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Abstract: Bending fatigue failures are commonly related to the wear behavior in an active system.
The surface wear and plastic deformation of the tribolayer play crucial roles in the wear–bending
fatigue behaviors of steels. In particular, the lamellar structure of martensitic steel leads to its unique
wear–bending fatigue behavior. In this work, the wear–bending fatigue testing method and device
were introduced to explore the wear–bending fatigue behavior of the martensitic steel. The effect of
wear on the alternating bending fatigue life of 20CrNi2Mo martensitic steel was studied under low
and high fatigue stress. The influence of wear debris on the fatigue life at two different sliding speeds
was also analyzed. The results show that the fatigue life decreased with the wear load increased
under high bending stress. Moreover, for systems with nanoscale wear debris on the steel surface,
the wear–bending fatigue lifetimes are significantly enhanced compared with large wear debris.

Keywords: wear–bending fatigue; wear load; nanoscale wear debris; lamellar structure; oxides

1. Introduction

Multi-load service conditions involving two or more loads, such as fatigue, wear, and
corrosion, are relatively common, and wear–fatigue multi-load engineering problems are
prominent in the field of mechanical equipment [1–4]. Under dynamic service conditions
with the friction and wear process, the bearing situations of main machinery parts are
very complicated. Both the wear damage and fatigue damage have a significant effect
on the service life of mechanical parts [5–7]. Generally, tribology experts employ various
methods to reduce or even avoid wear, with a focus on surface damage, while fatigue
researchers typically concentrate on volume damage or fractures. The interaction between
wear and fatigue load, however, plays a crucial role in determining the failure mechanism
of machinery parts. The current research on the wear–fatigue problem primarily focuses
on mechanical components and assemblies, with some typical active systems including
wheel/rail [8], steel wire [9], gearings [7,10], bearings [11], etc. The study conducted by
Kapoor et al. [12] revealed that the service lives of mechanical parts were frequently not
only influenced by a single load but also by the combined effects of wear and fatigue
loads. For instance, the introduction of lubricating oil into surface cracks mitigate the wear
process and consequently accelerate the crack propagation process. The fatigue cracks can
be eliminated through the appropriate loss of surface material. A classical computational
model of the Kapoor net was developed to analyze the crack propagation due to fatigue
and contact friction wear under alternating loads. The relationship between the wear,
fatigue, and the crack propagation under microdynamic conditions was investigated by
Cantini [13,14] and Basseville et al. [15]. The propagation of rolling contact fatigue cracks
may initially occur at a faster rate. However, once the crack reaches a certain depth or
remains unchanged in length, it will either disappear due to material loss if the wear rate is
high or continue to extend until failure occurs.
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The conventional theory of damage accumulation is not applicable for addressing this
nonlinear problem. The fatigue damage is typically mild under severe wear conditions,
while the wear is relatively mild under severe fatigue damage [16]. The difference of surface
plastic deformation, cold work hardening, and microstructure evolution resulting from
wear are sufficient to significantly differentiate the wear–fatigue behavior from fatigue
behavior alone. The presence of worn surfaces has a significant impact on both the initiation
and propagation of cracks. On the one hand, the improvements in the strength and hardness
of the tribolayer can directly impact the initiation of fatigue cracks. On the other hand,
as shear strain is applied to the tribolayer, there is a change in the direction of crack
propagation until it becomes parallel to the shear strain plane. Therefore, the service
lives of the wheel and rail can be extended by effectively balancing the propagation rate
of contact fatigue cracks and the rate of material wear. The current investigation of the
wear–fatigue problem primarily focuses on the integration of fretting wear, tensile fatigue,
and contact fatigue [8,17]. The fretting wear method and theory cannot be applied to
investigate wear–bending fatigue behaviors under large displacement slip and the bending
fatigue load, due to the microscale slip nature of fretting wear. Meanwhile, researchers
have studied the relationship between wear and contact fatigue, which differs from the
wear and bending fatigue behaviors in this study. The mechanism of crack initiation and
propagation in contact fatigue differs from that in bending fatigue.

The aforementioned investigations, in addition, failed to simultaneously consider the
inherent microstructure of materials and the evolution of microstructure in tribolayers
when assessing wear–fatigue behaviors. The original microstructure, plastic flow, and
the formation of a protective tribolayer are theoretically interrelated factors influencing
wear–fatigue behavior [18–21]. Moreover, during the process of large sliding friction, the
change in microstructure has a significant impact on the friction and wear characteris-
tics. In particular, oxide nanoparticles in the system can be formed and attached to the
surface, thereby reducing the stress concentration at the friction contact and providing
self-lubricating protection [22].

