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Abstract: The microstructure of forged products significantly impacts their properties, and defects
or carbide distribution are not visible to the naked eye. Isothermal compression tests on M50 steel
with a Gleeble 3500 tester were conducted to study microstructure behavior during forging. Tests
examined the hot deformation behavior within a temperature range of 900–1200 ◦C and a strain
rate range of 0.01–10 s−1. Power dissipation efficiency (η) and flow instability (ξ), which are crucial
processing map parameters, were employed to analyze the high-temperature deformation behavior
of M50 steel. The 3D processing map determined the optimum forging conditions, indicating that
hot working should start at an initial temperature of 1050 ◦C or higher and a strain rate of 1 s−1,
decreasing the strain rate and temperature as the strain increases. The 3D power dissipation efficiency
map displayed an average value of 0.43 or higher at a strain rate of 0.1 s−1 and a temperature of
1150 ◦C before reaching a strain rate of 0.8. The Finite Element Method (FEM) simulated results,
revealing ξ and η distributions, and confirmed that microstructure observation during deformation
matched the hot forging parameters. This approach can effectively predict microstructure changes
during hot forging.

Keywords: hot forging; 3D processing map; M50 steel; intergranular crack

1. Introduction

Aerospace engines operating at high temperatures of 300–350 ◦C are made of bearing
steels with excellent heat resistance. M50 steel has been used worldwide in manufacturing
bearings, camshafts, gears and other aircraft engine parts due to excellent thermodynamic
properties such as fatigue, high-temperature strength, corrosion resistance, thermal stability
and hardness [1–5]. Alloying elements and carbides are related to the excellent properties
of M50 [2,6,7]. However, M50 material has low hot working plasticity and is vulnerable to
forging defects. Because of this performance, M50 subjected to plastic deformation can only
be done in restricted hot working conditions [8]. The hot forging process of the bearing
ring is a non-uniform deformation process, resulting in a non-uniform distribution of grain
size. Therefore, it is essential to understand the evolution mechanism of the microstructure
in the forging process. The study of the hot deformation behavior of M50 steel is necessary
for optimizing the hot working process and microstructure control.

Defects due to plastic deformation are mostly caused by temperature imbalance
between the material surface and the center of the material in contact with the die in the
forging process [9]. The plastic behavior of the steel is determined by the high temperature,
strain and strain rate [10–13]. The workability of materials deteriorates in hot deformation,
not at the optimal strain rate and temperature [14]. Due to the characteristic of the forging
process, errors can occur between forged products because they are often created based
on the operator’s experience. Since a lot of trial-and-error and cost are burdened with
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accumulating the operator’s experience, it is necessary to design an efficient forging process
to improve.

Frost and Ashby proposed the thermal deformation process theory to identify the de-
fects caused by the strain, strain rate and temperature during processing [15]. The dynamic
material model (DMM)-based instability criterion is grounded in the extremum princi-
ples of irreversible thermodynamics applied to the continuum mechanics of large plastic
deformation, as described by Ziegler [16]. Kumar [17] and Prasad et al. [18] developed
a modified processing map following the principles of DMM. There are flow instability
criteria of Gegel [19], Murty et al. [20,21], Malas et al. [22] and Semiatin et al. [23] for
predicting microstructure defects. An instability criterion based on a DMM best predicts
the unstable region [24–28]. A processing map is an essential tool for evaluating the worka-
bility of various alloys. It is also a powerful method for designing and optimizing the hot
deformation process. In addition, essential parameters (strain, strain rate, temperature)
representing the plastic deformation ability of the hot forging process can be predicted.
Under specific conditions, the microstructure evolution mechanism and flow instability
region can be observed, and the optimum deformation temperature and strain rate range
can be derived. Existing processing maps have limitations in not showing the effect of strain
on workability. Some researchers developed a 3D processing map according to the strain of
the material to solve this problem [29–31]. Recently, Park et al. developed FEM simulation
data that can plot on the 3D processing map to control process parameters, avoid flow
instability and include high power dissipation efficiency [32]. Jeong et al. employed a 3D
processing map and utilized a learning environment founded on a Q-learning algorithm in
order to optimize processing parameters, encompassing both the temperature and stroke
speed of the workpiece [33]. However, microstructural defects inside the material during
plastic deformation cannot be visually detected, and few studies have been conducted on
predicting and observing them.

