the castings were placed in a muffle furnace
heated to 450 ◦C. After holding for 1 h, the castings were sharply cooled via immersion
in water heated to 80 ◦C. The cooled castings were placed in a furnace heated to 270 ◦C,
incubated for 4 h and cooled together with the furnace.
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Research methods. The surface morphology of ErF3 particles was investigated using
a scanning electron microscopy (SEM) Quanta 200 3D (the equipment of Tomsk Regional
Core Shared (EqTRCS)). The phase composition and structural parameters of powder were
studied using X-ray diffraction with a Shimadzu XRD-6000 diffractometer (EqTRCS) in Cu
Kα radiation. The quantitative content of phases in the powder was assessed through a
full profile Rietveld analysis using the POWDER CELL 2.4 software and the PDF4+ crystal
structure database. The chemical composition of the alloys was determined using an iCAP
7400 Duo optical emission spectrometer. Samples sized 100 × 10 × 10 mm were cut from
the top and bottom parts of each casting and were then mounted to the chuck of a lathe.
The samples were processed via a diamond turning tool at a low feed rate to obtain fine
chips sized 3 mm. Chips of 1 g were calcined at 800 ◦C for 2 h, followed by dissolution in a
mixture of hydrochloric, hydrofluoric, and nitric acids using a microwave decomposition
system at 180 ◦C. The quantitative content of resulting solutions was analyzed for the
major elements: Al, Si, Fe, Mn, Mg, and Er. Electron microscopic studies of the surface
microstructure and the cross-section of the coated sample, as well as elemental analysis
and fractographic studies of sample fractures after tensile tests were conducted using a
Tescan MIRA 3 LMU scanning electron microscope equipped with an Oxford Instruments
Ultim Max 40 energy-dispersive X-ray spectrometer. The alloy microstructure was studied
through optical microscopy with the application of Metam LV 34 microscope (EqTRCS).
The grain structure of the alloys was investigated through metallographic samples after
electrolytic etching on an Olympus GX 71 (EqTRCS) optical microscope with an Olympus
U-TP530 polarization filter. The investigation of the structure via transmission electron
microscopy (TEM) methods was carried out using a microscope JEOL JEM-2100 microscope
at an accelerating voltage of 300 kV on foils made via ion thinning using an Ion Sliser EM
09100IS system in a vacuum environment at a voltage of 6–8 kV and a tilt angle of 2–4◦.
Brinell hardness and Vickers hardness measurements of alloys were performed in this study.
For the Brinell hardness experiment, a Metolab 703 hardness tester (EqTRCS) was used. A
spherical indenter with a radius of 2.5 mm was used with a force of 62.5 kg and an exposure
time of 10 s. For the Vickers hardness experiment, a Metolab 502 hardness tester (EqTRCS)
was used. A spherical diamond indenter was used with a force of 50 g and an exposure
time of 30 s. Tensile experiments were performed using an Instron 3369 (EqTRCS) universal
electromechanical testing machine at a loading rate of 0.1 mm/min. For each group of
alloys, 6 samples were made. Samples were cut from castings using electroerosion cutting
and flat blades with a length and width of the working part of 25 and 6 mm, respectively; a
thickness of 2 mm; and a rounding radius of 14 mm.

3. Results and Discussion

Figure 3 shows photographs of ErF3 powder particles. The obtained powder consists
of agglomerates of a submicron particle. The sizes of the fine particles are 10–100 µm, and
the sizes of the large particles are 0.3–1.7 mm. The surfaces of the large particles are covered
with particles with a size of 46 ± 31 µm and submicron particles, as seen in Figure 3b.

The mechanical processing of the ErF3 powder in a planetary mill for 20 min leads to
the crushing of the main mass of large particles. The powder is completely sieved through
a sieve with a cell size of 500 µm; the average particle size of erbium fluoride is 90 ± 63 µm,
excluding submicron particles (Figure 4a). Figure 4b shows that mechanical activation
for 2 h allows us to obtain a homogeneous powder composed of erbium fluoride from
individual particles of 0.8 ± 0.3 µm and their agglomerates up to 100 µm.
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Figure 4. SEM micrographs of ErF3 powder after 20 (a) and 120 (b) minutes of grinding in the
planetary mill.

The diffraction pattern of the erbium fluoride powder after 120 min of crushing in
a planetary mill is presented in Figure 5. The result of the decoding of the obtained
diffractogram is presented in Table 1. The obtained powder exhibits an ErF3 phase with a
coherent scattering region size of 18 nm and a microstrain value of 2.2 × 10−3.

