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Abstract: Machines operate under increasingly harsher contact conditions, causing significant wear
and contact fatigue. Sub-surface stresses are responsible for the premature contact fatigue of rolling
element bearings, meshing gears, and cam–follower pairs. Surface protection measures include hard,
wear-resistant coatings. Traditionally, contact integrity has been predicted using classical Hertzian
contact mechanics. However, the theory is only applicable when the contact between a pair of
ellipsoidal solids of revolution may be considered as a rigid indenter penetrating a semi-infinite
elastic half-space. Many coatings act as thin bonded elastic layers that undergo considerably higher
pressures than those predicted by the classical theory. Furthermore, inelastic deformation of bonded
solids can cause plastic flow, work-hardening, and elastoplastic behaviour. This paper presents a
comprehensive, integrated contact mechanics analysis that includes induced sub-surface stresses in
concentrated counterformal finite line contacts for all the aforementioned cases. Generated pressures
and deformation are predicted for hard coated surfaces, for which there is a dearth of relevant
analysis. The contact characteristics, which are of particular practical significance, of many hard,
wear-resistant advanced coatings are also studied. The paper clearly demonstrates the importance of
using efficient semi-analytical, detailed holistic contact mechanics rather than the classical idealised
methods or empirical numerical ones such as FEA. The novel approach presented for the finite line
contact of thin-layered bonded solids has not hitherto been reported in the open literature.

Keywords: contact mechanics; counterformal concentrated contacts; semi-infinite elastic half-space;
thin bonded elastic layers (coatings); elastoplastic contact deformation

1. Introduction

Progressively, many rolling and sliding contacts are subjected to high, variable, and
often impulsive loads. These include the meshing of gear teeth pairs in automotive trans-
missions or differentials [1–4] or in wind turbines subjected to external variable wind and
gust loading [5,6]. Variations in applied and impulsive loads, and in some cases, the mis-
alignment of rolling element bearings, can cause excessive contact stresses that often result
in the fatigue of mating surfaces and their eventual failure [7,8]. With ever-increasing harsh
operational conditions, there are high incidences of bearing failure [5,8]. These require
costly repair and often result in long system downtimes. Therefore, a detailed analysis of
the mechanics of contact, particularly the evaluation of generated sub-surface stresses, is
essential in the assessment of a design and the prediction of system performance [9–13].
Sub-surface stresses are affected by contact conformity [14,15] as well as by the choice of
surface materials.
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Many load-bearing surfaces are protected by thin, hard-coated layers [16,17]. In
contact mechanics parlance, these coatings are referred to as bonded elastic solids [18,19]. It
has long been established that the contact mechanics of thin bonded layers deviate from the
classical Hertzian theory, which assumes the contacting solids to be semi-infinite (meaning
that the principal dimensions of the contacting solids are at least two orders of magnitude
larger than their contact footprint dimensions [15]. The footprint itself is also 2–3 orders
of magnitude larger than the localised contact deformation (which is usually in the order
of tenths to a few micrometres) [15,18,19]. With thin coatings of a few micrometres in
thickness, the semi-infinite assumption cannot be upheld [18,19]. Therefore, the contact
mechanics of thin bonded layered solids require their own theoretical treatment [15–24].
Most analytical solutions treat the coating as a single layer covering an assumed rigid
or homogeneous elastic substrate. For more complex multi-layered bonded layers or
treatment of the coatings as graded solids (where the modulus of elasticity alters gradually
into the depth of coated surfaces), finite element analysis (FEA) is often used, such as in the
study reported by Goltsberg and Etsion [25], who investigated the effect of various contact
parameters such as the thinness of the coating as well as its hardness. Other studies using
FEA with plane strain and plane stress conditions that also take the effect of friction into
account include that of Xu et al. [26].

Some studies have dealt with graded elasticity in the mechanics of contact [27–29].
There are many surface hardening methods besides the usual coating methods, which
introduce a distinct bonded layer, such as RF sputtering, chemical vapour deposition
(CVD), and physical vapour deposition (PVD). These methods create hardened surfaces of
the substrate material itself, such as anodizing and laser hardening. In effect, they create a
protective surface, the contact mechanics of which depend on the characteristics of the top
layer, such as its depth and hardness. Some representative literature includes [30,31]. This
study excludes this class of contacting surfaces.