The wear–fatigue behavior, taking into account the evolution of lamellar structures
within the tribolayer and the formation of a self-lubricating surface layer, is investi-
gated. The wear–fatigue behavior of 20CrNi2Mo martensitic steel with lamellar structures
was investigated in this research, under conditions of large displacement sliding wear
and rotary bending fatigue load, using self-developed equipment. This study aims to
provide a stronger experimental and theoretical foundation for the investigation of the
wear–fatigue system.

2. Methods
2.1. Wear–Fatigue Behavior Test Device

The device was equipped with a cantilever beam applying the primary bending stress
as the main body, and wear loads were applied via a linear bearing. The key components of
the device consisted of a fatigue load, a specimen, a wear load, a tungsten rod, and a rotary
axis, as depicted in Figure 1. The function of the rotary axis was clamping the sample and
driving it to rotate at high speed. The high-speed bearing was subjected to fatigue loads,
and the specimens were installed within the bearing. A wear load was applied through
a linear bearing to exert pressure on the tungsten rod, causing it to come into contact
with the specimen. Sliding wear occurred as the specimen rotated. The aforementioned
device enables the application of wear–fatigue multi-loads combined with sliding wear
and bending stress to specimens.

The schematic diagram of the experimental method is illustrated in Figure 2. The
roller/shaft system operates under the influence of contact FN (wear load) and non-contact
Q (bending load) forces as the shaft rotates around its axis at a certain speed ω. The wear
load is defined for the normal load and represents a typical roller/shaft tribo-fatigue system
proposed in the existing literature [6]. The wear and bending stress can be regulated by
adjusting the FN and Q, while the speed ω can be altered through the drive motor.
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Figure 2. The schematic diagram of the experimental method.

2.2. Wear–Fatigue Test Samples

The 20CrNi2Mo steel bars were subjected to a heat treatment process, consisting of
heating them at a temperature of 1000 ◦C for a duration of 50 min, followed by quenching in
brine. Subsequently, the bars underwent tempering and were maintained at a temperature
of 560 ◦C for a period of 1.5 h. After the heat treatment, the bars were sectioned into
unconventional fatigue samples for wear–fatigue tests, as illustrated in Figure 3. The
dimensions of the samples are as follows: the diameter d is 4.7 mm, diameter ‘D’ is
14.7 mm, and the lengths ‘L’, ‘L1′, and ‘L2′ are 260 mm, 55.5 mm, and 30.1 mm, respectively.
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2.3. Characterization

To investigate the influencing factors of the wear–fatigue life, it was necessary to
characterize the fracture surfaces, worn surfaces, wear debris (under various wear con-
ditions) of a failed sample using a SUPER40 field-emission scanning electron microscope
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equipped with an EBSD analyzer (CNSI, Los Angles, CA, USA). The TEM specimen of the
wear subsurface was prepared by utilizing a focused ion beam (FIB) “lift-out” technique
in the FEI Helios NanoLab 600i (FEI, Tsukuba, Japan), with cutting performed precisely
at the midpoint of the wear track. The failure sample fracture surface, worn surface, and
wear debris were characterized by using an OLYMPUS OLS5000 laser scanning microscope
(Cytek Industrial Scientific, Fremont, CA, USA). The characterization process involves the
following three steps: 1. preparation of a cross-section sample through grinding and polish-
ing of the fracture surface; 2. cutting a wear–fatigue cross-section sample along the radial
direction; 3. cutting a wear–fatigue longitudinal profile sample along the axial direction.

3. Results and Discussion
3.1. Wear Effect on Wear–Fatigue Behavior under Low Bending Stress

After the wear–fatigue life exceeding 107 cycles under specific conditions, a relative
balance state between wear and fatigue was achieved. In order to attain a state of relative
equilibrium, the theoretically calculated fatigue limit value was considered as the actual
bending stress loading value, specifically at a bending stress of 468 MPa. Table 1 summa-
rizes wear fatigue test parameters and results under low bending stress. The wear–fatigue
tests were conducted on at least two samples for each set of parameters, while maintaining
the bending stress constant. The obtained data were averaged. Additionally, to ensure
consistency, the rotation speed of the test samples was set to 1200 r/min. The samples,
which exhibited no failures after 107 cycles, were assumed to possess infinite lifetimes
(fatigue life could be defined as passing).

Table 1. Wear–fatigue test parameters and results under low bending stress.