Table 1. ErF3 powder diffraction pattern interpretation results.

Phase Volume Fraction, Mas.
%

Lattice
Parameters, Å

CSR Dimensions,
nm

Microdistortions,
∆d/d

ErF3_62
a = 6.3437

18 2.2 × 10−3100 b = 6.8863
c = 4.3935

Note: CSR—coherent scattering regions.
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Figure 5. XRD pattern of ErF3 powder after grinding in the planetary mill for 120 min.

Table 2 illustrates chemical composition in terms of Al, Si, Fe, Mn, Mg, and Er of the
investigated alloys. The composition of the alloys is sufficiently homogeneous throughout
the casting volume. Results show that the alloys correspond to the standard, and the
erbium content in A359 + ErF3 alloy is close to the calculated value (~0.75 wt%).

Table 2. Concentration range of Al, Si, Fe, Mn, Mg, and Er (wt%) of the experimental alloys.

Al Si Fe Mn Mg Er

A359 86.21–91.49 8.65–10.67 0.08–0.13 0.19–0.32 0.18–0.32 –

A359 + ErF3 86.66–90.15 9.55–10.81 0.08–1.09 0.21–0.40 0.18–0.22 0.61–0.81

Figure 6a shows that the microstructure of the A359 alloy before heat treatment
consists of an iron–manganese skeleton Al15(FeMn)3Si2 phase, a needle-like Al5FeSi phase,
an Al2Cu (θ) phase, and primary crystals of Al15(FeMnCr)3Si2 phase in the obtained alloys.
The Al2Cu θ phase is represented by small spherical formations, which do not have a
negative effect on the mechanical properties of the alloy [41]. In the Al–Si system alloys,
a triple eutectic Al–Si–Al5FeSi is formed in areas of high iron concentration [42]. The
Al5FeSi phase initiating cracks is represented as needles in the polished surface and as
elongated plates in the volume [42]. The addition of manganese to Al–Si alloys allows for
the binding of the needle-like phase Al5FeSi into less negative skeletal formations (Chinese
hieroglyphs) Al15(FeMn)3Si2 [41]. When the concentration of manganese exceeds 1% and
iron exceeds 0.8%, primary crystals of Al15(FeMn)3Si2 may form [41]. Chromium or nickel
are introduced as compensators for such compounds. Figure 6f shows that it does not
prevent the formation of primary crystals of Al15(FeMnCr)3Si2 [43]. The resulting alloy
showed a greater homogeneity of the distribution of iron-containing phases on the surface
of grinds compared to the initial alloy, and practically no presence of the primary crystals
of Al15(FeMn)3Si2 was detected.

SEM images of the A359 alloy are shown in Figure 6. The alloy consists of α-Al
crystals (dark areas), silicon (gray areas), and intermetallic phases (light areas): Al5FeSi,
Al15(FeMn)3Si2, Al2Cu, and Al15(FeMnCr)3Si2.
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individual elements (g).



Metals 2023, 13, 1463 8 of 16

The optical micrographs of the alloys (Figure 7) show the α-Al grains (light areas)
and β-phase (dark) silicon. The Al15(FeMn)3Si2 skeletal phase and primary crystals of
Al15(FeMnCr)3Si2 are also detected in the plane of metallographic grinds. In view of the
absence of a pronounced dendritic structure of the obtained alloys, it is difficult to assess
the effect of ErF3 particles on the sizes of α-Al.
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Figure 7. Optical micrographs of A359 and A359 + ErF3 alloys before and after heat treatment:
A359 (a); A359 + ErF3 (b); A359 + (T6) (c); A359 + ErF3 + (T6) (d).

In the plane of thin sections of alloys before heat treatment, the eutectic silicon phase
occupies 20–30% of the section area. The alloy without the addition of erbium trifluoride
shown in Figure 7a. In the alloy there are areas of accumulation of mostly needle-shaped
β-phase silicon with linear size up to 100 µm. The introduction of erbium trifluoride
particles shown in Figure 7b leads to the reduction in size of the β-phase with linear
dimensions up to 30 µm and some rounding of the ends. The β-phase acquires a globular
shape, and its sizes are reduced to 8 ± 5 µm for alloys of both groups as a result of heat
treatment (T6).

