
Citation: Rakic, A.; Anicic, R.; Rakic,

M.; Nejkovic, L. Integrated

Bioinformatics Investigation of Novel

Biomarkers of Uterine Leiomyosarcoma

Diagnosis and Outcome. J. Pers. Med.

2023, 13, 985. https://doi.org/

10.3390/jpm13060985

Academic Editors: Dorota
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Abstract: Uterine leiomyosarcomas (uLMS) have a poor prognosis and a high percentage of recurrent
disease. Bioinformatics has become an integral element in rare cancer studies by overcoming the
inability to collect a large enough study population. This study aimed to investigate and highlight
crucial genes, pathways, miRNAs, and transcriptional factors (TF) on uLMS samples from five Gene
Expression Omnibus datasets and The Cancer Genome Atlas Sarcoma study. Forty-one common
differentially expressed genes (DEGs) were enriched and annotated by the DAVID software. With
protein–protein interaction (PPI) network analysis, we selected ten hub genes that were validated with
the TNMplotter web tool. We used the USCS Xena browser for survival analysis. We also predicted
TF-gene and miRNA-gene regulatory networks along with potential drug molecules. TYMS and TK1
correlated with overall survival in uLMS patients. Finally, our results propose further validation of
hub genes (TYMS and TK1), miR-26b-5p, and Sp1 as biomarkers of pathogenesis, prognosis, and
differentiation of uLMS. Regarding the aggressive behavior and poor prognosis of uLMS, with the
lack of standard therapeutic regimens, in our opinion, the results of our study provide enough
evidence for further investigation of the molecular basis of uLMS occurrence and its implication in
the diagnosis and therapy of this rare gynecological malignancy.
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1. Introduction

Even though they represent only 3–9% of all uterine malignancies, uterine leiomyosar-
comas (uLMS) are aggressive neoplasms with poor prognosis, resistance to standard
treatment protocols, and a high percentage of recurrent disease [1,2]. No imaging method
or laboratory test can differentiate uLMS preoperatively with enough certainty [1,3]. The
definitive diagnosis is still related to histology and, nowadays, molecular testing [4].

The main diagnostical challenge is to differentiate uLMS from uterine leiomyomas
(ULM), a benign uterine smooth-muscle tumor with similar clinical and imaging findings.
Since usual uterine leiomyoma treatment has a conservative or minimally invasive ap-
proach, the misdiagnosis between these entities could significantly increase morbidity and
mortality [5,6].

Surgery and early complete resection is the only evidence-based effective treatment,
with the standard protocol being total abdominal hysterectomy and bilateral salpingo-
oophorectomy [7,8]. By the current consensus, chemotherapy is ineffective, and there
are no standard regimens for adjuvant chemotherapy after complete resection [7–10]. On
the other hand, doxorubicin monotherapy is still the superior regimen for metastatic,
unresectable, and recurrent disease [8]. To date, none of the clinical trials performed a
biomarker-specific patient selection [8].
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Bioinformatics provides methodologies and databases for the analysis, integration,
and interpretation of multi-omics Big Data [11]. Moreover, bioinformatics has become
an integral element in rare cancer studies by overcoming the inability to collect a large
enough study population [12]. With this study, we wanted to explore driving genes and
significant pathways and identify potential novel biomarkers of diagnosis and outcome in
uLMS patients using an integrated bioinformatics analysis.

2. Materials and Methods
2.1. Microarray Data Mining and Identification of DEGs

Supported by the National Center for Biotechnology Information (NCBI), Gene Ex-
pression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/, accessed on 3 March 2023)
is an open-access database that stores raw and processed gene expression data retrieved
by a variety of methods, such as DNA microarray, high-through output sequencing, and
RT-PCR [13,14]. We used advanced search queries to obtain datasets that include informa-
tion regarding gene expression from uLMS, normal myometrium, and ULM. We included
datasets that stored processed expression profiles obtained by array analysis of human
uLMS, ULM, and normal myometrial tissue, with the number of samples > 8. Finally, we in-
cluded the following datasets for further analysis: GSE764, GSE36610, GSE64763, GSE68312,
and GSE32507. Information regarding the platforms, the total number of samples, and the
specific number of tumor samples are presented in Table 1.

Table 1. Platforms, total samples, and the number of tissue-specific samples from GSE datasets used
for analysis.

GSE Series Platform No. of Samples uLMS Normal Myometrium ULM UCS

GSE764 GPL80 26 9 4 7 /

GSE36610 GPL7363 22 12 10 / /

GSE64763 GPL571 79 25 29 25 /

GSE68312 GPL6480 9 3 3 3

GSE32507 GPL6480 46 8 / / 14

uLMS—uterine leiomyosarcoma; ULM—uterine leiomyoma; UCS—uterine carcinosarcoma.

The Cancer Genome Atlas (TCGA) (https://www.cancer.gov/ccg/research/genome-
sequencing/tcga, accessed on 4 March 2023), a joint project between the National Cancer
Institute (NCI) and the National Human Genome Research Institute, is a publicly available
storage of over 2.5 petabytes of genomic, epigenomic, transcriptomic, and proteomic data
from over 20,000 cancer and matched normal tissue samples [15]. The TCGA-SARC dataset
includes samples from several sarcoma subtypes, including leiomyosarcoma arising from
gynecological tissue. The University of California, Santa Cruz (UCSC) Xena (https://xena.
ucsc.edu/, accessed on 4 March 2023) is an online, freely available tool for visualizing
and analysis of large public repositories and datasets, including TCGA [16]. The RNA
sequencing (RNA-Seq) data, clinical data, and probe annotation files of 33 uLMS patients
in TCGA-SARC were downloaded and analyzed by the UCSC Xena.