Under harsh operating conditions of high applied normal loads and high shear, some
coatings can be subjected to localised plastic deformation, fracture, or exfoliation from the
substrate [32–34]. Hence, contact mechanics under elastoplastic conditions should also be
considered. FEA studies provide an approach for determining the onset of plasticity in
elastic solids and layered coatings [25,35], and the method has been used to investigate the
contact parameters related to the transitioning to the elastic–plastic regimes of deforma-
tion [35]. Although FEA can include truly 3D models of the problem considering plane
strain and plane stress assumptions, they are computationally time-intensive. Simpler
analytical models are advantageous, such as the approach highlighted here.

When sub-surface contact stresses exceed elastic deformation, indicating the onset of
yielding [36], plastic flow can occur and, in many cases, some degree of work hardening
takes place. As a result, the generated contact pressures are limited by the process of
yielding, plastic flow, and work hardening. There have been many studies of this process,
with the case of bilinear hardening described in some detail in [37–39]. Various yield criteria
are employed, which depend on material ductility as well as applied loading configuration,
such as pure normal loading, inclusion of shear, and friction. In general, FEA-based models
use the von Mises yield criterion to investigate the sub-surface stresses and subsequent
failure. However, it should be noted that the Tresca criterion is favoured for the cases of
hard and brittle coatings, whereas for ductile substrates, the onset of failure, particularly
for bearings and gears, is because of orthogonal reversing shear stresses [15,40,41].

Overall, the accurate prediction of contact stresses requires the development and use
of appropriate methodologies. In many instances, classical Hertzian contact mechanics is
inappropriately applied where the prevailing conditions significantly deviate from Hertzian
core assumptions of a semi-infinite elastic half-space and small strain deformation within
the elastic limit. This paper presents detailed analytical contact mechanics for finite line con-
centrated counterformal contacts, including sub-surface stress evaluation for semi-infinite
elastic solids and thin bonded elastic layers under elastic and/or elastoplastic conditions.
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2. Contact Mechanics of Semi-Infinite Finite Line Contacts

Meshing gear teeth, contact of rolling element bearing-to-races, and cam–follower
pairs can be represented by an equivalent rigid ellipsoidal solid of revolution against a
semi-infinite elastic half-space of equivalent modulus of elasticity by classical Hertzian
contact mechanics, where (Figure 1):

1
R

=
1

R1
+

1
R2

(1)

and
1
E*

=
1 − ϑ2

1
E1

+
1 − ϑ2

2
E2

(2)
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The footprint contact area is an imprint that an equivalent rigid roller of radius R
makes on a semi-infinite elastic half-space of equivalent elastic modulus. The contact
footprint is a long and narrow rectangular strip with a half-width of a0 for this assumed
idealised infinite line contact [42,43]:

a0 =

{
2

πE*
WD

L

}1/2

(3)

The lateral cross-sectional pressure profile is assumed to be elliptical, with a uniform
longitudinal pressure distribution (Figure 1). The central pressure is as follows:

p0 =
2W

πa0L
(4)

The parabolic approximation of the cross-sectional elliptical pressure profile is as follows:

p(x, y) = p0

{
1 −

(
x
a0

)2
}1/2

(5)

The deflection anywhere within the thin rectangular contact footprint can be obtained
as follows:

δ(x, y) =
1

πE*

∫ a0

−a0

∫ L
2

− L
2

p(x1, y1){
(x − x1)

2 + (y − y1)
2
}1/2

dx1dy1 (6)

where E* = E
1−ϑ2 for contacting surfaces of the same material (plane strain effective modulus).

