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Abstract: The paper investigates the characteristics of the formation and morphology of microstruc-
tured zirconium oxynitride (ZrON) films, taking into account structural polymorphism during the
impact of atmospheric-pressure microwave nitrogen plasma with the influx of active oxygen from the
surrounding atmosphere. Optical, hydrophobic, Raman-active properties of ZrON films have been
studied. X-ray diffractometry (XRD), scanning electron microscopy (SEM), ellipsometry method, and
Raman spectroscopy, and moisture-resistance properties are used as analytical research methods. It is
shown that during the short-term impact of microwave plasma, a morphologically heterogeneous
ZrON film can be formed with a set of microhills with a uniform phase composition along the surface.
The phase composition of the ZrON surface corresponds to the monoclinic structure of ZrO2. In the
volume of the film, a predominantly tetragonal structure of ZrO2 is observed, as well as inclusions
of the monoclinic structure of ZrO2. A mechanism for the formation of a ZrON film, taking into
account polymorphism and phase transitions, is proposed. The optical properties of ZrON films are
determined by both the dielectric phase of ZrO2 and the inclusions of the high-conductivity phase of
ZrN. A combination of such factors as the developed microrelief and monoclinic surface structure,
as well as nitride phase inclusions, enhance the hydrophobic properties of the ZrON film surface.
It is shown that the surface hydrophobicity and resonant effects on ZrN inclusions allow for the
enhancement of the Raman spectrum intensity due to the high concentration of analyte molecules in
the scanning area.

Keywords: films; microwave plasma; zirconium oxide; nitrogen; Raman spectra; microbubbles;
microscopy

1. Introduction

Metal oxynitrides (MONs) are a new family of materials in which a fraction of oxygen
atoms are replaced with nitrogen atoms. Due to this substitution, the functionality of the
materials is expanded, and they acquire new properties. For example, aluminum oxynitride
ceramics (AlON) [1,2] are almost twice as hard as sapphire and transparent (≥80%) in a
wide range of the electromagnetic spectrum and are used as protective glasses, lenses, etc.
Titanium oxynitride (TiON) nanoparticles represent powerful active sites when added to
photocatalytic devices, or to electrodes for capacitors, batteries, and fuel cells [3,4]. Due
to its unique mechanical properties, silicon oxynitride (SiON) [5,6] has great potential for
high-temperature applications as a thermal insulation coating, as well as in electronics and
chemical technologies.

In recent decades, an area such as plasmonics, which studies the interaction of light
with metallic or heavily doped semiconductor materials and promises revolutionary dis-
coveries in modern photonic technologies, has been actively developing. A separate
direction of plasmonics is the control of the propagation of plasmon-polariton waves in the
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metal-dielectric system. Metal is necessary for the existence of electronic plasma, and the
dielectric allows the linking of electronic plasma with the volumetric light wave. In this
regard, composite ceramics of TiON, consisting of the dielectric phase of titanium dioxide
and the conductive phase of titanium nitride, are promising and actively researched. For
example [7], TiON composite films demonstrate enhanced absorption of laser light above
the percolation threshold in the visible and infrared ranges.

Systems close to ZrON in structure and properties, such as ZrN, are also of interest.
For instance, ZrN is characterized by reduced dielectric losses compared to TiN, while
retaining almost the same conduction electron density, resulting in stronger and blueshifted
plasmonic responses compared to TiN. However, a review [8] indicates a scarcity of experi-
mental studies on the plasmonic properties of ZrN, and the activity of plasmonic devices
based on ZrN only demonstrates theoretical potential. There are even fewer studies related
to ZrON, and this direction is quite relevant. In [9], it is shown that higher nitrogen and
oxygen contents can reduce the screened plasma frequencyωc. Interestingly, the bilayer
ZrN/ZrON structures with some ZrON thickness are more metallic than ZrN films, which
should be reasonable since the mutual diffusion through the ZrN/ZrON interface may
cause a ZrON buffer zone with substitute oxygen atoms generating more free carriers.

One of the main drawbacks of ZrO2 is complex polymorphism [10,11], creating prob-
lems during synthesis and operation. In addition to the main transitions, there are several
intermediate forms associated with the theoretical prohibition of direct transitions. The
low-temperature monoclinic (m)-phase P21/c is considered stable. At temperatures above
1000 ◦C, a stretched martensitic transformation to the tetragonal (t)-phase P42/nmc is
observed, characterized by strong hysteresis and a destructive volume change of 4%. This
change is the cause of destruction under thermal cycling conditions. At temperatures
above 2370 ◦C, a transition to the cubic (c)-phase Fm3m is observed. Accordingly, reverse
transitions are observed when cooling the ZrO2 sample. Similar processes can be expected
in ZrON with an excess oxide phase content.

