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Abstract: In this comprehensive study, the multifaceted impact of laser surface texturing (LST) on
AISI 301LN stainless steel is explored. Changes in the microstructure, mechanical properties, and
grain characteristics are examined. The dynamic relationship between Schmid factor evolution and
plastic deformation in this stainless steel alloy is unveiled through the analysis of grain statistics
and individual grain scrutiny. It is revealed that LST initiates the formation of strain-induced α’-
martensite, grain refinement, and substantial hardness enhancements. Notably, an α’-martensite
crystalline size of 2.05 Å is induced by LST. Furthermore, a 12% increase in tensile strength is observed
after LST along with an 11% boost in yield strength. However, reductions of 19% in elongation to
fracture and 12% in the area reduction are experienced.

Keywords: Schmid factor; laser surface texturing; metastable stainless steel; TRIP; deformation
mechanisms

1. Introduction

In the relentless pursuit of improving the mechanical properties of structural materi-
als, particularly in the automotive industry, the focus has shifted towards high-strength
steels [1,2]. Indeed, high-strength steels encompass a diverse range of materials, each distin-
guished by its unique microstructural and mechanical characteristics. One prominent class
of these advanced materials is renowned for its exceptional strength, achieved through the
development of robust solid-state transformation products, most notably due to the marten-
sitic phase (α’- and/or ε-). This phase is intricately embedded within a relatively softer
austenitic (γ-) matrix, forming a distinctive microstructural blend [3–5]. It is important
to emphasize that the high-strength steel landscape encompasses various microstructures
beyond the martensite–austenite combination, making it a rich and multifaceted domain.
This diversity not only contributes to their remarkable strength but also confers these
materials’ noteworthy ductility [6,7]. The martensitic phase transformation, characterized
by a rapid and diffusionless nature, has captivated researchers for over a century and
continues as a subject of profound interest and investigation [8–11].

The conceptual foundation for transformation-induced plasticity (TRIP) steels, which
utilize martensitic phase transformations to enhance ductility, was laid by Zackay et al. [12].
TRIP steels owe their high strength and improved ductility to a composite-like structure,
wherein the hard martensitic phase resides within the soft austenitic matrix, akin to a
composite material reinforced with hard particles [13,14]. The strengthening mechanism of
these steels leverages solid-state solution hardening of carbon in iron and the substantial
dislocation density resulting from the martensitic transformation. Although there are
extensive references in the literature discussing the influence of martensite content on
the properties of TRIP steels, such as the correlation between martensite fraction and
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strength [15–17], martensite fraction and ductility [1,18–20], and the kinetics of deformation
and transformation [21,22], among others, the origin of the exceptional ductility in TRIP
steels has been a subject of debate. Some authors attributed it to phase transformation
strain, but this theory has been mathematically challenged [22,23]. Recent research has
experimentally supported the idea that exceptional ductility is closely linked to composite
theory, further reinforcing the complexity of these steels [24,25].

In the particular case of TRIP deformation mechanism of AISI 301LN metastable stain-
less steel, the process begins with the initial annealed state, where the material possesses
a stable γ-microstructure [26,27]. As deformation initiates, dislocations are introduced,
leading to the formation of stacking faults (SFs) and subsequently triggering the transition
from γ-into epsilon (ε-) martensite, characterized by a change in crystal structure. This
ε-martensite interacts with the remaining γ-phase, affecting the material’s mechanical
properties. With continued deformation, particularly under high strain or stress [28–30],
nucleation of alpha prime (α’-) martensite occurs at defect sites. The α’-martensite contin-
ues to grow within the microstructure, consuming ε-martensite and γ-phases, resulting in
the TRIP effect. This growth is accompanied by deformation in the surrounding matrix,
contributing to increased ductility and work-hardening behavior, making AISI 301LN
stainless steel suitable for applications requiring a combination of strength and ductility
(Figure 1).
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In this context, it is essential to highlight that the orientation of martensite formation
plays a pivotal role in determining the local phase transformation strain. In the subsequent
discussion, an analysis of local strain generated during strain-induced martensite trans-
formations and variant selection will be explored [32,33]. Traditionally, the formation of
martensite in TRIP materials is mechanically induced, creating intricate microstructures.
However, this study departs from tradition by isolating the formation of martensite in a
virtually 100% austenitic type AISI 301LN stainless steel. Remarkably, this material under-
goes martensitic transformation under room temperature deformation conditions [8,34],
providing a unique opportunity for in-depth analysis. Each austenite crystal provides a
staggering 24 potential crystallographic variants of martensite that can be induced, result-
ing in a diverse array of strain and stress distributions within the martensitic plates. This
diversity, in turn, influences the material’s ability to resist nonuniform deformation and
directly impacts its high strength and exceptional ductility.