In this study, a 3D processing map was constructed based on DMM and the flow
instability criterion proposed by Prasad et al. to analyze the effect of microstructure on
the power dissipation efficiency (η) and flow instability (ξ). The distribution of η and ξ
calculated through numerical simulation was compared with the actual microstructure by
deriving equations for the parameters required for the configuration of the processing map.
The reliability of this approach was verified by the optical photographs of microstructural
changes inside M50 steel that may occur during plastic deformation through numerical
simulation measurement.

2. Materials Experiment Procedure

The chemical composition of the M50 steel used in this study is provided in Table 1.
M50 steel specimens with dimensions of Φ10 × 15 mm were hot compressed to a true
strain of 1.0 using a Gleeble 3500 tester. Compression tests were performed at temperatures
of 900, 1000, 1100, 1150 and 1200 ◦C and strain rates of 0.01, 0.1, 1 and 10 s−1 to identify
various deformation behaviors of the material. A tantalum plate was used to prevent
adhesion between the material and the die during the high-temperature compression
test and minimize friction. Before compression, specimens were heated to the target
temperature at a rate of 10 ◦C/s and held for 3 min to eliminate the thermal gradient. For
the isothermal compression test, thermocouple monitoring controlled the deformation
temperature in real time. The center of the compressed M50 specimen parallel to the
compression direction, it was cut and vibration polished to investigate the microstructural
defects. Figure 1 shows the initial microstructure of M50 steel taken by electron backscatter
diffraction (EBSD), with an average grain size of 9.85 µm. The study aimed to explore the
effects of different deformation conditions on the material’s behavior and the formation of
microstructural defects to better understand the hot working process for M50 steel.
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Table 1. Chemical composition of the M50 steel (wt%).

Composition C Mn Si P Cr Mo V

(%) 0.83 0.30 0.17 0.004 4.17 4.30 1.00
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Figure 1. Initial microstructure of M50 steel captured using a SU5000 HITACHI Scanning Electron
Microscope with a VELOCITY SUPER EDAX EBSD detector: (a) grain boundary (GB) map and
(b) inverse pole figure (IPF) map.

To make the hot forging simulation more realistic, the temperature-dependent material
properties of M50 steel are depicted in Figure 2. The measured density of M50 steel is
7810 kg/m3. At a temperature of 876 ◦C, the yield strength is 128 GPa, and the Poisson’s
ratio is 0.26. At a temperature of 826 ◦C, the specific heat is 37.4 J/g·K, and the thermal
conductivity is 13.6 W/m·K. Yield strength decreases with increasing temperature. As the
temperature increases, Poisson’s ratio decreases at 976 ◦C and then increases. As shown in
Figure 2b, the change in the slope of Poisson’s ratio in the temperature range of 900–1100 ◦C
can be attributed to the austenitizing and phase transformation of M50 steel due to the
material property changes as the temperature increases.
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Figure 2. Temperature-dependent properties of M50 steel: (a) mechanical properties and (b) thermal
properties.
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3. Experiment Results

Figure 3 shows specimens compressed under various deformation conditions. The
barreling phenomenon can be observed due to the friction between the surface and the die
during the high-temperature compression test. During compression testing, it is impossible
to eliminate the friction between the specimen surface and the die. Moreover, controlling
the deformation temperature is challenging due to frictional heat and plastic deformation,
which affects the target temperature. Consequently, in the flow stress curve obtained from
the experiment, the flow stress may increase due to friction and decrease because of the
heat generated during deformation. Therefore, modifying the experimental data to remove
the effects of friction and temperature change is essential.
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Figure 3. The surface crack condition of compressive specimens in hot deformation at strain 1.0.