The main methods of oxynitride creation are the post-synthesis oxidation of metal
nitrides or synthesis in a multi-component gaseous medium (often using an ammonia flow).
It appears that plasma synthesis is the most optimal method for the mass production of
oxynitride materials. Overall, the analysis of research demonstrates the underestimation
of plasma technologies. Previously [12,13], the successful application of low-temperature
plasma in the formation of titanium oxynitrides, both in the form of film structures and
powder, was shown. Titanium oxynitride samples were obtained using an arc plasmatron
with vortex stabilization and an expanding channel. Nitrogen was used as the plasma-
forming gas. Plasma treatment was conducted in an open atmosphere [14]. The use of arc
plasma proved effective, but a high gas temperature up to 10 kK complicates the treatment
control, with a high probability of sample destruction. A more controllable approach is
the use of microwave (MW) discharge at atmospheric pressure. Continuous and stable
MW discharge at atmospheric pressure is maintained in a dielectric (quartz) tube. High-
purity nitrogen is used as the plasma-forming gas. Depending on the output power, the
temperature in the axial region of the plasma can reach 5 kK [15]; however, at the open end
of the quartz tube, the temperature is significantly lower, and there is a sufficiently high
concentration of active oxygen and nitrogen.

In the synthesized ZrON structures, an enhancement of Raman light scattering can
be expected due to the plasmonic resonance [16,17] of electrons in ZrN inclusions. A key
point is also the possibility of converting the transverse electromagnetic radiation of the
laser into a longitudinal plasma mode, which can propagate along the metal-dielectric
heteroboundaries in ZrON. Laser radiation on a rough surface interacts with surface
plasmons, leading to an increase in energy density in the subsurface layer. Consequently,
the amplitude of the electric field of the wave increases, and the signal of Raman scattering
is enhanced. The conversion efficiency is determined by the degree of periodicity of the
plasmonic lattice (in our case, the model represents a lattice at the nodes of which ZrN
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inclusions are concentrated) and the commensurability of the wavelength of plasmon-
polaritons with the parameter of the plasmonic lattice.

Certainly, creating a periodic plasmonic lattice with given parameters during plasma
treatment is quite challenging, but there is an opportunity to form a high-density microhill
structure on the surface. The fact is that during plasma treatment, cavitation bubbles may
form [18], which usually hinder uniform treatment. The formation of microhills on the sur-
face of ZrON may have several advantages. During plasma treatment, it is possible to reach
the temperatures of phase transitions in ZrON, and the presence of microstructure will
help suppress their destructive effects. Moreover, for detecting Raman scattering spectra at
ultra-low concentrations of analyte molecules, it is desirable to have hydrophobic substrates
that prevent the substance spreading on the surface (preliminary concentration method),
leading to a combination of electrodynamic and chemical signal enhancement effects and
allowing the registration of a more refined structure of the Raman scattering spectrum of
the substance [19]. For ZrO2, the transition to a hydrophobic state is a problem [20]: there
is a tendency for the surface of t-ZrO2 to transition to a superhydrophilic state with increas-
ing oxygen vacancy concentration. One way to enhance hydrophobicity without using
hydrophobic coatings is texture selection and increasing the surface roughness [21]. In this
regard, the presence of microhills may enhance the hydrophobic component. Additionally,
nitrogen-containing inclusions can enhance hydrophobic properties [12].

This study investigated the features of the formation and morphology of microstruc-
tured films of zirconium oxynitride ZrON, considering structural polymorphism during
the exposure of microwave nitrogen plasma with an influx of active oxygen from the
surrounding atmosphere on metallic Zr films. The optical, hydrophobic, and Raman-active
properties of ZrON films were studied.