GEO includes an R-based tool for the analysis and visualization of differentially
expressed genes between user-determined groups of samples from the exact GEO dataset,
GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/, accessed on 5 March 2023) [17]. We
used GEO2R to detect DEGs between uLMS and normal myometrium, uLMS and ULM,
and uLMS and UCS samples. The screening of DEGS was carried out using a threshold of
|log2 FC| ≥ 1 and p < 0.05. We used an online tool, InteractiVenn (http://www.interactivenn.
net/, accessed on 10 March 2023) [18], to plot Venn diagrams of the DEGs of datasets. The
overlapping DEGs from GSE764, GSE36610, GSE64763, and GSE68312 between uLMS and
normal myometrium were enrolled in further analysis. DEGs between uLMS and uterine
fibroids from GSE764 and GSE64763 were also screened and further analyzed. We screened

https://www.ncbi.nlm.nih.gov/geo/
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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DEGs between uLMS and UCS from GSE32507. Finally, we constructed Venn diagrams of
the overlapped DEGs between two (uLMS-normal myometrium and uLMS-ULM) and all
three cohorts, respectively.

2.2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis

GO is a bioinformatic resource that provides annotations supported by evidence to
describe the biological roles of genes, proteins, and complexes, among others, by clas-
sifying them using predetermined ontologies [19]. The biological domain is explained
by GO using three aspects: Molecular Function (MF), Cellular Component (CC), and
Biological Process (BP). Kyoto Encyclopedia of Genes and Genomes (KEGG) integrates
eighteen databases which are categorized into systems, genomic, chemical, and health
information [20]. The central database in KEGG is PATHWAY, consisting of pathway
maps. There are six categories of pathway maps: metabolism, genetic information pro-
cessing, environmental information processing, cellular processes, organismal systems,
and human diseases [20,21]. A comprehensive set of functional annotation tools is avail-
able in the Database for Annotation, Visualization, and Integrated Discovery (DAVID,
https://david.ncifcrf.gov/home.jsp, accessed on 15 March 2023) to assist investigators in
understanding the biological meaning behind large lists of genes. Using DAVID Gene as
the foundation, these tools assemble functional annotations from multiple sources using
the DAVID Knowledgebase. All DEGs were uploaded, separately analyzed, and visualized
through DAVID software with a cutoff p-value < 0.05.

2.3. Protein-Protein Interaction (PPI) Network Construction

The STRING database (https://string-db.org/, accessed on 16 March 2023) is an online
resource for the investigation of organism-wide protein association and interaction [22].
Each protein–protein association is accompanied by an online viewer allowing for visual
inspection of the supporting evidence [22]. We used STRING version 11.5 with a cutoff
confidence score > 0.4 for the construction of PPI between overlapped DEGs between uLMS
and normal myometrium and uLMS and ULM.

2.4. Identification of Hub Genes

We uploaded and visualized the PPI network to Cytoscape version 3.9.1 software.
We also used The Molecular Complex Detection (MCODE) [23], a Cytoscape plug-in, to
contemplate the most significant nodes with degree cutoff = 2, K-Core = 2, and Node Score
Cutoff = 0.2. Another Cytoscape plug-in, CytoHubba [24], was used to find the top genes
with the Maximal Clique Centrality (MCC) analysis method, which has proven to be the
superior method in predicting the essential proteins from the PPI network [24]. We also
investigated the functional annotation and pathways enrichment of the selected genes. Finally,
we constructed a gene co-expression network using GeneMANIA (https://genemania.org/,
accessed on 20 March 2023) [25].

2.5. Validation of Hub Genes and Survival Analysis

Using TNMplot software (https://tnmplot.com/analysis/, accessed on 25 March
2023) [26], we compared the expression of selected hub genes between tumor and normal
uterine tissue (both paired tumor and adjacent normal tissue and non-paired tumor and
normal tissue platforms were used). To further verify the relationship between hub genes
and clinical outcomes, we analyzed the data from the TCGA-SARC database for verification.
Overall survival (OS) and disease-free interval (DFI) for the selected genes was performed
using the USCS Xena browser.

2.6. TFs and miRNAs Related to Hub Genes

In order to map hub genes to their corresponding transcription factors (TFs) and
miRNAs, we used NetworkAnalyst 3.0 (https://www.networkanalyst.ca/, accessed on
27 March 2023), a web-based visualization tool that facilitates the search for TF-gene and
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miRNA-gene interactions in gene regulatory networks [27]. miRNAs with a degree cutoff
value = 1.0 were found for each of the hub genes.

We constructed TF-gene and miRNA-gene networks with Cytoscape. Furthermore, we
obtained a table of the most significant TFs and miRNAs correlated with hub genes, ranked
by an adjusted p-value, from miRTarBase (https://mirtarbase.cuhk.edu.cn/~miRTarBase/
miRTarBase_2022/php/index.php, accessed on 30 March 2023) and TRRUST (https://
www.grnpedia.org/trrust/, accessed on 30 March 2023), using Enrichr (https://maayanlab.
cloud/Enrichr/, accessed on 30 March 2023) [28].

2.7. Drug–Hub Gene Interaction

We uploaded the hub genes to NetworkAnalyst 3.0 (https://www.networkanalyst.ca/,
accessed on 10 April 2023) to obtain a drug-hub gene interaction network.