Figure 8 shows the grain structure of the studied alloys as a result of electrolytic etching
of metallographic specimen. It is known that during casting in coquille the crystallization
of the melt starts on the walls of the mold. The average grain size of α-Al was 315± 131 µm
in the areas of the A359 alloy castings bordering the coquille. It was found that in similar
areas of A359 + ErF3 alloy castings the average grain size of α-Al was 304 ± 136 µm. Thus,
the introduction of ErF3 particles into the A359 alloy did not lead to a change in the average
grain size in the casting sections bordering the coquille. The maximum grain size of the
studied areas of the A359 alloy castings was achieved in the central part, where the average
grain size of α-Al was 518 ± 215 µm. In similar areas of A359 + ErF3 alloy castings, the
average grain size of α-Al was 412 ± 164 µm. Thus, the introduction of ErF3 particles into
the A359 alloy led to a reduction in the average grain size of α-Al in the central part of
the casting.
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center of the casting (c,d) and the area on the border with the coquille (a,b).

Inoculant particles should have a high affinity for lattice parameters with the crystal-
lizing metal [44] to act as a nucleation site for the effective refinement of the grain structure
of the matrix alloy. Aluminum and silicon have a face-centered cubic lattice, while erbium
fluoride has an orthorhombic lattice. Additionally, another mechanism of particle influence
on the alloy structure is known when particles in contact with each other are located along
the boundaries of the growing grain [45].

Generally, during the crystallization of α-Al grains, the dominant direction of the
propagation of the crystallization front is formed, which can displace intermetallic phases
suspended in the melt from the crystallization region. This effect leads to the formation
of clusters of intermetallic phases, which form areas of reduced strength in the resulting
castings. In turn, submicro- and nanoparticles in the melt can encircle the growing grains,
forming a barrier between the growing aluminum grain and the feeding melt. This inhibits
the crystallization front and promotes the formation of grain nuclei outside the main
crystallization front. Summarizing the results of the study of the microstructure of the
obtained alloys: based on the difference in the crystal lattices of Al and ErF3, ErF3 particles
cannot be effective centers of crystallization, while a high uniformity of the structure of
alloys containing ErF3 particles is noted. It can be concluded that the contribution of ErF3
particles to the structure of Al–Si alloys is to reduce the formation of clusters of iron phases
and eutectic lamellar silicon. Schematically, the implementation of this mechanism is shown
in Figure 9.
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As can be seen from Figure 10, ErF3 particles in the alloy are on the grain boundaries
of α-Al. This fact may be an indirect confirmation of the implementation of the mechanism
of holding back the crystallization front by ErF3 particles. The results of the EDX analysis
of the area shown in Figure 10a are presented in Table 3.

Table 3. Energy dispersive X-ray analysis of the Figures 10a, 13b, and 14a.

Label Al Fe Mn Cr Si Er F Mg C O Cu

1 63.72 1.4 0 0 4.9 12.7 8.88 2.2 1.13 4.17 0.9

2 65.57 13.76 3.94 1.60 12.31 0 0.24 0.14 0.85 0.42 1.17

3 13.04 0.5 0 0 2.18 71.76 6.56 0.13 1.29 4.54 0

4 9.77 0.56 0 0 1.21 64.39 13.69 4.95 1.28 4.15 0
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Figure 10. ErF3 particles on the grain boundaries of alloy A359: an SEM image of the fracture surface
(a) and a TEM image of the alloy (b).

The density of the A359 alloy is 2.73 ± 0.01 g/cm3. The alloy with erbium fluoride
is less homogeneous in density, measuring 2.72 ± 0.03 g/cm3. Figure 6d shows that the
reason for this density is the presence of more pores in the alloy volume. The hardness
and microhardness values of the studied alloys are presented in Table 4. It can be seen that
the hardness value of the A359 alloy increases from 86.3 to 118.6 HB as a result of heat
treatment (T6) and does not depend on the addition of ErF3 particles. In the A359 alloy,
the microhardness value of the Al15(FeMn)3Si2 phase is 107.6 HV. The addition of ErF3
particles to the A359 alloy provides an increase in the Al15(FeMn)3Si2 phase microhardness
from 107.6 to 143.9 HV. At the same time, the heat treatment of the alloy increases the
microhardness values of the Al15(FeMn)3Si2 phase and reduces the particles contribution
to its increase. This dependence correlates with the noted positive effect of ErF3 particles
on the morphology of eutectic silicon before the alloy heat treatment.

Table 4. Hardness and microhardness values of the phases of the investigated alloys.