Laser surface texturing (LST) is an advanced technique that precisely controls the
energy of laser beams to create microscale or nanoscale patterns on steel surfaces [35]. This
process offers a myriad of advantages, including controlled surface roughness, friction
reduction, enhanced wear resistance, and improved corrosion resistance [2]. It does so
by manipulating surface microstructures, which can reduce friction, trap lubricants for
hydrodynamic lubrication, and extend the service life of steel components. Furthermore,
LST allows for customization, enabling engineers to design specific surface textures tailored



Metals 2023, 13, 1789 3 of 13

to the requirements of diverse applications. This technology not only improves material
performance but also reduces environmental impact by decreasing energy consumption
and emissions in sectors such as transportation.

The selection of AISI 301LN stainless steel as the focus of this study can be attributed
to several compelling reasons. AISI 301LN belongs to the class of metastable austenitic
stainless steels, known for their exceptional strength and corrosion resistance. These
materials are highly sought after in industries like automotive and aerospace, which
demand superior mechanical properties to ensure structural integrity and durability. In
particular, AISI 301LN is recognized for its unique combination of strength and ductility,
attributed to the presence of strain-induced martensite phase transformations within its
austenitic matrix. The austenitic steels offer a promising platform for exploring the effects
of LST, which is an emerging and versatile surface modification technique. By studying the
influence of LST on AISI 301LN, this research aims to shed light on the potential for further
enhancing the mechanical properties of this high-performance steel, thereby addressing
the demands of these critical industries more effectively. This manuscript undertakes a
comprehensive exploration of the plastic deformation-induced formation of martensite in
AISI 301LN stainless steel. It leverages advanced techniques such as electron backscatter
diffraction (EBSD) and high-resolution digital image correlation (HRDIC) to provide a
detailed view of the material’s behavior at various stages of deformation. The primary
focus of this investigation centers on strain-induced martensite formation along active
{111} slip planes and its interaction with parent austenite slip, with the aim of unravelling
microstructural plasticity.

This study is motivated by a comprehensive perspective, as it involves the examina-
tion of strain-induced martensite transformations and the relatively unexplored domain
of LST. A novel and substantial contribution to the field of materials science is introduced
through this multifaceted investigation, which is of direct significance to industries in need
of high-performance materials to meet increasing demands. Consequently, the research
objectives have been refined to provide improved clarity and insights into the uniqueness of
this work. Specifically, these objectives are designed to shed light on the intricate interplay
between strain-induced martensite transformations and the impacts of laser surface textur-
ing, thereby presenting new perspectives on microstructural behavior and enhancements
in mechanical properties. This effort aims to deliver a more profound understanding of the
potential applications of laser surface texturing, particularly concerning the optimization
of the mechanical properties of materials such as AISI 301LN stainless steel.

2. Experimental Details

The composition of AISI 301LN metastable austenitic stainless steel used in this study
was as follows (wt.%): 17.6% Cr, 6.5% Ni, 1.13% Mn, 0.02% C, 0.17% N, and Fe as the
balance. The initial condition of the AISI 301LN was an annealed sheet of 1.5 mm thickness.
Grit papers were used to obtain a surface finish with an average roughness of ~0.85 µm.
The surface of the samples was then laser-textured with parallel linear patterns aligned
with the rolling direction (RD) of the steel sheets. An Explorer-One pulsed laser from
Spectra physics (Stahnsdorf, Germany) was used.

The crystal glass of the laser source was Nd: YLF, with a wavelength of 349 nm,
a maximum peak power of 60 W, an energy per pulse of 120 µJ, and a beam diameter
of 145 µm. In all the tests, the laser parameters used were kept constant and equal to a
scanning speed of 6 mm/s, with 68% overlapping of the laser beam spots on the surface;
the incident laser beam was maintained at 90 degrees to the target surface, with a frequency
of 1 kHz and a laser peak power of 60 W; the pulse duration was 2 µs and, thereby, the
energy per pulse was equal to 80 µJ; and the heat input was 6.33 KJ/m. Samples were
held on the XYZ-axis stage with a distance between the sample’s surface and the nozzle
(stand-off distance) of 150 mm and the focal plane located at a distance of 80 mm from the
surface (focal length), as shown in Figure 2.
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Table 1 gives the tensile properties of AISI 301LN obtained from specimens oriented
transversally to the RD.