3. Results
3.1. Identification of DEGs

The analysis revealed 737 (266 upregulated and 471 downregulated), 1278 (504 up-
regulated and 774 downregulated), 1089 (392 upregulated and 697 downregulated), and
4145 (1986 upregulated and 2159 downregulated) DEGs between uLMS and normal my-
ometrium, from GSE764, GSE36610, GSE64763, and GSE68312, respectively.

Furthermore, we found 57 overlapping DEGs (Figure 1A) from the four datasets
(14 upregulated and 43 downregulated). There were 1102 (396 upregulated and 706 down-
regulated) and 752 (258 upregulated and 494 downregulated) DEGs between uLMS and
ULM from GSE764 and GSE64763, respectively.
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A total of 162 overlapped DEGs (Figure 1B) from these two databases were iden-
tified (32 upregulated and 130 downregulated). A volcano plot in Figure 1C shows
483 (290 upregulated and 193 downregulated) DEGs between uLMS and UCS from the
GSE32507 dataset.

Figure 2A shows the intersected DEGs between uLMS and normal myometrium
and uLMS and ULM. Two overlapping DEGs between all three cohorts are shown in
Figure 2B. The only two overlapped DEGs between the three cohorts were ATRX and
PTGER3, both downregulated.
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3.2. GO and KEGG Pathway Enrichment Analysis

The most enriched GO terms and KEGG pathways for DEGs between uLMS and
normal myometrium are presented in Table 2.

Table 2. GO and KEGG pathway enrichment of DEGs between uLMS and normal myometrium with
a number of genes enriched in selected terms and a p-value of significance.

Category Term Count p-Value

GOTERM_BP_DIRECT GO:0043627~response to estrogen 5 3.53 × 10−5

GOTERM_BP_DIRECT GO:0043066~negative regulation of the apoptotic process 9 7.88 × 10−5

GOTERM_BP_DIRECT GO:0007568~aging 6 1.75 × 10−4

GOTERM_BP_DIRECT GO:0003151~outflow tract morphogenesis 4 2.91 × 10−4

GOTERM_BP_DIRECT GO:0045944~positive regulation of transcription from RNA
polymerase II promoter 12 3.09 × 10−4

GOTERM_CC_DIRECT GO:0005887~integral component of plasma membrane 15 1.29 × 10−5

GOTERM_CC_DIRECT GO:0005886~plasma membrane 28 1.16 × 10−4

GOTERM_CC_DIRECT GO:0009897~external side of plasma membrane 8 2.41 × 10−4

GOTERM_CC_DIRECT GO:0005576~extracellular region 16 2.77 × 10−4

GOTERM_CC_DIRECT GO:0070062~extracellular exosome 15 1.39 × 10−3

GOTERM_MF_DIRECT GO:0003682~chromatin binding 8 3.57 × 10−4

GOTERM_MF_DIRECT GO:0042802~identical protein binding 14 8.97 × 10−4

GOTERM_MF_DIRECT GO:0005539~glycosaminoglycan binding 3 2.49 × 10−3

GOTERM_MF_DIRECT GO:0005319~lipid transporter activity 3 3.31 × 10−3

GOTERM_MF_DIRECT GO:0005515~protein binding 46 5.18 × 10−3

KEGG_PATHWAY hsa05202:Transcriptional misregulation in cancer 8 4.08 × 10−5

KEGG_PATHWAY hsa05200:Pathways in cancer 10 1.01 × 10−2

KEGG_PATHWAY hsa05215:Prostate cancer 4 1.23 × 10−2

KEGG_PATHWAY hsa05205:Proteoglycans in cancer 5 1.86 × 10−2

KEGG_PATHWAY hsa00240:Pyrimidine metabolism 3 3.38 × 10−2
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The most enriched GO terms and KEGG pathways for DEGs between uLMS and ULM
are presented in Table 3.

Table 3. GO and KEGG pathway enrichment of DEGs between uLMS and ULM with a number of
genes enriched in selected terms and a p-value of significance.

Category Term Count p-Value

GOTERM_BP_DIRECT GO:0008284~positive regulation of cell proliferation 26 2 × 10−4

GOTERM_BP_DIRECT GO:0010628~positive regulation of gene expression 21 6 × 10−6

GOTERM_BP_DIRECT GO:0007568~aging 12 4 × 10−7

GOTERM_BP_DIRECT GO:0045944~positive regulation of transcription from RNA polymerase
II promoter 28 1 × 10−10

GOTERM_BP_DIRECT GO:0007179~transforming growth factor beta receptor signaling pathway 9 1 × 10−10

GOTERM_CC_DIRECT GO:0005615~extracellular space 40 1.98 × 10−7

GOTERM_CC_DIRECT GO:0005576~extracellular region 38 1.55 × 10−10

GOTERM_CC_DIRECT GO:0005737~cytoplasm 72 2.06 × 10−10

GOTERM_CC_DIRECT GO:0031093~platelet alpha granule lumen 7 1.31 × 10−11

GOTERM_CC_DIRECT GO:0042383~sarcolemma 8 1.53 × 10−11

GOTERM_MF_DIRECT GO:0005515~protein binding 134 1.19 × 10−10

GOTERM_MF_DIRECT GO:0005158~insulin receptor binding 5 3.76 × 10−10

GOTERM_MF_DIRECT GO:0005178~integrin binding 9 5.80 × 10−10

GOTERM_MF_DIRECT GO:0005509~calcium ion binding 19 6.29 × 10−10

GOTERM_MF_DIRECT GO:0005114~type II transforming growth factor beta receptor binding 4 6.70 × 10−10

KEGG_PATHWAY hsa05205:Proteoglycans in cancer 15 5.27 × 10−8

KEGG_PATHWAY hsa05200:Pathways in cancer 23 1.60 × 10−10

KEGG_PATHWAY hsa05202:Transcriptional misregulation in cancer 14 1.62 × 10−10

KEGG_PATHWAY hsa05206:MicroRNAs in cancer 15 6.25 × 10−10

KEGG_PATHWAY hsa05218:Melanoma 7 3.86 × 10−12

Table 4 presents the most enriched GO terms and KEGG pathways for DEGs between
uLMS and UCS.