Alloy HB HV(Al) HV(Si) HV(β(Al5)) HV(αm(Al15)) HV(αm(Al15) + Cr)

A359 86.3 ± 2.6 81.8 ± 6 92.7 ±
12 98.6 ± 6 107.6 ± 23 230 ± 98

A359 + ErF3 84.9 ± 4.2 83.5 ± 6 95.3 ± 8 95.4 ± 6 143.9 ± 29 245 ± 68

A359 (T6) 118.6 ± 3.5 117.8 ±
6

134.7 ±
18 128 ± 8 153.2 ± 14 181 ± 68

A359 + ErF3 (T6) 118.1 ± 4.5 117.3 ±
7 135 ± 13 123 ± 8 163 ± 14 190 ± 55

Note: HB—Brinell hardness; HV—Vickers microhardness of phases; β(Al5)—Al5FeSi; αm(Al15)—Al15(FeMn)3Si2;
αm(Al15) + Cr—Al15(FeMnCr)3Si2.

Figure 11 shows typical stress–strain curves of A359 and A359 + ErF3 alloys before and
after heat treatment. The alloys exhibit typical Al–Si system alloys deformation behavior:
elastic deformation zone prevails over the plastic flow zone, no deformation localization
zone is present, and crack propagation work is minimal. Heat treatment according to
the (T6) regime provides an increase in the maximum stresses of the elastic zone of the
alloys while reducing their plasticity properties. It was found that the effect of erbium
fluoride particles on the deformation behavior of the A359 alloy varied depending on the
structural state of the alloy. The particles in the cast alloy provided a positive effect on
the stress–strain state in the elastic deformation zone and provide an increase in plasticity
properties. The particles in the alloy after heat treatment provided a significant increase in
elastic stresses with a small contribution to the plastic flow work of the material.
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Table 5 shows the mechanical properties of the alloys. According to the results ob-
tained, there is a positive trend in the increase in strength properties of the alloy before and
after heat treatment as a result of the addition of particles. In the A359 alloy, in its cast state,
the addition of 1 wt% ErF3 leads to an increase in the ultimate strength from 168 to 195 MPa
and the relative elongation from 0.7 to 2.3%. In a heat-treated state, the addition of 1 wt%
ErF3 to alloy A359 provides an increase in the yield strength from 197 to 267 MPa and in
the tensile strength from 213 to 286 MPa and increases the maximum strain for failure from
2.5 to 4.3%. The increase in the yield strength values of the A359 alloy can be associated
with the refinement of the average grain size (Figure 8), according to the Hall–Petch law [5].
In turn, the increase in the ductility of A359 + ErF3 alloy can be realized by reducing the
clustering of the iron phase (Figure 7) embrittlement of Al–Si alloys.

Table 5. Mechanical properties of alloys.

Alloy State σ0.2, MΠa σB, MΠa εmax, % δ, %

A359
As-cast

142 ± 7 168 ± 11 3.5 ± 0.8 0.7 ± 0.2

A359 + ErF3 162 ± 8 195 ± 13 4.9 ± 1 2.3 ± 0.3

A359
(T6)

197 ± 6 213 ± 13 2.5 ± 0.4 0.3 ± 0.1

A359 + ErF3 267 ± 7 286 ± 13 4.3 ± 0.4 0.8 ± 0.2

Note: σ0.2—yield strength; σB—ultimate tensile strength; εmax—maximum deformations before failure;
δ—elongation.

Figure 12 shows the fracture surface of the A359 alloys before and after heat treatment.
It was found that a decrease in maximum deformation does not affect the nature of the
fracture. The fracture surface is oriented perpendicularly to the axis of tension, and the
surface morphology is characterized by homogeneous cleavage.

Figure 13b shows that the surface of fracture of the A359 alloy is dotted with cracked
intermetallics Al15(FeMn)3Si and Al15(FeMnCr)3Si (Table 3). The introduction of erbium
fluoride does not affect the fracture behavior of the A359 alloy. The fracture occurs through
the mechanism of the shear facet with the formation of a stream-like microrelief. This
is probably due to the iron-containing intermetallics acting as stress concentrators, and
upon reaching the allowable load, they crack, followed by the fracture of aluminum grains
through the transcrystalline mechanism, which is demonstrated in Figure 13c.



Metals 2023, 13, 1463 13 of 16Metals 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 12. SEM micrographs of the A359 alloy fracture surface before (a) and after (b) heat treatment 
for detecting secondary (left images) and backscattered electrons (right images). 