The M50 steel specimen compressed to a true strain of 1.0, with black dashed lines
indicating the deformation conditions in which visible cracks to the naked eye occurred
externally. All the specimens compressed under the 1200 ◦C deformation condition showed
cracks, indicating that the hot working is limited. As a result, the flow stress under the
1200 ◦C deformation condition was not used in constructing the processing map due to
critical surface cracks. This highlights the importance of selecting appropriate deformation
conditions to prevent defects and ensure the quality of the material during the hot working
process.

Figure 4 shows the temperature change history measured using a thermocouple
attached to the center of the specimen during the compression test. To account for the
temperature-corrected flow stress, the temperature and stress relationship proposed by
Park et al. [32] was linearly interpolated to match the set temperature of the isothermal
compression test. To determine the friction-corrected flow stress, the correction method for
determining the friction coefficient m, proposed by Ebrahimi et al. [34], was adopted. By
applying these corrections, the experimental data can be more accurately analyzed, and the
effects of friction and temperature change can be minimized.
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Figure 5 shows the flow stress of M50 steel acquired from hot compression tests
and the corrected curves at various temperatures and strain rates. The flow stress drop
and bounce−back phenomena are observed at a true strain of 0.1 under the deformation
conditions of a strain rate of 10 s−1 [35,36]. It is well-known that for most steels and
alloys, the flow stress decreases with increasing deformation temperature or decreasing
strain rate [37–39]. It was observed that the flow stress of M50 steel increases as the strain
rate increases at a specific temperature. Because a high temperature rises, the kinetic
energy of atoms and a low strain rate provide sufficient time for nucleation and growth of
dynamic recrystallization grains. The flow stress of low strain increases rapidly with a work
hardening step due to dislocation accumulation and dislocation density increasing, reaching
peak stress. As strain increases, dynamic recrystallization is the main softening mechanism,
and flow stress decreases. When a dynamic equilibrium between work hardening and
softening is obtained, the flow stress remains constant with increasing strain. The corrected
values generally appeared lower than the experimental values. The peak flow stress is over
350 MPa under the deformation condition of 10 s−1 at 900 ◦C. At a deformation temperature
of 1200 ◦C of strain 0.6 or less, the flow stress is less than 100 MPa. Figure 5d shows that
the dynamic softening of the flow stress under the deformation conditions of 1150 ◦C and
0.1 s−1 is evident.
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Figure 5. The true strain–true stress curve of M50 steel obtained from the compression tests deformed
up to a true strain 1.0 in the strain rate range between 0.01 s−1 and 10 s−1: (a) 900 ◦C, (b) 1000 ◦C,
(c) 1100 ◦C and (d) 1150 ◦C.

4. Processing Map
4.1. Processing Map Theory

The 2D processing map according to the strain proposed by Prasad et al. consists
of overlapped power dissipation efficiency and flow instability at different temperatures
and strain rates [18,40]. The flow stress in high-temperature deformation of steels can be
described as:

σ = K
.
ε

m (1)

The DMM is assumed to be a power dissipator that dissipates the applied power at
a constant temperature during deformation. At a specific strain rate, the total power (P)
consists of G content and J co-content. G content includes power dissipated by temperature
rise and plastic deformation. J co-content is the power dissipated by microstructural
evolution such as phase transformation, dynamic recovery, and dynamic recrystallization.
Therefore, the total power is expressed as follows:

P = σ
.
ε =

∫ .
ε

0
σd

.
ε +

∫ σ

0

.
εdσ = G + J (2)

The G content and J co-content ratio during hot deformation are defined as strain rate
sensitivity (m). The value of m depends on the strain and temperature for a stable material
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flow range, varying from 0 to 1. Equations (1) and (3) can be combined to express the total
energy (P).

m =
∂J
∂G

=

.
εdσ

σd
.
ε
=

.
εσd ln σ

σ
.
εd ln

.
ε
=

∂ ln σ

∂ ln
.
ε

(3)

The power dissipation efficiency (η) is the ratio of the efficiency of a material dissipated
to the maximum power dissipation through microstructure changes during the deformation
process, as defined in Equation (4) [41]. It represents η via contour lines in the processing
map. For the ideal plastic flow state, when m = 1, J = G = P/2, and J reaches its maximum
value.