Table 4. GO and KEGG pathway enrichment of DEGs between uLMS and UCS with a number of
genes enriched in selected terms and a p-value of significance.

Category Term Count p-Value

GOTERM_BP_DIRECT GO:0097190~apoptotic signaling pathway 9 1.51 × 10−4

GOTERM_BP_DIRECT GO:0043086~negative regulation of catalytic activity 10 9.65 × 10−4

GOTERM_BP_DIRECT GO:0045214~sarcomere organization 6 1.09 × 10−3

GOTERM_BP_DIRECT GO:0001933~negative regulation of protein phosphorylation 8 1.48 × 10−3

GOTERM_BP_DIRECT GO:0051893~regulation of focal adhesion assembly 5 1.50 × 10−3

GOTERM_CC_DIRECT GO:0005925~focal adhesion 30 1.24 × 10−8

GOTERM_CC_DIRECT GO:0005829~cytosol 150 2.57 × 10−11

GOTERM_CC_DIRECT GO:0070062~extracellular exosome 72 5.57 × 10−10

GOTERM_CC_DIRECT GO:0005938~cell cortex 13 1.52 × 10−11

GOTERM_CC_DIRECT GO:0016020~membrane 106 2.67 × 10−11
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Table 4. Cont.

Category Term Count p-Value

GOTERM_MF_DIRECT GO:0005515~protein binding 327 1.28 × 10−5

GOTERM_MF_DIRECT GO:0003779~actin binding 19 3.84 × 10−11

GOTERM_MF_DIRECT GO:0002020~protease binding 10 6.18 × 10−11

GOTERM_MF_DIRECT GO:0019901~protein kinase binding 23 1.00 × 10−3

GOTERM_MF_DIRECT GO:0070513~death domain binding 3 4.00 × 10−3

KEGG_PATHWAY hsa04510:Focal adhesion 19 4.01 × 10−7

KEGG_PATHWAY hsa04810:Regulation of actin cytoskeleton 15 5.22 × 10−4

KEGG_PATHWAY hsa04270:Vascular smooth muscle contraction 11 7.31 × 10−4

KEGG_PATHWAY hsa05135:Yersinia infection 10 3.22 × 10−3

KEGG_PATHWAY hsa05418:Fluid shear stress and atherosclerosis 10 3.55 × 10−3

The most enriched GO terms and KEGG pathways of the upregulated and downregu-
lated overlapped DEGs between uLMS and normal myometrium and uLMS and ULM are
presented in Table 5.

Table 5. GO and KEGG pathway enrichment of the upregulated and downregulated overlapped
DEGs between uLMS and normal myometrium and uLMS and ULM with a number of genes enriched
in selected terms and a p-value of significance.

U
PR

EG
U

LA
T

ED

Category Term Count p-Value

GOTERM_BP_DIRECT GO:0051726~regulation of cell cycle 3 5.02 × 10−3

GOTERM_BP_DIRECT GO:0044772~mitotic cell cycle phase transition 2 9.88 × 10−3

GOTERM_BP_DIRECT GO:0071897~DNA biosynthetic process 2 1.36 × 10−2

GOTERM_CC_DIRECT GO:0000307~cyclin-dependent protein kinase holoenzyme complex 2 1.66 × 10−2

GOTERM_MF_DIRECT GO:0019901~protein kinase binding 3 1.87 × 10−2

KEGG_PATHWAY hsa00240:Pyrimidine metabolism 2 4.17 × 10−2

KEGG_PATHWAY hsa05200:Pathways in cancer 3 5.27 × 10−2

KEGG_PATHWAY hsa01232:Nucleotide metabolism 2 6.06 × 10−2
D

O
W

N
R

EG
U

LA
T

ED

GOTERM_BP_DIRECT GO:0007568~aging 5 7.45 × 10−5

GOTERM_BP_DIRECT GO:0045944~positive regulation of transcription from RNA
polymerase II promoter 9 2.9 × 10−4

GOTERM_BP_DIRECT GO:0043066~negative regulation of the apoptotic process 6 9.56 × 10−4

GOTERM_CC_DIRECT GO:0005886~plasma membrane 19 1.49 × 10−4

GOTERM_CC_DIRECT GO:0005887~integral component of plasma membrane 9 1.03 × 10−3

GOTERM_CC_DIRECT GO:0005576~extracellular region 10 3.14 × 10−3

GOTERM_MF_DIRECT GO:0005539~glycosaminoglycan binding 3 8.25 × 10−4

GOTERM_MF_DIRECT GO:0003682~chromatin binding 5 6.81 × 10−3

GOTERM_MF_DIRECT GO:0001228~transcriptional activator activity, RNA polymerase II
transcription regulatory region sequence-specific binding 5 7.28 × 10−3

KEGG_PATHWAY hsa05202:Transcriptional misregulation in cancer 7 8.54 × 10−6

KEGG_PATHWAY hsa05200:Pathways in cancer 7 2.18 × 10−3

KEGG_PATHWAY hsa04068:FoxO signaling pathway 3 4.75 × 10−2
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3.3. PPI Network and Hub Gene Selection