Bending Stress (MPa) Wear Load F (N) Cycle Number (Times) Fatigue Life

468

5 1 × 107+ pass
10 1 × 107+ pass
15 1 × 107+ pass
20 1 × 107+ pass
25 1 × 107+ pass
30 1 × 107+ pass

According to the data presented in Table 1, the tested samples exhibited no failure
under a bending stress of 468 MPa and wear loads ranging from 5 to 30 N. It is noteworthy
that, after undergoing 1 × 107 cycles, the minimum diameter of the sample decreased by
38.3% from its initial value of 4.7 mm to 2.9 mm due to wear. Remarkably, despite being
worn down to a final diameter of only 2.9 mm, no fracture occurred, and the corresponding
bending stress was up to 1989 MPa.

The microscopic morphology of the contact surface under a wear load of 20 N, bending
stress of 468 MPa, and cycles of 1 × 107, is depicted in Figure 4. The observation from
Figure 4a and its magnification in Figure 4b revealed that grinding wear and peeling were
the predominant wear mechanisms, while the surface of the sample remained relatively
intact without any adhesive pits or cracks. The increase in wear load will lead to the
contact stress increase, thereby resulting in the formation of cracks on the contact surface
of the sample. Figure 4c reveals a significant presence of wear debris, with the magnified
observation indicating their nanoscale nature. The EDS spectra of the wear debris, as
depicted in Figure 4d, indicate an oxygen content of approximately 14%. The aforemen-
tioned oxide nanoparticles have been conclusively identified as the primary constituents
of the self-lubricating layer formed during dry sliding. These nanoscale oxide particles
are formed and retained on the contact surface, which serve as a third body to fill the
pits resulting from adhesive wear, thereby facilitating smooth friction. Meanwhile, the
layer of oxide particles is inherently brittle and prone to developing internal cracks, which
in turn diminishes a portion of the frictional energy and reduces the overall shear stress.
The participation of a significant number of oxide nanoparticles additionally enhances the
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contact area, enabling the thin layer to withstand positive pressure and frictional shear
force, thereby effectively suppressing adhesive wear. The Fe2O3 particles, in particular,
demonstrate an enhanced propensity for compaction and sintering at the contact surface,
thereby resulting in a reduction of the coefficient of friction. The surface wear should
therefore be minimized to the nano-scale under small loads. In this case, the formation of
cracks with specific length and depth on the surface can be prevented, while any existing
micro-cracks can be eliminated prior to their further propagation into the material.
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Figure 4. Worn surface and wear debris of the wear–fatigue sample at a wear load of 20 N and
bending stress of 468 MPa: (a) microscopic morphology of the contact surface, (b) magnification
image, (c) oxide nanoparticles, and (d) the EDS spectra of the wear debris.

The SEM images of the sample cross section are depicted in Figure 5. The observation
from Figure 5b revealed that, under bending fatigue stress, a peeling pit gradually devel-
oped under the surface. However, the damage depth remained minimal (approximately
1~2 µm), indicating negligible propagation of cracks in the depth direction. Additionally, it
was evident that the sub-structures in the near surface regions exhibited a nearly parallel
alignment with the sliding direction. This alignment could result in a gradual propagation
of cracks towards the surface rather than deeper into the material [23]. The conclusion
could also be supported by the characterization of fracture toughness in different material
orientations, which revealed that the fracture toughness perpendicular to shear deforma-
tion was four-times higher than the parallel-to-deformation direction [24]. Even if the
cracks propagate through the aforementioned regions, the microstructure within the plastic
deformation layer withstands shear strain and initiates twisting parallel to the surface
(martensite bending). Consequently, cracks within the deformation layer are influenced
and extended in alignment with the bending direction. The crack propagation rate of a type
I crack along the shear direction was significantly enhanced within the plastic deformation
layer. The main crack propagation path was predominantly parallel to the surface, resulting
in wear failure rather than fracture failure. The sample’s minimum diameter decreased by
38.3% from the initial value of 4.7 mm to 2.9 mm after 1 × 107 cycles due to wear behavior,
which only led to a reduction in size but did not result in failure of the sample.
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stress of 468 MPa: (a) microscopic morphology of the crack and (b) martensite and nanolamellar in
the tribolayer.