η =
J

Jmax
=

∫ .
ε

0 σd
.
ε

σ
.
ε/2

=
2m

m + 1
(4)

The occurrence of some internal defects, such as cracks and void formation, can also
have the same η [42]. To predict microstructural defects based on DMM and the extremum
principles of irreversible thermodynamics as applied to large plastic flow, Ziegler [16],
Kumar [17] and Prasad et al. [43] proposed a flow instability criterion (ξ).

ξ(
.
ε)Kumar−Prasad =

∂ ln(m/m + 1)
∂ ln

.
ε

+ m < 0 (5)

The flow instability criterion determines the plastic deformation unstable condition
for a given temperature and strain rate. It was developed based on the flow instability
criterion derived from the limit principle of irreversible thermodynamics, and the concept
of continuum criterion of large plastic flow is applied [24,44]. If ξ satisfies the inequality,
unstable flow occurs [9,25,45]. The processing map is stable when flow instability zones are
avoided for the best hot workability with high power dissipation efficiency. Microstructure
defects of hot forming that may occur in the flow instability region are adiabatic wedge
cracks, shear bands, flow localization, dynamic strain ageing (DSA), kink bands and
intergranular crack [25,46–48].

The changes in η and ξ at a strain rate of 0.1 s−1 under various temperatures are shown
in Figure 6. At a strain rate of 0.1 s−1, η tends to increase as the temperature decreases
and the strain increases. At a strain rate of 0.1 s−1, ξ initially has a negative value in
all deformation conditions except at 1150 ◦C and increases as the strain increases. This
implies that the unstable region is avoided as the strain increases, and the possibility of
microstructural defects is reduced. Generally, the higher the power dissipation efficiency of
a material, the better the workability [49]. Among the deformation conditions at a strain
rate of 0.1 s−1, the η value is the highest at 1150 ◦C, and the instability (ξ = −0.0093) appears
at a strain of 0.15. However, some defects may be found even at deformation conditions
with high dissipation efficiency, so it is necessary to analyze both η and ξ comprehensively.
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4.2. Expansion of Processing Map to Include Accumulated Strain

The 3D processing map is shown in Figure 7. Stacking 2D processing maps from
strain 0.1 to 1.0, according to Park et al. [32], the 3D processing map was plotted separately
without overlapping η and ξ to increase visibility. According to the color depth, Figure 7a
is a 3D power dissipation efficiency map stacked at 0.01 from strain 0.1 to 1.0. Figure 7b is a
3D flow instability map, and the gray area represents the flow instability zones; workability
can be determined by stacking the strain from 0.1 to 1.0 at 0.05 intervals. Red circles indicate
the processing conditions of the compressed specimen with surface cracks on the flow
instability map. The 3D processing map was utilized to determine the parameters (strain,
strain rate, temperature) in the hot forging process of M50 steel. The calculated η and ξ
values in Figure 6 agree with the 3D processing map.
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The power dissipation efficiency map shows an η value of 0.4 or higher as the strain
and strain rate increase at temperatures of 1100 ◦C or above. A peak η value of 0.5 is
observed at a strain of 0.4, a temperature of 1150 ◦C and a strain rate of 0.01 s−1. This occurs
due to increased DRX nucleation and particle growth, which consumes more deformation
energy. At lower temperatures of 900 ◦C and a strain rate of 10 s−1, the power dissipation
efficiency exhibits a low value approaching zero. The 3D power dissipation efficiency map
reveals an average value of 0.43 or higher at a strain rate of 0.1 s−1 and a temperature of
approximately 1150 ◦C, up to a strain of 0.8.

As shown in Figure 7b, the gray-colored area on the 3D flow instability map indicates
instability. All unpainted areas suggest stable working conditions. The unpainted area
between temperatures of 1000 and 1150 ◦C and strain rates of 0.1 and 1 s−1 represents
a stable working condition. Upon comparing the compressed specimens in Figure 3, it
becomes evident that the external cracks generated at 1100 ◦C and 1150 ◦C occurred at
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strains more than 0.7. As the strain increases, the flow instability zones shift to higher strain
rate regions. Therefore, the hot working condition should be induced to a process in which
the temperature and strain rate decrease as the strain increases, starting from an initial
temperature of 1050 ◦C or higher and a deformation condition of strain rate 1 s−1.