We uploaded overlapping DEGs between uLMS and normal myometrium and uLMS
and ULM into the STRING database (Figure 3A). Then, the STRING data was uploaded to
Cytoscape, where a PPI network with 30 nodes and 52 edges was constructed (Figure 3B).
One module fulfilled the MCODE cutoff criteria (Figure 3C). This module consisted of: TK1,
TYMS, KIAA0101, CKS2, FOXM1, CCNE1, ESR1, MMP9, CXCL12, TGFBR2, CTGF, and
IGF1. Finally, the Cytohubba MCC module ranked the top 10 genes, which were classified
as hub genes (Figure 3D, Table 6).
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ULM. (B) PPI network constructed by Cytoscape. (C) A significant module of the network (in
yellow) provided by the MCODE plug-in. (D) Cytohubba MCC module ranked the hub genes from
the following network (the color correlates with the rank: red rectangles present the highest rank,
followed by orange and yellow).

Among hub genes, there were six major upregulated (TYMS, FOXM1, MMP9, CCNE1,
CKS2, and TK1) and four downregulated genes (ESR1, CTGF, IGF1, and TGFBR2). Figure 4
presents hub genes’ GO BP (Figure 4A), CC (Figure 4B), and MF (Figure 4C) annotations.
Hub genes were enriched only in the “pathways in cancer” KEGG pathway.

The present study utilized the GeneMANIA database to extract information regarding
the interaction relationship and potential regulatory mechanism of the hub genes. Sub-
sequently, a gene interaction network was constructed based on the obtained data. The
network consists of 30 genes, including 10 hub genes and another 20 genes extracted from
the GeneMANIA (Figure 5). The results displayed that the hub genes were co-expressed in-
teractively with BLZF1, MEP1A, CEP43, ZC3H11A, PKIG, FGFR3, MEP1B, VCAN, TGFBR3,
E2F4, PNMT, COA7, PLK3, E2F3, CDK2, IGFBP6, IGFBP4, TGFB3, PES1, and IARS2. The
functions of the hub genes were mainly associated with growth factor binding, cell cycle
G1/S phase transitions, transforming growth factor beta receptor (TGFBR) binding, and
G1/S transition of the mitotic cell cycle (Figure 5).
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Table 6. Hub genes ranked by MCC method from Cytohubba plug-in, with the full gene names,
regulation (downregulated/upregulated), and MCC score.

Gene Symbol Gene Name Regulation Score

ESR1 estrogen receptor 1 downregulated 60

FOXM1 forkhead box M1 upregulated 55

MMP9 matrix metallopeptidase 9 upregulated 55

IGF1 insulin-like growth factor 1 downregulated 52

CTGF connective tissue growth factor downregulated 51

TK1 thymidine kinase 1 upregulated 50

TYMS thymidylate synthetase upregulated 50

CKS2 cyclin-dependent kinases regulatory subunit 2 upregulated 48

CCNE1 cyclin E1 upregulated 30

TGFBR2 transforming growth factor, beta receptor II downregulated 26
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3.4. Hub Gene Validation and Survival Analysis

The expression of overlapped DEGs between uLMS and normal myometrium and
uLMS and ULM were validated using TNMplot. All upregulated overlapped DEGs were
also overly expressed in tumor tissue compared to the normal uterine tissue (Figure 6). All
downregulated overlapped DEGs except ESR1 were significantly expressed in the normal
uterine tissue compared to tumor tissue (Figure 7).
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USCS Xena browsers’ advanced query isolated samples of uterine leiomyosarcoma
with OS, DSS, and DFI data (Figure 8). Figure 9 shows the survival probability plots com-
pared to the expression of previously identified hub genes. Since the analysis revealed that
TYMS and TK1 expression significantly correlated with overall survival, we further ana-
lyzed the DFI compared to the expression of these genes—lower TK1 expression correlated
with longer DFI. The correlation between TYMS expression and DFI was not significant
(Figure 10).
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Figure 8. Extraction of uterine leiomyosarcoma samples from TCGA-SARC using USCS Xena. The
samples were extracted from the TCGA-SARC study as follows: column A presents the number of
samples; column B presents the expression of the gene of interest; gender: FEMALE (column C);
histological type: Leiomyosarcoma (column D); tumor tissue site: Gynecological–Uterus (column F).
Columns E, G, and H present Overall survival (OS), Disease-free interval (DFI), and Disease-specific
survival (DSS), respectively. OS, DFI, and DSS were correlated with the expression of the genes
of interest.

3.5. Candidate TFs and miRNAs Related to Hub Genes

We constructed a miRNAs-target gene network with 397 nodes and 476 edges (Figure 11).
Table 7 consists of six candidate miRNAs based on an adjusted p-value. miR-26a-5p and
miR-26b-5p, two of the most significant miRNAs, were connected to five and seven hub
genes, respectively. Candidate miRNAs targeting hub genes with adjusted p-values are
presented in Table 7.
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Figure 10. DFI of uLMS patients form TCGA-SARC compared to the expression of TYMS and TK1.
*—presents a significant difference according to the p-value.

Table 7. Candidate miRNAs targeting hub genes with the number of overlapped genes, adjusted
p-values.