The central contact deflection becomes [42]

δ0(0, 0) =
a0 p0

πE*

{
ln

2L
a0

+
1
2

}
(7)
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Therefore, the footprint of an elastic line contact is fully described by classical Hertzian
contact theory [43]. However, the Hertzian elastic line contact is idealised. In practice, the
contact of a rigid roller with an elastic half-space generates a dog-bone (dumbbell) shaped
footprint with the contact extremities spreading out due to the stress discontinuity at the
roller’s sharp ends (Figure 2). In this case, the contact configuration is termed finite line
contact, and a numerical approach is usually required to obtain the pressure distribution.
A number of numerical solutions have been reported, including the initial solutions for
the case of elastostatic contact of cylindrical roller bearings under assumed dry contact
condition [44–47].
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For finite line contacts, a numerical solution is required, where the contact footprint
is sub-divided into a number of overlapping rectangular elements, as shown in Figure 2,
with parabolic pressure profiles in the lateral direction and isosceles triangular pressure
distributions in the longitudinal direction (Figure 3). The deflection at any point (x, y)
within a computational element is obtained as follows:

δ(x, y) =
pm

(
1 − ϑ2)
πE

∫ a1

−a1

∫ c

−c

(
1 − |y1|

c

){
1 −

(
x1
a1

)2
}1/2

{
(x − x1)

2 + (y − y1)
2
}1/2

dx1dy1 (8)
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The following relations are used to non-dimensionalise Equation (8):

x = ax, x1 = a1x1, y = cy, y1 = cy1 and δ = a1δ (9)

Thus

δ(x, y) = pm

(
1 − ϑ2)

πE
I
∫ 1

0

(
1 − x2

)1/2

dx (10)
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where I is the integration term in the non-dimensional form of Equation (8) with respect to
y1, yielding [37,38]

I =
∫ 1

−1

1 − |y1|{
(ax − a1x1)

2 + (y − y1)
2
}1/2

dy1 (11)

where a = a
c and: a1 = a1

c .
This yields the boundary integral equation (see Appendix A for its solution).

3. The Case of Bonded Elastic Layered Solids

Increasingly, contacting surfaces are coated for a variety of reasons. They include the
use of thin, hard, wear-resistant coatings such as diamond like carbon (DLC), alumina,
silicon nitride, bismuth, or indium. Their contact mechanics deviates from that described
above, meaning that the semi-infinite assumption cannot be upheld.

For the case of hard-bonded layered elastic solids, Johnson [15] states that for the
bonded layer thickness b << a (half-width of contact footprint), plane sections remain
plane, and

εxx =
1 − ϑ2

l
El

{
σxx +

ϑ

1 − ϑ
p(x)

}
= 0 (12)

εzz =
1 − ϑ2

l
El

{
−p(x)− ϑ

1 − ϑ
σxx

}
(13)

Eliminating σxx and replacing εzz from

εzz = −1
b

(
δ − x2

2R

)
(14)

yields

p(x) =
1 − ϑl
1 − 2ϑl

El
1 + ϑl

a2

2Rb

(
1 − x2

a2

)
(15)

where

a =

{
3
2

RbW
L

1 − 2ϑl
1 − ϑl

1 + ϑl
El

}1/4

(16)

The above relations hold true for compressible layers ϑ < 0.5, which account for most
coatings. However, for incompressible layers, Equation (16) returns a value of infinity,
which is clearly erroneous. Johnson [15] provides expressions for incompressible layers
in line contact, whilst the same for circular point contacts is provided in [48]. Naghieh
et al. [19] state that thin layered bonded solids are indicated by a

b > 2.

4. Contact Mechanics of Elastoplastic Layered Solids

Many coatings act tribologically to mitigate wear and/or friction. Additionally, solid
lubricants behave like coatings, particularly to reduce friction. In many cases, bonded
elastic layers (coatings, tribofilms and solid lubricants) deform elastoplastically, in some
cases breaking down and reforming, particularly those with lower hardness [38,49–51]. The
elastoplastic response follows the rate-independent plasticity theory, which incorporates a
yield criterion, plastic flow, and work hardening [52,53]. For predictive analysis of elasto-
plastic response, a yield criterion is required. In the current analysis, Huber’s distortion
energy hypothesis [54] is used, where the equivalent stress, σe, based on the generated
sub-surface stresses is as follows:

σe ≥ σY (17)

where σY is the yield stress of the bonded layer, and

σe =
1√
2

{(
σxx − σyy

)2
+

(
σyy − σzz

)2
+ (σzz − σxx)

2 + 6
(

τ2
xy + τ2

yz + τ2
zx

)}1/2

(18)
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The sub-surface stresses can be obtained analytically, as shown in [9,14] (the case of
reversing orthogonal shear stress is discussed later).