This consistency demonstrates that the processing map effectively represents the
hot forging process of M50 steel, capturing the relationship between strain, strain rate,
temperature, power dissipation efficiency and flow instability. In Figure 8, EBSD imaging
of the cross-sections of the compressed specimens for specific deformation conditions A,
B, C and D, selected in Figure 8b, demonstrates that the crystal grain size increases with
increasing temperature. In condition A, η increases from 0.16 to 0.26 as the strain increases,
and ξ overlaps the region of strain 0.1–0.4. In condition B, η remains within the range of
0.3 to 0.34, and ξ overlaps the region of strain 0.1–0.3. For condition C, η increases from
0.36 to 0.4 as the strain increases, and ξ overlaps within a tiny strain range of 0.1–0.15.
In condition D, η maintains a value of 0.4 or higher until the strain reaches 0.8 and then
decreases to less than 0.3 at strains of 0.8 or higher. ξ overlaps in the strain range of
0.75−1. As shown in Figure 8d, intergranular cracks are generated under these conditions.
These observations highlight the importance of carefully selecting the appropriate hot
forging parameters to optimize the microstructure and reduce the likelihood of defects
in the final product. By using the 3D processing map and EBSD imaging, it is possible to
better understand the relationship between the deformation conditions, power dissipation
efficiency, flow instability and the resulting microstructure of M50 steel.
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4.3. Numerical Simulation Based on a Processing Map Theory

The crack simulation using the commercial finite element analysis (FEA) software
ABAQUS showed a crack phenomenon by applying element deletion method in conjunction
with a non-local fracture criterion [50,51]. In this study, the isothermal forging process
can display the distribution of η and ξ generated during deformation at various process
temperatures and strain rates. The results calculated through FEM simulation and the
microstructure of the high-temperature compressed specimens measured were compared
to observe if there were any defects within the specimen. In FEM simulation, strain rate
sensitivity (m) can be derived as illustrated in Equation (6), according to the time increment
of stress and strain rate that changes in response to deformation. m is calculated using Von
Mises stress and strain rate at the integration point, and power dissipation efficiency (η) of
the Equation (4) and flow instability (ξ) of the Equation (5) are computed by m, mapping η
and ξ to each integration point.

∂J
∂G

=

.
εdσ

σd
.
ε
=

.
εσd ln σ

σ
.
εd ln

.
ε
≈
[

∆ log σ

∆ log
.
ε

]
ε,T

≡ m (6)

The hot forging simulation of a cylindrical sample with dimensions of Φ 10 × 15 mm
was conducted using the FEA software ABAQUS 2020, as depicted in Figure 9. The
material properties input for the simulation included the flow stress and mechanical and
thermal properties presented in Section 2. The Coulomb friction coefficient used in the
simulations was set to 0.4. The material is influenced by friction, heat exchange and other
factors in the actual process, resulting in non-uniform temperature and strain within the
material. Therefore, the deformable material area was divided into three regions:
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between the upper and lower dies and the material rather than by heat exchange. Region
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were found. Specifically, in the same deformation conditions, no microstructural defects 
were found in areas where the specimen’s η was relatively high and ξ was positive. Con-
sidering both η and ξ will contribute to identifying and preventing the locations of micro-
structural defects. By analyzing these two parameters, it is possible to optimize the hot 
forging process, minimize defects and improve the overall material properties of the 
forged product. 

5. Conclusions 
The 3D flow instability map allows for the prediction of external crack occurrence. 

The 3D processing map and compressed specimen suggest that forging processes with a 
strain of 0.7 or higher at temperatures of 1100 °C or above result in defects in the forged 
product. The flow instability map and the surface of the compressed specimen enable the 
prediction of defects during forging. 