Term Overlap Adjusted p-Value Genes

hsa-miR-26b-5p 7/1872 0.0012 CCNE1; CKS2; IGF1; TK1; FOXM1; TYMS; CTGF

hsa-miR-18b-5p 3/116 0.0029 IGF1; ESR1; CTGF

hsa-miR-302a-5p 3/126 0.0029 CKS2; IGF1; MMP9

hsa-miR-145-5p 3/238 0.015 ESR1; CTGF; TGFBR2

hsa-miR-18a-5p 3/262 0.017 ESR1; CTGF; TGFBR2
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Figure 11. miRNA-target gene network. Yellow hexagons represent hub genes; green hexagons
present miRNAs with a degree cutoff value of at least 1.0.

TF-hub gene network with 163 nodes and 227 edges is presented in Figure 12. Arguably
the most significant TF, SP1, regulated seven hub genes (TGFBR2, FOXM1, TYMS, CTGF,
MMP9, TK1, and ESR1). The rest of the TFs and overlapped genes are presented in Table 8.

Table 8. List of the most significant TFs, number of overlapped genes, ranked by p- and q-values,
and list of overlapped genes.

Key TF Description
No. of

Overlapped
Genes

p-Value q-Value List of Overlapped Genes

SP1 Sp1 transcription factor 7 6.57 × 10−10 1.45 × 10−8 TGFBR2, FOXM1, TYMS,
CTGF, MMP9, TK1, ESR1

FLI1 Friend leukemia virus integration 1 3 2.16 × 10−7 2.28 × 10−6 TGFBR2, FOXM1, CTGF
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Table 8. Cont.

Key TF Description
No. of

Overlapped
Genes

p-Value q-Value List of Overlapped Genes

HDAC2 Histone deacetylase 2 3 3.11 × 10−7 2.28 × 10−6 CCNE1, TGFBR2, IGF1

EP300 E1A binding protein p300 3 2.93 × 10−6 1.36 × 10−5 IGF1, CCNE1, MMP9

WT1 Wilms tumor 1 3 3.09 × 10−6 1.36 × 10−5 IGF1, CCNE1, CTGF

NCOR1 Nuclear receptor corepressor 1 2 5.3 × 10−6 1.94 × 10−5 IGF1, ESR1

STAT5B Signal transducer and activator of
transcription 5B 2 7.07 × 10−6 2.22 × 10−5 IGF1, ESR1

ETS1 V-ets erythroblastosis virus E26
oncogene homolog 1 (avian) 3 8.3 × 10−6 2.28 × 10−5 TGFBR2, CTGF, MMP9

TFDP1 Transcription factor Dp-1 2 1.14 × 10−5 2.77 × 10−5 CCNE1, TYMS
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3.6. Drug-Gene Interaction Network

Based on NetworkAnalyst, the only significant drug-gene interaction network was
concentrated around TYMS. Figure 13 presents 20 potential drugs with which TYMS
potentially interacts. Among them, we would highlight the interaction between TYMS
and gemcitabine.
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4. Discussion

With a low incidence, uLMS represents a rare gynecological malignancy. On the
other hand, its aggressive behavior and molecular diversity urge studies and trials about
the proper stratification of patients according to the molecular fingerprints to find the
best therapeutic regimens for advanced and unresectable diseases. With an integrated
bioinformatic approach, we wanted to explore the driver genes and relevant pathways of
uLMS development, progression, and survival using the maximized available data. We
used datasets with uLMS and healthy myometrial samples to investigate the potential
genes included in malignant transformation. With the inclusion of DEGs between uLMS
and ULM and uLMS and UCS, we wanted to highlight the genes that could potentially
distinguish these entities preoperatively. Finally, GO and KEGG pathways enrichment, the
construction of PPI to select the hub genes, validation and survival analysis of overlapped
DEGs between uLMS, myometrium, and ULM could initiate a further investigation of
highlighted genes as useful biomarkers of prognosis and therapy response.

DEGs between uLMS and myometrial tissue were enriched in the “response to estro-
gen” and “negative regulation of the apoptotic process” BP categories. The expression of es-
trogen receptors is present in approximately 50% of uLMS, with a range of 25–100% [29–32].
Estrogen receptor 1 (ESR1) was one of the most downregulated genes between uLMS and
myometrium, as well as the downregulated hub gene in our study. TCGA study showed
hypomethylation of ESR1 response genes, which was one of the uLMS unique features
compared to other sarcomas included in this study (mainly soft tissue sarcoma) [33]. More-
over, estrogen and progesterone receptors are considered biomarkers of prognosis in uLMS
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patients [30,34]. In correlation with rather high hormonal receptors expression in uLMS,
there is evidence that uLMS shows a good response to aromatase inhibitors as an adjuvant
therapy in newly-diagnosed patients with grade I uLMS, as well as those with recurrent,
unresectable, and metastatic disease [31,35,36]. To date, only one clinical study showed
that longer progression-free survival correlated with higher expression of the mentioned
hormonal receptors [36].

One of the top upregulated DEGs across uLMS-normal myometrium and uLMS-ULM,
also a hub gene in our study, was matrix metalloproteinase 9 (MMP9). MMP9 is one of
the most investigated members of this particular zinc-dependent endopeptidases family.
The roles of MMP9 occur as a result of extracellular matrix (ECM) degradation [37]. As a
result of ECM and basement membrane degradation, it is believed that MMP9 is involved
in tumor migration, invasion, metastasis, and angiogenesis [38–42]. MMP9 dysregulation
is often associated with poor prognosis in ovarian, breast, and colon cancer patients [37].
MMP9 is a well-studied biomarker in non-small cell lung, cervical, ovarian, and pancreatic
cancer [37]. In our study, MMP9, a hub gene and upregulated DEG between uLMS-
normal myometrium and uLMS-ULM cohorts, was part of the “negative regulation of
apoptotic process” GO BP category, as well as “transcriptional misregulation in cancer”
KEGG pathway enrichment. ESR1 and MMP9 were also components of the only significant
module of the PPI network. One study suggested that the change in MMP expression
and cell motility, as a part of the decidualization process, could be estrogen-dependent
and mediated by E2–ESR1–FOSL1 signaling pathway [43]. More studies should further
investigate the relationship between ESR1 and MMP9 in the pathogenesis of uLMS, but it
is possible that these two genes, alone or combined, have an influence on tumor behavior.