According to our previous results [23], with the increase in cumulative strain and
strain gradient during dry sliding friction, the nanolamella structures form at the region
of 0~5 µm from the top-most surface. The nanolamellar are shown in Figure 6, and the
interfaces between these nanolamellar can hinder the dislocation movement. If the thickness
of these nanolamellar are considered as the size of the effective grain, their contribution to
strength is equivalent to that of strain-induced nanocrystalline structures, which effectively
impeding dislocation movement and enhancing material strength.
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3.2. Wear Effect on Wear–Fatigue Behavior under High Bending Stress

The results presented in Table 2 demonstrate that the wear–fatigue life is influenced
by the applied wear load, while maintaining a bending stress of 550 MPa. The results
clearly show that the wear–fatigue life of the sample significantly decreased as the wear
load increased when the bending stress was 550 MPa.

Table 2. Wear–fatigue test parameters and results under high bending stress.

Bending Stress (MPa) Wear Load (N) Cycles Fatigue Life

550

5 1.0 × 107+ pass
10 5.36 × 106 failure
15 3.21 × 106 failure
20 2.61 × 106 failure
25 2.14 × 106 failure
30 2.34 × 106 failure
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When the wear load was 5 N, the sample remained intact after 1 × 107 cycles. The wear
rate and net fatigue crack propagation rate along the depth direction were in equilibrium,
and there was no large stress concentration. However, after the wear load exceeded 10 N,
as the load was further increased, the sample became more and more prone to failure.
Microcracks were formed at the contact surface due to Hertz contact stress and local plastic
deformation. These microcracks propagated along the direction parallel to the surface
and the depth direction under bending fatigue stress. When the bending fatigue stress
was 468 MPa, the microcracks mainly dissipated energy in the form of wear. The increase
in wear load caused the cracks to be parallel to the surface and the wear rate and crack
propagation rate reached the balance to the depth; therefore, the corresponding fatigue
life was relatively high. However, once bending fatigue stress was increased to 550 MPa,
the crack propagation rate along the depth direction was greatly increased and the crack
propagation surface tended to be perpendicular to the surface. In this case, if wear resulted
in greater stress concentration on the surface, deep cracks soon extended along the depth
direction. This was the main reason for the large life reduction after increasing wear load.
The wear rate was much smaller than the crack propagation rate along the depth direction,
and surface cracks could not be eliminated by wear.

The sample surface topography at a wear load of 5 N and bending fatigue stress of
550 MPa after 2 million cycles is illustrated in Figure 7. It can be seen from the figure that
abrasive wear was still the main wear mechanism, with roughness Ra = 2.60 µm, which
was the same as the surface topography of the sample at a wear load of 20 N and bending
fatigue stress of 468 MPa after 1 × 107 cycles. Under high bending stress and low wear
load, there were no deep initial cracks and greater stress concentration on the worn surface.
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550 

5 1.0 × 107+ pass 
10 5.36 × 106 failure 
15 3.21 × 106 failure 
20 2.61 × 106 failure 
25 2.14 × 106 failure 
30 2.34 × 106 failure 

When the wear load was 5 N, the sample remained intact after 1 × 107 cycles. The wear 
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Figure 7. Sample surface topography at wear load of 5 N and bending fatigue stress of 550 MPa after
2 million cycles.

Sample contact surfaces after 2 million cycles under bending stress of 550 MPa and
wear load of 20 N are illustrated in Figure 8a. In the figure, a shot crack is witnessed at the
worn surface, and there is an inclination angle between propagation and sliding directions.
This indicated that the initial surface cracks were mainly caused by wear. When the cycle
number was increased to 2.3 million, the number of microscopic cracks on the surface was
significantly increased, as illustrated in Figure 8b. In terms of wear mechanism and surface
roughness, it was actually different from that at a bending stress of 468 MPa and wear load
of 20 N. This indicated that an increase in bending stress could accelerate surface crack
propagation. It further proved that when the bending fatigue stress was large, the surface
cracks caused by wear mainly expanded along the depth direction. After increasing the
wear load, the surface crack formation speed was accelerated, and cracks were expanded
along the depth direction at a faster speed. If the wear load matched the bending stress,
surface cracks were quickly eliminated by wear. However, the cracks caused by wear
expanded toward the depth under a high bending stress, eventually leading to fractures.
Local amplification images of the macroscopic fracture morphology under a bending stress
of 550 MPa and wear load of 20 N are shown in Figure 8c,d. It was observed that the
crack source area was very small, and the crack surface was very rough near the surface,
with deep and wide gullies (all caused by wear). Usually, fatigue cracks occur in internal
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inclusions, but the introduction of wear load changes the initiation position from central
inclusions to the wear surface. As small surface cracks, it quickly changes from a small
crack propagation phase to a long surface crack extension phase. It was seen from the
fracture that the fatigue crack initiation time was short. Wear caused the initial surface
crack initiation to quickly expand along the depth direction under high bending fatigue
stress eventually leading to fractures.
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3.3. Rotation Speed Effect on Wear–Fatigue Behavior