With no work hardening, Huber’s distortion energy hypothesis limits the generated
pressures prior to yielding. However, some degree of work hardening occurs after localised
plastic straining. This means that to obtain realistic contact conditions, work-hardening
should be taken into account, where changes in plastic straining are obtained as follows:

dϵpl = λ
dφ

dσzz
(19)

where φ is the plastic stress potential (yield function) and λ is the material local plastic
straining coefficient. Equation (19) assumes that plastic strain occurs in a direction normal
to the yield surface. For kinematic hardening and von Mises equivalent stress yield criterion
(assumed here):

dφ

dσzz
=

3
2σzz

({D} − {α}) (20)

where {D} is the deviatoric stress vector and {α} is the yield translation shift vector:

{D} = {σ} − 1
3
(
σxx + σyy + σzz

)
(21)

{α} =
1

3G
ElE∞

El − E∞
ϵpl (22)

Solution of Equations (18)–(22) yields the limiting stress σzz which should comply
with the condition (17). Then, the generated elastoplastic contact pressures are: p = −σzz.

5. Method of Solution

For any rigid cylinder indenting an elastic plane, a trial load is initially used to evaluate
the contact conditions, a0 and p0. Then, an initial estimate of central contact deflection is
made for either case of semi-infinite or bonded layered elastic solid. An initial rectangular
contact footprint, as in idealised line contact, is assumed. Any misaligned contact condition
can also be taken into account, though is not considered in the current study. All negative
deflections are discarded as the method is only applicable to compressive conditions.
Subsequently, the influence matrix

[
ai Iij

]
is evaluated and the pressure distribution [pmi]

is obtained (see Appendix A). The following convergence criterion should be met∣∣∣pnew − pold
∣∣∣ ≤ εp (23)

If the criterion is not satisfied, then the procedure is repeated, as shown in the flowchart
in Figure 4. The flow chart includes every step of computational procedure, stating the
equation numbers in the expounded methodology.

To obtain the final solution, the equilibrium condition must be satisfied. This means
that the contact reaction (integrated pressure distribution) should equate to the applied
contact load W within a specified error tolerance:

x
pdxdy − W ≤ εw (24)

The flow chart in Figure 4 provides a step-by-step computational procedure for the
overall contact mechanics methodology expounded in this paper, with equation numbers
provided for each step.
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6. Determination of Sub-Surface Stress Field

Having obtained the pressure distribution, the induced sub-surface stresses that can be
responsible for the inelastic deformation of the contacting surfaces are calculated. Fatigue
spalling/pitting may occur when the stresses reach their elastic limit and coincide with
sub-surface material flaws, such as voids or inclusions. For ductile bearing materials, the
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determining sub-surface stresses are the orthogonal reversing shear stresses, subjecting the
material layers to repetitive cycles of compression/tension [14,40,41]:

τzx = − 2
π

z2 pm

∫ 1

−1
(x − x1)

(
1 − x2

)
{(x − x1)

2 + z2}−2dx1 (25)

where z = z
a (into the depth of the contacting solid) and τzx is the sub-surface reversing

orthogonal shear stress distribution in each cross-section along the width of the contact in
the x-direction. For hard and brittle surfaces, the Tresca maximum shear stress criterion is
applicable, as discussed later.

7. Results and Discussion

Figure 5 shows a typical axial pressure profile for a straight-edged (unprofiled) roller
( R = 0.0127 m, L = 0.0127 m) indenting a semi-infinite elastic half-space subjected to a
contact load of 3683.6 N, based on a total bearing reaction F ≈ 10.8 KN, obtained us-
ing [42,55] where N = 12:

W =
4.08 F

N
(26)Lubricants 2024, 12, x FOR PEER REVIEW 9 of 17 
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This expression is for the bottom roller (the highest loaded roller) with zero clearance
in a horizontal shaft and bearing system. The other rollers experience lower contact forces
at any instant of time. With zero clearance, the top roller is often completely unloaded.

The footprint for a finite line contact is a dumbbell or dog-bone shape with end
extremities spreading out due to an abrupt change of profile (Figure 5b). The lateral
pressure profile for the roller is elliptical at all cross-sections (profiles at sections A and B
are shown in Figure 5c,d, respectively).