Table 1. Mechanical properties of AISI 301LN in the as-received state.

Ultimate Tensile
Strength (MPa)

Yield Stress
(MPa)

Elongation to
Fracture (%)

Reduction of Area
(%)

734 ± 16 562 ± 11 72 ± 3 77 ± 2

Tensile testing was conducted using six specimens and employing an Instron machine
(MA, USA), as illustrated in Figure 3a. Dimensions of the tensile specimens are indicated
in Figure 3b. In Figure 3c is a photograph that corresponds to a tensile specimen as it
appeared after the laser treatment in its central zone. The tensile rate applied was 10 µm/s.
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The analysis of the microstructure and substrates postlaser treatment was conducted
utilizing a Neon40 Carl Zeiss SEM (Oberkochen, Germany). Electron backscatter diffraction
(EBSD) scans were performed on the external surface, positioned at the center of the
tensile specimens, using a Jeol JSM IT800 SEM (Tokyo, Japan) equipped with an EBSD
detector. The step size was held constant and equal to 1 µm, and subsequent data analysis
was performed using Channel 5 software v3 (Oxford Instruments, Abingdon, UK). XRD
measurements were carried out using an Advance D8 X-ray diffractometer equipped with
CuKα radiation for phase identification of the laser-treated specimens to determine the
quantity of the induced α’-martensite phase during the tensile test.

3. Results and Discussion
3.1. Microstructure

Figure 4 illustrates the XRD patterns of the AISI 301LN stainless steel specimens
without and with laser surface texturing. Initially, the microstructure of the initial specimen
appeared to be totally γ-phase. However, upon subjecting the material to laser surface
texturing, the formation of strain-induced α’-martensite was observed. Although the
diffraction peaks of α’-martensite were not easily detectable due to their low intensity,
Rezayat et al. [36] reported the presence of a weak α’-martensite peak in the XRD spectrum
of AISI 301LN after LST. This α’-martensite phase is characterized by overlapping SFs and a
heavily faulted crystal structure, resulting in low-intensity diffraction peaks. Subsequently,
as the power of laser surface texturing increased, the intensities of the γ-peaks gradually
diminished, while the α’-peaks became more pronounced in the spectra. Eventually,
with higher levels of laser surface texturing, the microstructure underwent a significant
transformation, primarily consisting of strain-induced α’-martensite due to the intense
LST. The changes in XRD intensity observed with laser irradiation can be attributed to the
increased presence of the martensitic phase. As more martensite forms within the material
due to laser surface texturing, this leads to higher-intensity peaks in the XRD patterns [37].
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The distinctive peaks of the AISI 301LN specimen after the LST were analyzed em-
ploying the Scherrer formula, see Equation (1).

D =
Kl

Bcosθ
(1)

where D is the mean size of the ordered (crystalline) domains, which may be smaller
or equal to the crystalline or particle size, B is the half-height width of the diffraction
peak, and K is assigned a value of 0.89. Additionally, θ denotes the Bragg diffraction
angle, and l typically denotes the X-ray wavelength, commonly approximated as 1.54 Å.
The corresponding parameters are detailed in Table 2, indicating that the LST-induced
crystalline size for the α’-phase measured 2.05 Å, whereas the crystalline size for γ-phase
on the most prominently diffracted crystal was around 2.09 Å.

Table 2. Crystalline size of AISI 301LN after laser surface texturing.

Parameter γ (1 1 1) α (1 1 0) γ (2 0 0) γ (2 2 0) α (2 1 1) γ (3 1 1)

2θ (◦) 43.15 44.02 49.93 74.26 81.39 90.09
B (◦) 0.70 0.71 0.82 1.34 1.52 1.78
D (Å) 2.09 2.05 1.82 1.27 1.18 1.08

Metallographic samples were extracted from the clamping end of the tensile specimens
and subjected to examination. Both the central and peripheral regions of the metallographic
specimen cross-section were meticulously observed using an optical microscope (OM),
as illustrated in Figure 5. In Figure 5a, a stable, uniform, single-phase γ-structure can
be distinctly discerned. In Figure 5b, specimens also featured a γ-phase, along with α’-
martensite; however, there was a marked reduction in the grain size of the γ-grains. Precise
measurements of the γ- grain size was performed using a line intercept method, yielding
average values of 27.5 and 9 µm before and after LST, respectively.
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3.2. Microhardness