Visual inspection of process conditions that avoid flow instability zones is facilitated 
by the 3D flow instability map stacked up to 1.0. To prevent instability during the hot 
forging processes, the strain rate should decrease as the strain increases, starting at a tem-
perature of 1050 °C. Defect-free process conditions can be achieved within a narrow range 
of hot working conditions, specifically at temperatures between 1070 and 1140 °C and 
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The integration of processing map theory and numerical simulation was accom-
plished using ABAQUS. The distribution tendency of η and ξ in ABAQUS corresponded 
well with the 3D processing map. Microstructural defects in forged products can be pre-
dicted using the method presented in this study. Moreover, the primary defect in the mi-
crostructure of M50 steel is the wedge crack, which is characterized as an intergranular 
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In the numerical simulation based on the flow instability criterion proposed in this 
study, no microstructural defects were observed in the stable region where ξ > 0. Overall, 
cracks are found in the unstable region. The simulation results and microstructure 
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Figure 9. Schematic of cylinder forging simulation.

According to the combination of Equations (4) and (6), η can be calculated. Figure 10
displays the power dissipation efficiency distribution based on the strain under the defor-
mation conditions of 900 ◦C and 0.1 s−1. As the deformation during compression increases,
η transitions from region
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By integrating Equations (5) and (6), ξ can be calculated. The results of the hot forging
simulation at 1150 ◦C/10 s−1 and areas A, B, C and D selected in Figure 7b were compared
with the microstructure captured using an optical microscope, as shown in Figure 12. The
mesh deformation ξ and η values, based on the simulation results, are presented. The
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location identified as a wedge crack type of microstructural defect in the microstructure
photograph. On the left side of the simulation results, a similar carbide distribution flow
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microstructural particles, with intergranular cracks observed in most unstable regions. All
regions generally exhibit a lower η value distribution than other deformation conditions.
This trend is consistent with the 3D power dissipation efficiency map, indicating that the
strain rate greatly influences η.

High temperatures can cause grain boundary weakening, making the material more
susceptible to intergranular cracking. The strain rate at which the material is deformed
can significantly influence the occurrence of intergranular cracking. High strain rates
can lead to stress concentrations at the grain boundaries, promoting crack initiation and
propagation along these boundaries. The stress state of the material can also affect the
susceptibility to intergranular cracking. In areas where ξ is positive, no microstructural
defects were found. Specifically, in the same deformation conditions, no microstructural
defects were found in areas where the specimen’s η was relatively high and ξ was positive.
Considering both η and ξ will contribute to identifying and preventing the locations of
microstructural defects. By analyzing these two parameters, it is possible to optimize the
hot forging process, minimize defects and improve the overall material properties of the
forged product.

5. Conclusions

The 3D flow instability map allows for the prediction of external crack occurrence.
The 3D processing map and compressed specimen suggest that forging processes with a
strain of 0.7 or higher at temperatures of 1100 ◦C or above result in defects in the forged
product. The flow instability map and the surface of the compressed specimen enable the
prediction of defects during forging.

Visual inspection of process conditions that avoid flow instability zones is facilitated by
the 3D flow instability map stacked up to 1.0. To prevent instability during the hot forging
processes, the strain rate should decrease as the strain increases, starting at a temperature
of 1050 ◦C. Defect-free process conditions can be achieved within a narrow range of hot
working conditions, specifically at temperatures between 1070 and 1140 ◦C and strain rates
between 0.3 and 0.6 s−1.

The integration of processing map theory and numerical simulation was accomplished
using ABAQUS. The distribution tendency of η and ξ in ABAQUS corresponded well with
the 3D processing map. Microstructural defects in forged products can be predicted using
the method presented in this study. Moreover, the primary defect in the microstructure of
M50 steel is the wedge crack, which is characterized as an intergranular crack.

In the numerical simulation based on the flow instability criterion proposed in this
study, no microstructural defects were observed in the stable region where ξ > 0. Overall,
cracks are found in the unstable region. The simulation results and microstructure analysis
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showed good agreement. Consequently, microstructural changes during hot working can
be effectively predicted and utilized for decision making in the hot forging process.
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