Besides MMP9, FOXM1 (Forkhead Box M1) was a component of GO BP categories
“negative regulation of the apoptotic process”, “positive regulation of cell proliferation”,
and KEGG pathways “transcriptional misregulations in cancer”, and “pathways in can-
cer”, as well as major upregulated hub gene. FOXM1 activates the expression of target
genes at the transcriptional level, and the dysregulation of its activity can be observed
in all hallmarks of tumor cells [44]. Substantial evidence highlights the role of FOXM1
in cancer development: significant expression in a variety of human cancers [44], poor
prognosis of most solid tumors with FOXM1 overexpression [45], and the attenuation of
angiogenesis, metastatic potential, and proliferation in some cancer types as a result of
FOXM1 inhibition [46].

CKS2 (Cyclin-dependent kinase subunit 2) gene was upregulated hub gene in our
study. CKS2 is one of the two members of the human CKS family, believed to be an
important factor in the process of somatic cell division during early embryonic development
as well as the first metaphase/anaphase transition of meiosis [47,48]. Overexpression
and upregulation of CKS2 have been reported in breast [49], gastric [50], colorectal [51],
and hepatocellular [52] cancer. Only one study to date investigated the role of CKS2 in
uLMS [53]. Deng et al. demonstrated significantly higher expression of CKS2 in uLMS
compared to ULM [53]. Furthermore, CKS2 was associated with increased tumor size and
poor overall prognosis in patients with uLMS [53]. Finally, silencing of CKS2 inhibited
cell proliferation, colony formation, migration, and invasion, and resulted in cell cycle
arrest [53]. The authors hypothesize that CKS2 may act as a cell cycle checkpoint protein
for the G1/S transition [53]. These results, along with our findings, not only highlight
the potential of CKS2 as an excellent marker of differentiation between uLMS and ULM
but provides enough evidence for the further investigation of this gene as a biomarker of
prognosis and therapy response, as well as a novel therapy target in uLMS patients.

ATRX, TK1, and TYMS were essential genes in our study. In addition, PTGER3 and
ARTX were the only overlapped DEGs between the three cohorts, while TK1 and TYMS
were associated with the overall survival of the uLMS patients.

Studies recently highlighted the α-thalassemia/mental retardation syndrome X-linked
(ATRX) gene as a central player in genome stability and function maintenance [54]. Gene
expression, conservation of telomeric integrity, DNA damage repair, response to replica-
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tion stress, and homologous recombination are processes in which ATRX has a crucial
role [55–57]. Naturally, it is no coincidence that the ATRX is now one of the most stud-
ied tumor suppressors in a variety of human cancers. Telomeres, a non-coding sequence
at each end of chromosomes, regulate chromosomal stability and genome integrity. As
chromosome replication occurs in somatic cells, telomeres shorten with every duplication,
since Okazaki fragments are synthesized with RNA primers attached ahead on the lagging
strand, which leads to 3′ overhangs as the gap between the RNA primer and the end of the
chromosome cannot be completed [58]. The majority of cells undergo programmed death
when they encounter a barrier called “crisis” [58]. On the other hand, premalignant cells
may overcome the crisis barrier by altering the telomere length pathway. These cells avoid
the telomere shortening by two telomere maintenance mechanisms: telomerase-mediated
telomere maintenance and alternative lengthening of telomeres (ALT) [59]. Emerging
reports highlight the correlation between ATRX loss and the ALT process in human
cancers [60]. In 2017, The Cancer Genome Atlas Research Network provided a multi-
platform analysis of 206 different types of sarcomas, and they concluded that sarcomas are
mostly characterized by copy-number changes, that they have relatively low mutational
loads, and only a few genes highly mutated across all sarcoma types, one of them being
ATRX [33]. A recent study found alterations of ATRX in 51% of uLMS [61]. Another gene
mutated in 19% of uLMS, DAXX, is known to functionally cooperate with ATRX [61]. When
Choi et al. investigated RNA levels between ATRX/DAXX mutation carriers and noncarri-
ers, they confirmed that the detected alterations led to decreased gene expression [61]. This
finding was also associated with ALT [61]. Finally, mutations in ATRX and TP53 correlated
with poor prognosis in patients with uLMS [62].

Thymidine-kinase 1 (TK1) is involved in pyrimidine metabolisms and catalyzes
gamma-phosphate group addition to thymidine [63]. TK1 plays a significant role in the re-
covery pathways of pyrimidine nucleotide for DNA damage synthesis and repair [64]. TK1
is also considered a valuable marker of cell proliferation, along with Ki-67 [63,64]. Some
authors give an advantage to TK1, since its tight association with the S phase, while Ki-67 is
present in all phases of the cell cycle [63,65]. So far, TK1 has been applied as a biomarker in
the lung [66], breast [64], prostate [63], and gastric cancer [67], and its overexpression was
associated with poor prognosis. Furthermore, several studies identified TK1’s correlation
with tumor aggressiveness [68–70]. A study by Wang et al. demonstrated the superiority
of serum TK1 over Carcinoembryonic antigen (CEA) and Alpha-fetoprotein (AFP) as a
marker in the cancer screening of 56,286 people [71]. In this study, serum TK1 correlated
with tumor growth rate and was also a prognostic biomarker for death at the follow-up [71].
Serum TK1 was more sensitive than CEA and AFP in discovering people with malignant
tumors [71].