Figure 5c,d also show predicted sub-surface shear stresses, which are often responsible
for inelastic deformation. Note: τzx = 0 along the footprint longitudinal axis. The results
here are for a ductile steel roller.

Owing to the progressively harsh operating conditions, bearings are often coated
with protective hard layers. Data regarding some of these hard coatings are listed in
Table 1. Cobalt–chromium bearing steel is included in the table as it is the usual substrate
material. Most hard coatings have a similar moduli of elasticity to that of bearing steel,
but they are much harder. Due to this and their thinness, the contact footprint is much
narrower (in the lateral x-direction) when the bearing is subjected to the same contact load.
Correspondingly, much higher pressures are generated. This is shown in Figure 6 for the
same roller dimensions and contact load as that in Figure 5.

Table 1. Mechanical properties of solid half space and layered solids.

Material Modulus of Elasticity, E (GPa) Poisson’s Ratio Layer Thickness, b (µm)

Steel 206 0.30 −
Si3N4 250 0.20 6
Al2O3 300 0.21 3
DLC 220 0.21 2
TiC 400 0.18 5
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(coated) surfaces (half symmetric lateral pressure profiles at the contact centre are shown).

The results in Figure 6 demonstrate that whilst the semi-infinite elastic assumption
(Neo-Hertzian analysis) is appropriate for the steel roller, it clearly leads to serious erro-
neous predictions for rollers which are furnished with thin, hard, wear-resistant coatings.
This is because such coatings are significantly harder than the substrate steel and yield
thinner footprints under the same applied load. Consequently, much higher pressures are
generated which, in turn, result in increased sub-surface stresses.

For example, in the case of alumina and DLC-coated rollers, the generated pressures
are almost five times higher than when the coatings are considered to be semi-infinite
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elastic half-spaces. Correspondingly, the contact semi-half-width is nearly a quarter of
that for a semi-infinite assumption. This means that the contact footprint is reduced with
hard coatings, whilst the generated pressures significantly increase (the area under the
distributions remains the same for the entire 3D pressure distribution over the contact
footprint, representing the applied contact load).

The failure of hard coatings often occurs through fracture when maximum shear stress
exceeds the condition prescribed by the Tresca criterion [56]:

τmax = 0.3p0 ≥ σY
2

(27)

In particular, coatings can exfoliate from the substrate if this maximum shear stress
coincides with the interfacial layer between the coating and the substrate. Although the
generated pressures are quite large (p0 values in Figure 6), the Tresca criterion is not
readily reached because the elastic limit, σY, is high for these hard coatings; for example,
σY = 10 GPa for alumina. Thus, for alumina as a layered bonded solid in Figure 6:

τmax = 0.3p0 = 2.25 GPa <
σY
2

≈ 5 GPa (28)

For the case of DLC, the axisymmetric lateral contact pressure profiles are for the case
of coating considered as a semi-infinite half-space and when it is considered as an elastic
layer (from Figure 6). These are used to obtain the maximum shear stress distribution
beneath the surface: τmax = 1

2 |(σzz − σxx)| [14,56].
Figure 7 shows the centre cut through the maximum sub-surface shear stress distri-

bution for both cases of DLC as semi-infinite elastic half-space and as thin layered elastic
solid (into the depth of surface, z).
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For the section through the centre of the contact, the sub-surface maximum shear stress
distribution contains its absolute maximum value. It is clear that for the case of DLC, as an
elastic layer, the maximum shear stress is closer to the contact surface than when the layer
is assumed to be a semi-infinite substrate. The magnitude of the maximum shear stress
is also significantly higher than when it is assumed to be a semi-infinite elastic half-space
(nearly five times larger). This is in excess of its yield stress, breaching the Tresca yielding
criterion for hard surfaces (as also indicated by Equation (28)). The zoomed inset to Figure 7
shows that the absolute maximum shear stress penetrates well beyond the usual DLC
coating thickness of 2 µm. This means that at such a high contact load (3683.6 N), the hard
DLC coating does not confine the maximum shear stress within its thickness, which is a
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requirement to protect the substrate beneath it. This action is envisaged as the raison d’etre
of hard coatings. Therefore, the correct contact mechanics predictive approach shows that
a high sub-surface maximum shear stress, breaching the confine of the coating thickness,
could result in its exfoliation or fracture in practice under these conditions. Therefore,
the in-depth predictive approach enables the correct hard coating to be selected for given
loading conditions.

