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Abstract: Increasing evidence has revealed the promise of mRNA-type cancer vaccines as a new
direction for cancer immune treatment in several solid tumors, however, its application in papillary
renal cell carcinoma (PRCC) remains unclear. The purpose of this study was to identify potential
tumor antigens and robust immune subtypes for the development and appropriate use of anti-PRCC
mRNA vaccines, respectively. Raw sequencing data and clinical information of PRCC patients were
downloaded from The Cancer Genome Atlas (TCGA) database. The cBioPortal was utilized for the
visualization and comparison of genetic alterations. The TIMER was used to assess the correlation
between preliminary tumor antigens and the abundance of infiltrated antigen presenting cells (APCs).
Immune subtypes were determined by the consensus clustering algorithm, and clinical and molecular
discrepancies were further explored for a deeper understanding of immune subtypes. Five tumor
antigens, including ALOX15B, HS3ST2, PIGR, ZMYND15 and LIMK1, were identified for PRCC,
which were correlated with patients’ prognoses and infiltration levels of APCs. Two immune subtypes
(IS1 and IS2) were disclosed with obviously distinct clinical and molecular characteristics. Compared
with IS2, IS1 exhibited a significantly immune-suppressive phenotype, which largely weakened the
efficacy of the mRNA vaccine. Overall, our study provides some insights for the design of anti-PRCC
mRNA vaccines and, more importantly, the selection of suitable patients to be vaccinated.

Keywords: papillary renal cell carcinoma; tumor antigens; mRNA vaccine; immune landscape;
personalized medicine

1. Introduction

Renal cell carcinoma (RCC), histologically stemming from the tubular epithelial cell
layer, represents the most frequently occurring kidney neoplasms encountered by urologists,
which surpasses 90% of all kidney malignancies [1]. It is estimated that, in the year
2020, there were about 430 thousand newly-diagnosed RCC cases all over the world,
seriously jeopardizing the well-being of humans and becoming a burden on our societies [2].
Papillary renal cell carcinoma (PRCC) is the most common subtype of the non-clear RCC,
accounting for nearly 20% of all subtypes with distinctly different genetic, morphological
and clinical characteristics in comparison with the clear cell RCC [3]. For early-stage patients
suffering from PRCC, surgical extirpation is always the first choice, with the maximal
possibility to be cured and a favorable prognosis; although a portion of PRCC patients
unfortunately progress to metastatic disease with a dismal prognosis [4]. Building on a
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deep understanding of the oncogenesis and progression mechanisms of PRCC, molecular
targeting therapies such as sunitinib and crizotinib, aimed at vascular endothelial growth
factor (VEGF) and the c-MET pathway, respectively, together with subsequent immune
checkpoint blockers, have shown the capacity to retard the aggression of malignant cells;
nonetheless, the efficacy of these remedies is frequently limited or impermanent, for
example, the response rate to therapeutic drugs (encompassing sunitinib and sorafenib) is
only 9.2%, and results from a phase II trial show that merely 4 in 23 PRCC patients treated
with crizotinib achieved partial responses [5–7]. Hence, with the purpose of refining the
prognosis, it is of tremendous necessity to search for other therapies for patients with PRCC.

In recent years, accumulating attention has been paid by scholars worldwide, to the
development of the cancer vaccine, which attempts to enhance the patients’ immunity
against cancerous cells [8]. The discovery of tumor associated antigens (TAAs) represents
one of the major challenges in the design of a vaccine, and several studies have introduced
new ideas to the identification of TAAs [9–11]. In the family of cancer vaccines, compared to
other members, messenger RNA (mRNA) vaccines possess some unique advantages such
as: synchronously eliciting the humoral and cell immunity, without a risk of integration into
the nuclear genome and encoding more epitopes to be presented by antigen presenting cells
(APCs) [12]. Nowadays, the effectiveness and safety of mRNA vaccines have been fully
affirmed in the fight against COVID-19, and this epidemic objectively facilitates the pace
of developing therapeutic mRNA vaccines including those for cancers [13]. Both CV9103
(encoding four tumor antigens) and CV9201 (encoding five tumor antigens) are mRNA
vaccines that treat patients with advanced prostate cancer and non-small lung cell cancer,
respectively, and preliminary results have revealed they are well tolerated as well as having
significant immunogenicity [14,15]. Moreover, several other clinical trials are underway to
investigate the performance and safety of mRNA vaccines in other types of malignancies
encompassing melanoma, head and neck squamous carcinoma and colorectal cancer [16].
As a form of immunotherapy, the outcome of mRNA vaccines is inevitably affected by the
status of the tumor immune microenvironment (TIME), especially the infiltration degree
and function of CD8+ T cells [17]. Nevertheless, as far as we know, there are currently
no published articles with respect to the development of mRNA vaccines for patients
with PRCC.

The goals of this study were the identification of tumor antigens for the design of
mRNA-based vaccines against PRCC and the precision medicine of this remedy assisted by
characterizing the immune subtypes of patients. Altogether, we provide some new ideas
about the development of mRNA vaccines opposing PRCC, as well as the appropriate
selection of patients with heterogeneous TIME to be vaccinated.

2. Materials and Methods
2.1. Obtaining and Processing Public Data

Raw bulk sequencing data (counts format) of PRCC deposited in the comprehensive
TCGA project were downloaded via the Xena Platform [18] (https://xena.ucsc.edu/, ac-
cessed on 7 August 2022) and matched to the clinical and survival information of each
patient. Moreover, openly free data in the “maf” format, accessible at the Genomic Data
Commons Data Portal (https://portal.gdc.cancer.gov/, accessed on 7 August 2022), were
deeply analyzed by means of the “maftools” (an R package) for the disclosure of mutated
genes, mutation frequency, tumor mutation burden (TMB), and expression correlations
among mutated genes of interest.