Figure 13b shows that the surface of fracture of the A359 alloy is dotted with cracked 
intermetallics Al15(FeMn)3Si and Al15(FeMnCr)3Si (Table 3). The introduction of erbium 
fluoride does not affect the fracture behavior of the A359 alloy. The fracture occurs 
through the mechanism of the shear facet with the formation of a stream-like microrelief. 
This is probably due to the iron-containing intermetallics acting as stress concentrators, 
and upon reaching the allowable load, they crack, followed by the fracture of aluminum 
grains through the transcrystalline mechanism, which is demonstrated in Figure 13c. 

  

 

Figure 12. SEM micrographs of the A359 alloy fracture surface before (a) and after (b) heat treatment
for detecting secondary (left images) and backscattered electrons (right images).

Metals 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 12. SEM micrographs of the A359 alloy fracture surface before (a) and after (b) heat treatment 
for detecting secondary (left images) and backscattered electrons (right images). 

Figure 13b shows that the surface of fracture of the A359 alloy is dotted with cracked 
intermetallics Al15(FeMn)3Si and Al15(FeMnCr)3Si (Table 3). The introduction of erbium 
fluoride does not affect the fracture behavior of the A359 alloy. The fracture occurs 
through the mechanism of the shear facet with the formation of a stream-like microrelief. 
This is probably due to the iron-containing intermetallics acting as stress concentrators, 
and upon reaching the allowable load, they crack, followed by the fracture of aluminum 
grains through the transcrystalline mechanism, which is demonstrated in Figure 13c. 

  

 

Figure 13. SEM micrographs of the alloys fracture surface: surface with ferrous intermetallics (a); map-
ping of the area with the cracked Al15(FeMnCr)3Si phase (b); transcrystalline cracking of aluminum
grains (c).

Admittedly, to create metal-matrix composites with enhanced strength properties, it is
necessary to have a uniform distribution of reinforcing particles [30]. Figure 14a shows that
there are areas of accumulation of erbium fluoride on the surfaces of fracture of A359 + ErF3
alloy samples with reduced strength properties. Thus, the introduction of erbium fluoride
with preliminary deagglomeration in aluminum micropowder and mechanical mixing
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using a special mixer does not provide the uniform distribution of particles in the alloy
matrix. There are approaches to using ultrasound treatment of the melt and vibrational
impact during casting to deagglomerate ex situ-introduced particles and increase their
wettability. The influence of ErF3 particles under the complex action of external fields
on the structure and the physico-mechanical properties of the A359 alloy will be further
studied in the future.
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test (a) and EDX spectrum from point 2 (b).

4. Conclusions

The introduction of ErF3 particles results in less accumulation of intermetallic phases
and reduces the linear sizes of eutectic Si particles by ~70% with the formation of a larger
rounding radius on the boundaries. As a result of the heat treatment of the studied alloys,
according to the (T6) mode, the eutectic Si particles acquire a globular shape, and their sizes
are reduced to 8 ± 5 µm for the alloys of both groups. It was found that the modifying
effect of ErF3 particles on the structure of aluminum–silicon alloys is realized through the
mechanism of crystallization front inhibition; it weakly affects the indices of the average
size of dendritic cells and is manifested to reduce the formation of clusters of iron phases
and eutectic lamellar silicon.

It was found that the introduction of 1 wt%ErF3 does not affect the hardness values of
the alloy and the microhardness of the Al, Si, and Al5FeSi phases and leads to an increase
in the microhardness of the Al15(FeMn)3Si2 phase by 34% and the Al15(FeMnCr)3Si2 phase
by 7%. It was found that the addition of 1 wt% ErF3 to the A359 alloy leads to an increase
in the values of yield strength from 142 to 162 MPa and ultimate tensile strength from
168 to 195 MPa. Heat treatment, according to the (T6) mode, leads to a decrease in ductility
by 57% and 65% for the A359 and A359 + ErF3 alloys, respectively. However, the values of
yield strength and ultimate tensile strength increase by 39% and 27%, respectively, in the
A359 alloy and by 65% and 47%, respectively, in the A359 + ErF3 alloy. The introduction
of erbium fluoride does not affect the character of the destruction of the A359 alloy. The
destruction occurs via the shear facet mechanism with the formation of a streaky microrelief.
Iron intermetallics act as stress concentrators, the appearance of which initiates the sample
cracking via the transgranular mechanism. It was noted that the improvement in the
strength properties of the A359 alloy by adding 1 wt% of ErF3 is combined with the negative
effect of its agglomerates and clusters, which cannot be eliminated through preliminary
deagglomeration in aluminum micropowder and melt processing using a mechanical
mixing device. Thus, by ensuring the uniform distribution of ErF3 particles throughout the
material volume, a significant increase in the strength properties of the original alloy can
be expected.
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