2. Materials and Methods

A Zirconium (Zr) layer was applied to the sapphire plate. The film was applied by
magnetron sputtering. Next, the Zr film was treated using atmospheric-pressure microwave
nitrogen plasma. To achieve this, a microwave (MW) plasmatron based on a 2.45-GHz
magnetron with a nominal output power of 1.1 kW was used (Figure 1). The design and
operating principles of such a plasmatron were discussed in detail in [22,23]. Here, we
give only a brief description of it. Plasma was generated in a closed rectangular WR-340
waveguide, operating in H10 mode. In the middle of the wide walls of the waveguide’s
central part, two pipe nozzles were welded coaxially for a gas discharge device input. A
quartz tube with an internal diameter of 3 cm was placed through the nozzles normal to
the waveguide wide walls. An atmospheric-pressure stationary discharge was excited by
microwaves in a gas flow inside the tube. We used high-purity nitrogen (99.998%), which
was introduced into the tube at a flow rate of ~10 L/min. Thus, the quartz tube acted as a
plasma-chemical reactor in which microwave plasma was generated. The MV discharge in
a continuous wave regime was obtained using a three-phase high-voltage power supply
circuit, which allows for the receipt of up to 3 kW of continuous output power from the
magnetron. The sample was treated in a plasma flame near the open end of the tube. For
oxygen access, a gap of several millimeters was maintained between the open end of the
quartz tube and the sample. The treatment time was approximately 1 min.

For microscopic studies, the JCM-6000 (JEOL, Tokyo, Japan) desktop scanning electron
microscope (SEM) equipped with an energy dispersive X-ray (EDX) microanalyzer was
used. According to SEM (Figure 1b), the average film thickness of Zr on sapphire was
670 nm. X-ray studies were carried out on an X’PERTPRO diffractometer (PANalytical,
Almelo, The Netherlands) in the Bragg–Brentano “reflection” geometry using CuKα radi-
ation (λ = 1.54 Å) with a Ni β-filter. The optical parameters of the films were studied on
the SER 850 spectroscopic ellipsometer (SENresearch 4.0 series). To analyze the moisture-
resistance properties, the sessile droplet method was used under the following conditions:
relative humidity 35–40%, water drop size 5 mm3. Measurements were performed 30 s
after the application to achieve a stable drop state. Methylene Blue (MB) concentrations of
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1, 5, and 10 mM were used to determine the effect of MB concentration on the moisture-
resistance properties of the solution. Five regions were examined for each sample, and the
results were averaged. Raman spectra are recorded on an Ntegra Spectra (NT-MDT) facility
(Zelenograd, Russia) at a diode laser wavelength of 532 nm, 20 mW power, and a beam
spot of ~5 microns in diameter. A 1 mM solution from MB was prepared to measure SERS
spectra. For comparison, pure sapphire substrates and plasma-treated Zr films on sapphire
were used.
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3. Results
ZrON Films’ Characterization

According to SEM data, a continuous uniform film with a thickness of 670 nm is formed
during the deposition of Zr by magnetron sputtering (Figure 1b). Subsequently, the Zr film
was treated in nitrogen microwave plasma in the open atmosphere (there was an air inflow).
With the power input of approximately 1 kW used in this work, the gas temperature in the
near-axial zone of the plasma can be considered 5 kK [15]. A high temperature contributes
to the shift of ionization equilibrium in the plasma in favor of increasing ion concentration.
For nitrogen plasma, calculations of the temperature dependence of the composition are
provided in [24]. At a temperature of 5 kK, the plasma density reaches 1019 m−3. However,
sample treatment was conducted in the plasma flame behind the quartz tube output at
10–12 cm from the discharge excitation region (waveguide vertical cross-section center).
The axial temperature profile along the quartz tube showed a significant decrease, and the
expected Zr film treatment temperature at a distance of 10–12 cm from the discharge region
was about 1.5 kK. The ionized atoms and molecules of nitrogen are transferred by the gas
flow to the open end of the quartz tube and, together with active oxygen drawn from the
surrounding atmosphere, form a reactive medium in the Zr film treatment zone.

By selecting the treatment regime of the Zr film (changing the distance from the sample
to the open end of the quartz tube) in nitrogen microwave plasma with an oxygen inflow, a
structure with heterogeneous morphology was obtained (Figure 2): discrete microbubbles
were observed against the background of a continuous film. The nature of microbubbles
during plasma treatment is not sufficiently studied, and we can only assume the scheme
of their formation. Plasma treatment leads to the formation of active regions as a result of
increasing the concentration of free bonds during the implantation of adsorbed impurities
and the migration of atoms of the treated materials from the surface inward. Subsequently,
the concentration of various defects increases, both in the subsurface layers and in the
volume of the material. Judging by the image (Figure 2, insert), a dense bubble wall is
initially formed, through which active gases are implanted.
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Figure 2. SEM images of the zirconium film on sapphire after treatment in microwave plasma.
Symbols: 1—microbubble area; 2—film between microbubbles. Inset: image of an open microbubble.