Cases of roller-to-races contacts for uncoated (semi-infinite elastic condition) and for
coated (thin bonded elastic layers) conditions presented thus far were reported at LUBMAT
2023 [57].

Referring back to Figures 6 and 7, it is clear that in practice, pressures of the order
of several GPa (as in the case of layers of silicon nitride, alumina and DLC) cannot be
sustained because the elastic layers become elastoplastic.

Figure 8 shows the lateral pressure profiles for the case of a steel roller coated with a
thin 5 µm layer of TiC (physical/mechanical data for TiC is also provided in Table 1). The
hard, wear-resistant coating should retain all the generated sub-surface contact stresses
within its thickness, thus protecting the steel substrate. Therefore, to simplify the analysis,
the contact is considered to be that of a thin layer bonded to a rigid substrate. The pressure
distribution for this thin elastic layer, subjected to a contact load of 555 N, is shown in
Figure 8. Note that the peak pressure is in excess of 4 GPa, which is far higher than that for a
steel substrate (similar to the findings in Figure 6). As a hard elastic coating, the equivalent
sub-surface stress should not exceed its yield stress (Equation (17)), or the Tresca criterion
should not be exceeded, as described above for a hard coating. Taking this into account
and treating the contact problem as a thin elastoplastic layer, the generated pressures are
significantly less, as can be seen in Figure 8. The flow of material post plastic deformation
and work hardening limits the generated pressures to a peak plateau of 1.25 GPa, extending
the contact footprint in all the cross-sections of the overall dog-bone shaped finite line
contact. Figure 8 shows the pressure distributions at the centre of the contact footprint.
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Figure 8. Elastic and elastoplastic contact mechanics of layered bonded solids.

Figure 9 shows the sub-surface maximum shear stress at the centre of the contact for
the pressure profiles shown in Figure 8. As in the case of the DLC coating, the maximum
shear stress penetrates into the substrate area (see the zoomed inset to the figure), implying
that the elastic behaviour is exceeded, and an elastoplastic analysis is required.
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Figure 9. Sub-surface shear stress variation for elastic and elastoplastic coatings.

The maximum shear stresses in both types of analysis, layered elastic or elastoplastic,
are coincident. This indicates that considering the coating as a bonded layer is, in fact,
appropriate. After all, the ratio a0

b ≫ 2, (a0 ≈ 25 m, b = 5 m) where, as noted in [15,18,48],
this ratio is indicative of bonded elastic layer behaviour. For the contact mechanics of
a semi-infinite elastic half-space (the substrate bearing material): a0

b ≤ 0.25. For both
these contact conditions, this paper provides comprehensive analytical contact mechanics
and sub-surface analysis. For the intervening conditions, where 0.25 < a0

b < 2, one
has to resort to numerical analysis using finite differences, finite elements, or boundary
element approaches. There have been many solutions in this regard, including [25,26,58–61].
Elastoplastic analysis using FEA or the semi-analytical approach, some including material
hardening and some with the effect of adhesion, include [20,34,62–67].

Figure 9 shows that the maximum shear stress has exceeded the Tresca criterion:
τmax = 1.3 GPa > σY

2 , where σY = 1.35 − 1.75 GPa for TiC coatings. However, with the
generated stresses exceeding the equivalent stress (Equation (18)), elastoplastic analysis
with plastic flow and work-hardening has already occurred. This limits the generated
pressures, as shown in Figure 8, as well as the maximum sub-surface shear stress for
the case of elastoplastic behaviour (i.e., τmax = 0.44 GPa < σY

2 ). These results indicate
compliance with the Tresca criterion. However, the analysis has already indicated a breach
of the equivalent stress criterion as well as the maximum shear stress occurring at a depth
below the coating layer. The methodology is realistic, holistic, and very practical.