Vicker’s hardness (HV) tests were conducted on AISI 301LN samples before and after
LST, involving three indentations for statistical purposes at the center of each sample in the
cross-sectional side. The indentation sizes were carefully measured by means of advanced
characterization techniques, and the material’s matrix hardness was determined by aver-
aging the measurements from these three points for statistical signification. The obtained
matrix HV values before and after LST were 212 HV0.2 and 290 HV0.2, respectively.
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The cross-sectional HV variation profiles, depicted in Figure 6, reveal distinct trends:
while the HV of AISI 301LN without LST remained consistently within the range of 200
to 212 HV0.2 throughout the cross-section, hardness after LST reached an impressive
value of 428.7 HV0.2, more than twice the HV of the underlying steel matrix. Within the
first 40 µm from the surface, hardness of AISI 301LN after LST exhibited a sharp decline.
However, as the depth increased to the range from 40 to 400 µm, the rate of HV reduction
slowed considerably. Beyond a depth of 500 µm, the hardness values displayed minimal
variations, stabilizing at approximately 220 HV0.2, a level roughly akin to that of the matrix.
The application of LST to the metal surface effectively enhanced the hardness of AISI
301LN. This enhancement was more pronounced within the initial few tens of micrometers,
extending up to around six hundred micrometers due to a microstructural change induced
during the LST process in agreement with the Hall–Petch equation.
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3.3. Tensile Test Analysis

Figure 7 displays the stress–strain (σ–ε) curves of AISI 301LN specimens before and
after LST. Details regarding the tensile properties are summarized in Table 3. Following the
LST process, the tensile strength exhibited a notable increase of around 11.85%, while the
yield strength surged by 10.85%. In contrast, elongation at fracture and the reduction in the
area both saw reductions of 19.44 and 12.98%, respectively.

Table 3. Summary of the main tensile properties of nontreated and LST AISI 301LN.

Tensile Properties 301LN 301LN (LST)

Tensile strength (MPa) 734 ± 16 821 ± 12
Yield strength (MPa) 562 ± 11 623 ± 9

Elongation at fracture (%) 72 ± 3 58 ± 2
Reduction in area (%) 77 ± 2 67 ± 3
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The fracture pattern of AISI 301LN specimens subjected to uniaxial tensile loading
is depicted in Figure 8. This fracture pattern featured a bowl-like shape, indicative of
a shear fracture that opened at an angle of approximately 45◦ along the axial direction,
accompanied by more pronounced necking. Figure 8b,e illustrate that the stretching stripe
distribution on the specimens were uniform. The crack initiation points were identified at
the surface, where other material inclusions or grain boundaries were present. Additionally,
Figure 8c highlights that the AISI 301LN specimens exhibited a uniform distribution of
dimples, representing isometric dimples formed during stretching.
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Figure 8d shows the fracture morphology for the LST AISI 301LN specimens subjected
to uniaxial tensile loading. In this instance, the fracture pattern took on an irregular bowl-
like shape, as seen in Figure 8b. Although there was not a distinct central rounded bottom,
it also indicated a shear fracture that opened at an angle of about 45◦ along the axial
direction. Notably, macroscopic cracks became evident around the bottom region of the
specimen’s bowl. In contrast to the AISI 301LN specimen, Figure 8b demonstrates that the
stretching stripe distribution on the LST AISI 301LN specimen was more disordered and
the slip lines were torn. The slip distance remained generally stable, staying within the
10 µm range in depth, which helps explain the limited elongation and reduction in area
observed in the LST AISI 301LN specimens. The material edge of the specimen displayed
no conspicuous stretching stripes and lacked any additional material inclusions. When
considered alongside an overall view of the LST AISI 301LN specimen, it can be concluded
that the tensile fracture of the laser-treated specimens originated from the subsurface layer.
Subsequently, as the matrix essentially lost its strength, the cracks propagated outward
until the LST specimen underwent complete fracture. Lastly, as depicted in Figure 8b,d, the
dimples within the treated LST specimen were more uniformly distributed compared to
those in the AISI 301LN specimen, although the dimples shared similar sizes.