In the composition of the Zr film after plasma treatment (Table 1), according to EDX
data, oxygen predominated, which was likely concentrated both in the film and in the
microbubbles. Additionally, the presence of up to 5% nitrogen was observed. The sample
after treatment can be classified as zirconium oxynitrides with the general formula ZrON.
The study of the surface of the microbubble and the area of the continuous film using Raman
spectroscopy (Figure 3) demonstrated the absence of explicit differences. The most intense
spectral bands at 185, 197, 226, 342, 354, 387, 483, 510, 542, 565, 625, and 648 cm−1 were
observed in both curves. The set of bands corresponded to m-ZrO2 [25], but a significant
mixing in the region of higher frequencies (Table 2) corresponding to significant stress [26]
was observed. In analyzing the Raman spectrum (Figure 3), bands at 270, 314, 463, and
643 cm−1 corresponding to t-ZrO2 [25] can also be detected. Notably, no significant shifts
for the bands of t-ZrO2 were observed. Moreover, a brightly pronounced band at 424 cm−1,
not related to the phases of ZrO2, was observed in the Raman spectrum. In the Raman
spectra of ZrN in this area, two bands are observed: the optical transverse mode (TO) at
about 457 cm−1 and acoustic modes TA + LA at 407 cm−1 [27]. In addition, the band at
231 cm−1 probably corresponds to longitudinal acoustic (LA) modes in ZrN [27]. It is likely
that significant mechanical stresses can lead to such significant mixings.
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Table 1. Concentrations (in %) of the components of ZrON thin film.

Element Zr O N

Quantity,% 17.66 77.32 5.02

Table 2. Frequencies (cm−1) of Raman-active phonon modes (Ag and Bg) in monoclinic ZrO2.

Mode [25] This Work

1 103 (Ag)

2 175 (Bg)

7 180 (Ag) 185

4 190 (Ag) 197

5 224 (Bg)

6 313 (Bg)

7 317 (Ag)

8 330 (Bg) 342

9 345 (Ag) 354

10 381 (Ag) 387

11 382 (Bg)

12 466 (Ag) 483

13 489 (Bg) 510

14 533 (Bg) 542

15 548 (Ag) 565

16 601 (Bg) 625

17 631 (Ag) 648

18 748 (Bg)

According to the XRD data during plasma treatment (Figure 4), a weakly textured
film of [111]-ZrON with a structure of t-ZrO2 (JCPDS # 00-017-0923) is formed. Diffraction
peaks were detected at 2θ of 30.2, 35.24, 50.28, 59.4, and 74.1, which can be indexed to the
corresponding crystal facets of (111), (200), (220), and (400) of the tetragonal phase of ZrO2.
In addition to the main phase, inclusions of m-ZrO2 (JCPDS # 00-037-1484) oriented by
the planes (−111), (200), (−112), (211), and (400) are observed. The deconvoluted pattern
showed (Figure 4b) two peaks corresponding to a minor and major peak of the (−111)
plane of monoclinic and (111) plane of tetragonal ZrO2, respectively.

The lattice parameter d is determined from the Bragg–Wulff equation:

2d × sin(θ) = λ, (1)

where θ is the diffraction angle, λ is the wavelength of the used radiation.
Parameters determined by Formula (1) and Figure 4b are d111 = 3.13 Å for m-ZrO2

and d111 = 2.98 Å for t-ZrO2. Experimental stresses were evaluated:

ε =
dTeop − dκCΠ

dTeop
, (2)

where (dexp) is the change in the experimental interplanar distance relative to the theoreti-
cal (dtheor).
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According to Formula (2), the experimental stresses were determined to be 0.99% and
−0.67%, for the m and t phases, respectively.

The sizes of coherent scattering regions (CSRs) in the samples under study were
estimated using the Debye–Scherrer formula:

D =
k·λ

β·cosθ
, (3)

where D is the average size of CSRs, which can be less than or equal to the grain size; k
~0.9 is the dimensionless particle shape coefficient (Scherrer constant); λ is the wavelength
of copper X-ray radiation; β is the width of the reflection at half maximum; θ is the
diffraction angle.