8. Concluding Remarks

The paper shows that it is essential to use an appropriate contact mechanics analysis
method to accurately predict the prevailing conditions for thin coated surfaces. It is rather
commonplace to use idealised infinite line contacts with assumed semi-infinite elastic
half-spaces (i.e., Hertzian contact mechanics). These assumptions can lead to serious
underestimation of the generated pressures and the sub-surface stress field, which in turn
can induce the fatigue spalling/pitting, fracture, or exfoliation of coatings. Additionally,
thin layers can deform inelastically, undergo material plastic flows and work harden in
some cases. These phenomena determine the real load-carrying capacity of contacts, not one
based on idealised assumptions and theories. The work presented in this paper addresses
all these issues and provides predictions that are much closer to real conditions than the
usual idealised approaches.

The paper presents semi-analytical integrated contact mechanics for semi-infinite
and layered bonded elastic solids with sub-surface evaluation and potential elastoplastic
deformation. This is a holistic approach and an original contribution not hitherto reported
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in the open literature for the case of thin, hard, wear-resistant coatings in finite line contacts,
which is of immediate practical use in the industry.

The paper itself makes certain simplifying assumptions. These include isothermal
analysis, whereas high contact pressures induce some degree of compressive heating, even
under elastostatic conditions. A thermal analysis would be more appropriate. Finally, the
apparent area of contact is used for all the analyses, which is strictly valid for ideal smooth
surfaces or nominally flat run-in surfaces. In reality, real rough surfaces have much smaller
contact areas. In such cases, more complex numerical analyses would be required [68–70].
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Nomenclature

Roman Symbols
a0 Semi-half-width at the centre of the contact
a1 Semi-half-width at any contact cross-section
b Layer thickness
c Half-width of rectangular computational element
D Roller diameter
E Effective Young’s modulus of elasticity
E1, E2 Modulus of elasticity of contacting bodies
El Modulus of elasticity of the layer
E∞ Equilibrium modulus of elasticity
E∗ Effective elastic modulus of the contact
F Bearing reaction
G Modulus of rigidity
L Length roller (Contact footprint length)
N Number of rollers in the bearing
n Number of computational elements
p Pressure
p0 Central contact pressure
pm Maximum pressure of any computational element
R Effective contact radius
W Contact load
x, y Co-ordinates of a point of deflection
x1, y1 Co-ordinates of a point of pressure
z Co-ordinate into the depth of elastic solid
Greek Symbols
α Yield translation shift
δ Deflection
δ0 Deflection at the centre of the contact
σ Direct Stress: x, y along the surface, z into the depth of contact
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σe Equivalent stress
σY Yield stress
ϵpl Plastic strain
εp Limit of convergence for pressures
εw Limit of convergence for elastostatic equilibrium
λ Localised plastic strain coefficient
ϑ Poisson’s ratio
ϑl Poisson’s ratio for the layer
φ Plastic strain potential
τzx Orthogonal reversing shear stress
τmax Maximum shear stress

Appendix A

The boundary integral equation is

I = (y − 1)ln


y − 1 +

[
(ax − a1x1)

2 + (y − 1)2
]1/2

y +
[
(ax − a1x1)

2 + y2
]1/2

−
[
(ax − a1x1)

2 + (y − 1)2
]1/2

+
[
(ax − a1x1)

2y2
]1/2

(A1)

The function in the boundary integral Equation (A1) is non-symmetrical about all
four quadrants of the computational element shown in Figure 3. Therefore, to find the
total deflection at the centre of each computational element, it is necessary to combine the
contributions from all the four elemental quadrants in Figure 3:

di(x, y) =
a1 pm

(
1 − ϑ2)

πE

∫ 1

0

(
1 − x1

2
) 1

2 I dx1 (A2)

The total deflection at the centre of any rectangular computational element, j, becomes

δj = ∑4
k=1 djk (A3)

where j is any element within a total of n overlapping rectangular elements used to discretise the
contact footprint and k = 1 → 4 are the quadrants in each rectangular computational element.

Using Equations (A2) and (A3) and multiplying both sides by the term πE
a0 p0(1−ϑ2)

, the
following relationship is obtained for the jth nodal point:

πEδj

a0 p0(1 − ϑ2)
= ∑n

i=1
ai
a0

pmi
p0

Iij (A4)

where i = 1 → n , and Iij is obtained from Equation (A1).
In dimensionless form:

δj = ∑n
i=1 ai pmi Iij (A5)

Hence, to evaluate the unknown pressure distribution:

[pmi] =
[
ai Iij

]−1[
δj
]

(A6)
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