3.4. Crystallographic Orientation

Figure 9a displays grain orientation (GO) maps for the AISI 301LN metastable austenitic
stainless steel specimens at the middle of the sample where it was laser-treated. In the
original specimen, the inverse pole figure (IPF) map reveals a distinct and concentrated
distribution of dots (see point 1). However, as the AISI 301LN stainless steel underwent
tensile deformation, as indicated in points 2 and 3, the orientation within the IPF map be-
came significantly dispersed (Figure 9b). This dispersion signifies lattice rotation resulting
from plastic deformation induced during the tensile tests.
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Previous research [38,39] highlighted that lattice rotation in stainless steel was associ-
ated with the activation of slip systems and Schmid factors, further suggesting that softer
grains with higher Schmid factor orientations were more prone to slip. In this context, the
evolution of the Schimd factors in AISI 301LN stainless steel during tensile tests is depicted
in Figure 9c. The Schimd factor calculations were performed using the {111} <110> slip
systems of the FCC lattice, and the variation rules were explored through global grain
statistics and individual grain analysis.

Figure 10 presents the average Schmid factor values for all pixels within the scanning
area. Notably, the average of the Schmid factors reached its peak in the original state (0.43)
and exhibited a consistent decrease as plastic deformation progressed, even into the late
plastic stage. This reduction in the average of the Schmid factors indicates that lattice slip
in the stainless steel becomes increasingly challenging with rising plastic strain.
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Generally, Schmid factors serve as a parameter for assessing the ease of slip-system
activation, with larger Schmid factor values indicating greater susceptibility to movement
due to higher shear-stress magnitudes. Further research delves into the internal relation-
ships between lattice orientation, rotation behavior, and Schmid factor variations at the
individual grain level.

3.5. Analysis of Grain Characteristics

Figure 11a depicts the GO map and Schmid factor map (Figure 11b) for a defined
region within the treated AISI 301LN stainless steel specimen, encompassing grains from
a Schmid factor of around 1 to 8. This region holds significance due to the notably high
Schmid factor values observed in grains 3 to 5, contrasting with the relatively low values in
grains 6 to 8.

Figure 11c provides the average lattice orientation (LO) map for grains 3, 5, 7, and 8,
along with their specific Euler angle values. For instance, grain 3 possesses Miller indices
of (9, 30, 95) (−6.86, −95.01, 30.43), and its activated slip system is (1–11) [110]. Numerical
calculations reveal a ϕ angle of 46.79◦ between loading direction X1 and the slip plane
normal, and a nearly 43.92◦ angle λ between X1 and the slip direction, resulting in a high
Schmid factor value of 0.492 for grain 3. Similarly, grain 5 exhibits ϕ and λ angles of
41.17◦ and 49.24◦, respectively, and a Schmid factor value of 0.491. Conversely, grains



Metals 2023, 13, 1789 11 of 13

7 and 8 display ϕ and λ angles of 57.71◦, 41.95◦, and 63.07◦, 32.84◦, respectively, with
corresponding Schmid factor values of 0.397 and 0.378. Notably, the high ϕ angle in grain
8, despite a small λ angle, yields a low cosine value of 0.4529, significantly diminishing the
Schmid factor value.
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4. Conclusions

In this comprehensive study, an in-depth examination was undertaken to explore the
evolution of the Schmid factor within AISI 301LN metastable austenitic stainless steel under
tensile testing conditions. A meticulous analysis was conducted, encompassing both grain
statistics and individual grain scrutiny, revealing the dynamic relationship between the
evolution of the Schmid factor and plastic deformation in the stainless steel. The following
key conclusions were drawn from this study:

1. Laser surface texturing (LST) effectively induced the formation of strain-induced
α’-martensite in AISI 301LN stainless steel. The initial austenitic microstructure
gradually transitioned into a microstructure predominantly comprising α’-martensite
with increasing LST power.

2. The α’-phase crystalline size introduced by LST was measured at 2.05 Å, while the
γ-grain size on the most strongly diffracted crystal was 2.09 Å, as determined through
X-ray diffraction analysis using the Scherrer formula.

3. LST resulted in significant grain refinement, with the average grain size of AISI 301LN
stainless steel reduced to 9 µm, which is one-third the size of the as-received grains,
as observed through optical microscopy.

4. Remarkable hardness was exhibited by the LST-treated AISI 301LN, reaching 428.7 HV0.2,
which was double that of the as-received specimen. This increase in hardness was
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most notable within the initial few tens of micrometers, in line with the principles of
the Hall–Petch equation.

5. Tensile testing demonstrated that the LST-treated specimens displayed higher ultimate
tensile strength and yield strength, with increases of approximately 12% and 11%,
respectively, in comparison to the as-received condition. However, it is important to
note that reductions of 19% in elongation at fracture and 13% in the reduction in the
area were experienced.
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