The sizes of the crystallites were estimated from Formula (3): 8.3 nm and 7.6 nm for
the m-phase and t-phase, respectively.
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For the ZrON film, the spectral dependence of the refractive index was measured.
Overall, a normal dispersion of the refractive index is observed, typical for the dielectric
ZrO2 [28]. As can be seen from the data in Figure 5, with an increase in light wavelength,
the value of the refractive index monotonically decreases, and the dispersion dependence
n(λ) appears normal. However, a feature related to plasmonic absorption in the ZrN
inclusions is observed in the area of 530 nm, associated with a high density of free electrons
within them. Similarly, a strong plasmonic resonance in the area of 500–600 nm was
discovered when evaluating the energy loss function in (TiZr)N composition films [29].
The density of free electrons in metal nitrides reaches 1021 cm−3 [29]. To prevent the
spreading and concentration of analyte molecules when studying Raman scattering spectra,
the hydrophobicity of the substrate is important. The hydrophobic properties of ZrON
films on sapphire were investigated using aqueous MB solutions with concentrations of 1,
5, and 10 mM.
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The contact angle for a droplet (Figure 6) of MB solution was calculated [30]:
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where h is the height of the droplet above the surface, r is the radius of the base of the
droplet resting on the ZrO2 surface. It should be noted that the difference in the contact
angles at different MB concentrations in the solution was within error.
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In accordance with (4), the contact angle was about 95◦. According to the accepted
classification, surfaces with a contact angle of more than 90◦ are considered hydrophobic.

It can be observed that the edge of the droplet (Figure 6) did not move after applica-
tion (the boundary of the droplet after drying is round and the border area is uniform),
confirming the hydrophobicity of the ZrON surface.

According to the obtained results, a scheme can be assumed for the formation of the
ZrON film during the treatment of the Zr film in nitrogen microwave plasma with an active
influx of oxygen from the surrounding atmosphere. The complexity of explaining the
processes of micropore formation in the film has been noted earlier. However, the results of
Raman spectroscopy of different surface areas demonstrated the homogeneity of the phase
composition. Thus, the formation of micropores is not associated with phase formation and
the influence of impurities: in particular, nitrogen. Further, it is notable that in the XRD
images (Figure 4), covering the entire thickness of the ZrON film, there is a predominant
formation of the t-ZrO2 phase, as well as inclusions of the m-ZrO2 phase. Calculation
according to (2) showed that t-ZrO2 undergoes tensile stresses, and m-ZrO2 compressive.
The crystallite sizes of both phases, obtained in accordance with (3), are less than 10 nm,
confirming the transience of crystallization processes that occurred in the Zr film. At the
same time, using the surface-sensitive method of Raman spectroscopy (Figure 3), only
the strained phase of m-ZrO2 was detected, with a small content of t-ZrO2 inclusions.
The presence of the nitride phase is mainly confirmed by EDX methods (Table 1) and the
ellipsometry method (Figure 5), which are not surface-sensitive. Moreover, according to
EDX data, there is an excess oxygen content in the film. In this case, it is difficult to argue
about the substoichiometric content of oxygen, which usually affects the phase processes in
ZrO2 films. Oxygen deficiency may only be observed in the lower layers of the film.

In the initial stage, during the impact of plasma and rapid heating, one can assume
the oxidation with the simultaneous process of nitridation of the Zr film. During plasma
treatment of the Zr film in an active reactive environment of oxygen and nitrogen, a low-
temperature m-phase is first formed, which subsequently transitions to the t-phase. At
temperatures above 1000–1100 ◦C, the m→ t transition processes are likely completed, as
the sample spends most of the treatment time in plasma. Upon the rapid removal of the
sample (less than 3 s), at the final stage, from the plasma treatment zone, there is a sharp
cooling of the sample. Previously [13], it was noted that at this stage, active oxygen, in
the absence of access to external active nitrogen, replaces nitrogen in the subsurface layers
of the treated film. The nitrogen content profile in the treated films usually peaks in the
deeper layers. During cooling below 1100 ◦C, a reverse t→m extended non-diffusional
martensitic transformation occurs, characterized by strong hysteresis [11]. In this regard,
speaking about the exact transition temperature is difficult, and it could be lower than
the direct m→ t transition. The impurity of nitrogen plays an important role. The t→ m
transition, in the absence of impurity, is extended over time and occurs with a volume
increase of 4%. Due to the high cooling rate and the presence of nitrogen impurity, the
restructuring process is complicated. In the subsurface layers, where there is very little
nitrogen, the transition to the monoclinic phase occurs more easily; however, complete
relaxation does not occur, and the film remains in a stressed state. Moreover, the presence
of a hilly structure prevents surface destruction as a result of the t→m transition. In deeper
layers, nitrogen impurity and oxygen vacancies act as stabilizers of the tetragonal phase
and prevent the t→m transition. The process, which should proceed with an increase in
volume, leads to residual tensile stresses in the t-crystallites and compressive stresses in
the m-crystallites.