As far as we know, the role of TK1 has yet to be studied in patients with uLMS. In
our integrated bioinformatic analysis, TK1 was the upregulated hub gene, and its lower
expression correlated with overall and disease-free survival. We urge for the studies of TK1
in uLMS since it could be a valuable biomarker for uLMS aggressiveness and a marker of
the outcome in patients with uLMS.

TYMS, a gene that encodes thymidylate synthase, was upregulated hub gene in our
study. Lower TYMS expression correlated with the overall survival of patients with uLMS.
In DNA replication and repair, thymidylate synthase (TS) plays an essential role in the
biosynthesis of thymidylate (dTTP) [72]. A study in vitro demonstrated that overexpression
of TYMS causes immortalized mammalian cells to develop malignant phenotypes [73].
There is evidence that TYMS up-regulation is associated with adverse clinical behavior
in a variety of solid tumor types, such as lung, breast, gastric, and colorectal cancer. In
their bioinformatics study, Fu et al. demonstrated the upregulation of TYMS in pancreatic
cancer and its association with poor overall survival and recurrence-free survival [74]. They
concluded the study by proposing TYMS as a diagnostic and prognostic biomarker for
patients with pancreatic cancer [74]. Zhang et al. demonstrated that the patients with
higher TYMS expression had worse overall and disease-free survival in patients with
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retroperitoneal liposarcoma [75]. In this study, the knockdown of TYMS promoted apopto-
sis and reduced cell migration and invasion of retroperitoneal liposarcoma cells [75]. In a
recent study, CRISPR-Cas9 functional telomere length screening revealed that thymidine
nucleotide metabolism limits human telomere maintenance [76]. Targeted genetic disrup-
tion revealed several control points that included thymidine metabolism: deletion of the
TK1 decreased thymidine nucleotide salvage, while de novo knockout of TYMS decreased
telomere length [76].

Specificity protein 1 (Sp1) is a transcriptional factor regulating the essential genes
involved with cell proliferation and metastasis of various human neoplasms [77]. Patients
with higher levels of Sp1 have a worse prognosis in several cancer types [77]. Dauer et al.
found that the inhibition of Sp1 also causes cell death in pancreatic cancer [78]. Our results
showed that Sp1 regulated seven hub genes. There is also a documented relationship
between Sp1 and the upregulation of MMP9, a previously highlighted gene involved
with tumor invasion and metastasis [79]. Several factors associated with telomere length
regulation have been linked with Sp1 [79]. The relationship between Sp1, TYMS (which
was found to be regulated by Sp1 in our study), and telomere length should be investigated
in future studies.

In our study, miR-26a-5p and miR-26b-5p were the most significant miRNAs asso-
ciated with hub genes. Both miRNAs were recently proposed as circulating biomarkers
of several cancer types, including breast and cervical cancer [80,81]. The results of our
study found an interesting link between TYMS, miR-26b-5p, and gemcitabine. First, we
previously mentioned that TYMS expression correlated with OS in uLMS patients. Among
seven hub genes, miR-26b-5p also targeted TYMS. Finally, our significant drug-gene in-
teraction network highlighted the interaction between TYMS and gemcitabine. Adjuvant
chemotherapy in uLMS patients remains controversial [82]. Gemcitabine is currently part
of the Phase II trial as second-line chemotherapy for uLMS [8]. A multicenter study in Japan
showed that the most frequent adjuvant chemotherapy was docetaxel and gemcitabine
regimen [83]. A 2004 Phase II trial highlighted gemcitabine activity in uLMS patients and
proposed its’ inclusion in multiagent regimens [84]. On the other hand, a recent study
marked miR-26b-5p as one of the markers of gemcitabine resistance in patients with blad-
der cancer [85]. In addition to all these findings, the results of our study provide enough
evidence for the future investigation of the role of TYMS in the pathogenesis of uLMS.
Finally, TYMS could potentially serve as a valuable biomarker in uLMS prognosis.

There are several limitations to our study. Firstly, the conducted research via bioinfor-
matic analysis does provide valuable results and novel insights into uLMS pathogenesis
and prognosis, but these results require validation in the clinical setting. Furthermore, the
expression of DEGs and hub genes should be verified via immunohistochemistry or even
genetic studies and correlated with the clinical features of the uLMS patients. There are
helpful, validated web tools for the verification of gene expression in various tissues and
cancer types, such as The Human Protein Atlas (https://www.proteinatlas.org/, accessed
on 1 May 2023). Unfortunately, there are no uLMS samples available for analysis. Finally, by
integrating several datasets, we included a total of 90 uLMS patients. More uLMS samples
are required to further validate our results.

5. Conclusions

Our integrated bioinformatic analysis identified several hub genes, candidate miRNAs,
TFs, and signaling pathways associated with uLMS. Most importantly, TYMS, TK1, miR-
26b-5p, and Sp1 panel should be further investigated as biomarkers of pathogenesis,
prognosis, and differentiation of uLMS from other benign and malignant uterine tumors.
Regarding the aggressive behavior and poor prognosis of uLMS, with the lack of standard
therapeutic regimens, in our opinion, the results of our study provide enough evidence for
studies to further investigate the molecular basis of uLMS occurrence and its implication in
the diagnosis and therapy of this rare gynecological malignancy.

https://www.proteinatlas.org/
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