In order to explore the rotation speed effect on wear–fatigue behavior, the rotation
speed was set at 1200 and 3000 r/min under a wear load of 30 N. The results revealed that
at a rotation speed of 1200 r/min, samples experienced 1 × 107+ cycles and the minimum
diameter was decreased to 2.9 mm, and when rotation speed increased to 3000 r/min,
samples failed after 3.49 × 106 cycles. Figure 9 illustrates a surface topography with a
rotation speed of 1200 r/min observed by a laser scanning confocal microscope. It can be
seen from the figure that the contact surface was smooth with roughness Ra = 3.23 µm.
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During the test at rotation speed 1200 r/min, part of the debris was also collected
and observed under a laser scanning confocal microscope to capture the morphology and
height map of debris, as illustrated in Figure 10. It was seen that the debris had lost its
metallic luster, was light yellow, mainly became iron oxides, and the width was small (all
within 20 µm, even nanoscale), and the thickness was about 1~2 µm. This was due to the
large plastic deformation of the contact surface resulting in microstructural refinement,
forming nanolamellar [25,26], which increased the diffusion coefficient of oxygen atoms
from the external environment to material subsurface. The contact surface nanolamellar was
oxidized, and the oxidized nanolamellar fell off to form small debris. The thickness of these
debris was small because the microcracks caused by surface strong plastic deformation
were not deep. The wear mechanism was mainly oxidative wear and abrasive wear under
a bending stress of 468 MPa, wear load of 30 N, and rotation speed of 1200 r/min.
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468 MPa: (a) morphology feature and (b) height dimension.

Figure 11 shows a surface topography of a wear–fatigue sample with a rotation speed
of 3000 r/min. It was seen that the contact surface roughness was significantly higher than
that at 1200 r/min, with a roughness value of Ra = 7.445 µm, and there were some adherent
ridges, which indicated that adhesive wear occurred on the contact surface.
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It was seen from Figure 12 that at a rotation speed of 3000 r/min, the debris size was
large (about 200 µm), with obvious metallic luster, cracks and furrows were faintly visible
on debris, and the thickness was very high, about 50 µm. The wear mechanism on the
contact surface was adhesive wear, which was significantly higher than that at 1200 r/min.
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Generally, higher sliding speeds resulted in higher corresponding friction coefficients;
therefore, the wear rate along the depth direction was also increased. Adhesive wear
predominated at higher sliding speeds, with large adhesive pits appearing on the sliding
contact surface [27]. Adhesive wear aggravation led to a large increase in debris size,
which meant that surface oxidation had fallen off if the premise was not sufficient, which
greatly reduced the protective effect of oxidation [28]. At low rotation speeds, the surface
wear mechanism was slight oxidative wear and relatively slight peeling of the oxide layer.
At too high rotation speeds, friction heat was greatly increased, surface material was
softened, surface plastic deformation was serious, wear became more intense, and the wear
mechanism mostly changed from abrasive wear to adhesive wear. Once a more severe
adhesive wear was generated, the depth of the formed surface microcrack was greatly
increased, so that the initial crack depth exceeded the deformation layer thickness. In
this way, the beneficial effect of wear on the wear–fatigue behavior no longer existed but
accelerated the wear–fatigue loss, leading to fracture failure after a short cycle.

4. Conclusions

In this research, under large displacement sliding wear and rotary bending fatigue
load, wear–fatigue behavior of 20CrNi2Mo martensitic steel with lamellar structures were
examined using self-developed equipment, and these results provide a stronger experi-
mental and theoretical basis for the investigation of wear–fatigue systems. The following
conclusions can be drawn.

a. If the wear mechanism is mainly slight oxidative wear with oxide nanoparticles
forming on the contact surface, the fatigue life is long under low bending stress, and
substructures in the near-surface areas are almost parallel to the sliding direction.

b. If bending stress is high, the wear–bending fatigue life is long under low wear load.
On the other hand, an increase in wear load sharply reduced the wear–bending
fatigue life.

c. If other experimental conditions are fixed, an increase in the sliding speed will lead to
a wear mechanism change from oxidative wear and grinding wear to adhesive wear,
resulting in a significant decrease in wear–fatigue life.

In the future, non-destructive testing and other methods can be considered to observe
the crack under different cycles, and the calculation model of the crack propagation rate
can be established by analyzing these data combined with the tribolayer, wear rate, and
mechanical property parameters of materials.
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