According to [31], only the amorphous ZrO2 film possessed weak hydrophilicity.
During annealing, a polycrystalline t-phase ZrO2 was formed, which only enhanced hy-
drophilic properties. The authors associate the enhancement of hydrophilicity with an
increase in oxygen vacancy concentration. In [20], it is shown that increasing the roughness
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of the t-phase ZrO2 leads to superhydrophilicity. This phenomenon is described by the
Wenzel−Deryagin equation [32]:

cos θr = r cos θ, (5)

where θr—the contact angle of a rough surface, θ—the contact angle of a smooth surface,
r—a coefficient that shows how many times the area of a rough surface is greater than
that of a smooth one. According to Equation (4), an increase in roughness for wetting
bodies leads to a reduction in the contact angle, and for non-wetting bodies to an increase
in the contact angle. To increase the hydrophobicity of the t-phase ZrO2 surface, the use
of a hydrophobizing coating is required [20]. As the results show (Figure 6), treating Zr
films in nitrogen microwave plasma with the influx of active oxygen forms a ZrON film
with hydrophobic properties. The cause of increased hydrophobicity may be due to a low
concentration of oxygen vacancies, “hilly” surface topography, and the presence of nitrogen-
containing inclusions. Moreover, there are no data on the hydrophilic properties of m-ZrO2,
and the presence of this phase on the surface of ZrON films may play a decisive role.

The SERS properties of the ZrON are presented in Figure 7. The Raman spectra of
MB films deposited on ZrON thin film (1) and sapphire (2) were compared. Sapphire was
used as a platform without the enhancement effect. The enhancement factor, determined
in accordance with [33] from the ratio of the intensities of the 1633 cm−1 peak of the MB
solution on the ZrON thin film and sapphire at the same MB concentrations, was ~112.
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It can be observed that the spectral dependence of the Raman scattering intensity
peaks of MB on the ZrON substrate corresponds to what was obtained earlier in [34]. There
are differences present: high resolution, manifestation of the fine structure of individual
intensity peaks. It should be noted (Figure 7) that for some peaks, a shift, enhancement,
and separation into components were observed, indicating an SERS effect.

The recorded spectrum is obtained by averaging the signal of all molecules located
in the area of the laser spot, and the uniformity of the distribution of substrate surface
areas with pronounced plasmonic properties (inclusions of ZrN) contributes to the increase
in signal intensity. The hydrophobicity of the ZrON substrate surfaces, together with
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the resonant effects on the ZrN inclusions, allows for an increase in the Raman spectrum
intensity due to the high concentration of molecules in the scanning area.

4. Conclusions

The features of the formation and morphology of microstructured zirconium oxyni-
tride ZrON films have been investigated, considering structural polymorphism during the
influence of atmospheric-pressure microwave nitrogen plasma with the inflow of active
oxygen from the surrounding atmosphere. The optical, hydrophobic, and Raman-active
properties of ZrON films have been studied. X-ray diffractometry (XRD), scanning electron
microscopy (SEM), the ellipsometry method, and Raman spectroscopy, and moisture-
resistance properties are used as analytical research methods. It is shown that during the
short-term influence of microwave plasma, a morphologically heterogeneous ZrON film
can be formed with a set of microhills with a uniform phase composition along the surface.
The phase composition of the ZrON surface corresponds to the monoclinic structure of
ZrO2. Predominantly, a tetragonal structure of ZrO2, as well as inclusions of the monoclinic
structure of ZrO2, are observed in the film volume. A mechanism for the formation of the
ZrON film, considering polymorphism and phase transitions, is proposed. The optical
properties of ZrON films are determined by both the dielectric phase of ZrO2 and the inclu-
sions of the highly conductive phase of ZrN. A combination of such factors as developed
micro-relief, the monoclinic structure of the surface, and the inclusions of the nitride phase
enhance the hydrophobic properties of the ZrON film surfaces. Using MB as an example, it
is shown that the hydrophobicity of the surface and resonant effects on the ZrN inclusions
allow for the enhancement of the Raman spectrum intensity due to the high concentration
of analyte molecules in the scanning area.
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