2.2. cBioPortal Analysis

The online cBioPortal tool (version 5.0.2, http://www.cbioportal.org/, accessed on
7 August 2022) was inaugurated for worldwide researchers especially those interested in
cancer genomics, gathering manifold data mainly from tissue samples (TCGA, International
Cancer Genome Consortium) and malignant cells (Cancer Cell Line Encyclopedia), and
others [19]. Herein, relying on a total of 293 samples from the TCGA cohort, the genome
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alteration status of PRCC was entirely detected and visualized by right of the cBioPortal
for the dissection of potential tumor antigens.

2.3. GEPIA Analysis

The Gene Expression Profiling Interactive Analysis (GEPIA, available at http://gepia2
.cancer-pku.cn/, accessed on 7 August 2022) incorporated deep-sequencing data from sam-
ples (dominated by cancerous specimens) in the TCGA database along with normal samples
sequenced by the Genotype-Tissue Expression (GTEx) project as a complement, and it was
diffusely used to look into differential genes resulting from malignant transformation in
as many as 33 types of malignancies [20]. Genes that were over-accumulated (Log2 fold
change > 1) in PRCC tumor tissues rather than in normal renal tissues, concurrent with
statistical significance (q-value < 0.01), were obtained by the LIMMA method.

2.4. Identification of Genes Associated with PRCC Patients’ Prognoses

Samples from patients whose overall survival time more than 30 days were remaining,
and genes that were expressed in less than half of samples were excluded for subsequent
analyses. Firstly, raw counts data were converted to counts per million (CPM) values
through the “cpm” function in the “edgeR” package. Then, on the strength of the median
expression level of a given gene, patients were split into two groups: the high-expressed
group and the low-expressed group. Lastly, two professional R packages “survival” and
“survminer” were used to perform survival analyses; the Kaplan–Meier method along with
log rank testing were united to ascertain whether notable differences in overall survival
(OS) time were observed between groups.

2.5. TIMER Analysis

In late 2017, the Tumor IMmune Estimation Resource (TIMER) [21], an all-round
web server characterized by multiple functional modules (https://cistrome.shinyapps.io/
timer/, accessed on 20 August 2022) was created for researchers to overcome numerous
difficulties in analyzing immune infiltrates in malignant tumor tissues; more specifically,
by means of the TIMER algorithm, the richness of six vital types of immune cells including
neutrophils, B cells, dendritic cells, CD4+ T cells, CD8+ T cells and macrophages was
estimated across various solid tumors. Correlations between expression levels of genes
and infiltrative degrees of three kinds of immune cells with antigen-presenting capabilities,
namely macrophages, dendritic cells and B cells, were assessed through the gene module.
Subsequent to the correction of the influence of tumor purity, the partial Spearman’s rho
value coupled with its statistical p value were calculated and outputted for visualizing
these latent associations.

2.6. Discovery of the Immune Subtypes

A list of ~4700 immunologically related genes was acquired from the InnateDB
database (https://www.innatedb.ca/, accessed on 25 August 2022) and a total of 4677 genes
were retained after removing duplicated genes. Expression of genes possessing immune
system-related functions in TCGA-PRCC samples were taken from the original matrix to
serve as input data for the “ConsensusClusterPlus” R package [22], aimed at revealing
underlying immune subtypes in these patients. To accomplish this clustering, the partition
around medoids (a cluster algorithm) in conjunction with “1-Pearson correlation” distance
were chose to be actual arguments; the number of subsamples, the upper limit of resulting
clusters and the proportion of resampling were set as 500, 6 and 80%, respectively. The
optimal number of clustering was determined by simultaneously considering results from
the consensus matrix, the consensus cumulative distribution function (CDF), as well as the
delta area. Subsequently, principal component analysis was used to evaluate whether the
samples from one immune subtype could be properly differentiated from other subtypes.
Next, the “survival” R package was applied to compare the overall survival time of pa-
tients that were grouped into discrete subtypes. Eventually, intrinsic signatures of immune

http://gepia2.cancer-pku.cn/
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subtypes in terms of clinical parameters and tumor mutation burden were disclosed for
deeper understanding.

2.7. Degree of Immune Cell Infiltration Analysis

In the first place, the ESTIMATE method deduced proportions of stromal and immune
components from gene expression signatures in PRCC patients’ tumor samples which were
exported as the stromal score and immune score, respectively [23]. Furthermore, each type
of immune cell was unique, with its own characteristic gene expression pattern; based
on this concept, the single sample gene set enrichment analysis (ssGSEA) was performed
to explore the abundance of a total of twenty-eight types of immune cells, assisted by
the “GSVA” package [24]. Lastly, the “CIBERSORT” algorithm inferring the fraction of
twenty-two kinds of immune cells in tumor samples was also adopted to delineate the
immune cell landscape from the complicated tumor microenvironment [25].

2.8. Differential Analysis of ICD Modulators and ICPs

Both immunogenic cell death (ICD) modulators and immune checkpoints (ICPs) were
important in adjusting the degree of immune activation using different mechanisms, and
these molecules were obtained from previously published papers [26,27]. Afterwards,
the expression levels of these genes in PRCC samples were extracted and compared by
immune subgroups.

2.9. Gene Co-Expression Network Analysis

The “WGCNA” package in R software (version 4.1.0) [28] was utilized to uncover
co-expression modules of genes, as well as correlations between modules and immune phe-
notypes. Considering that non-variant and low-variant genes were always representative
of noise, these genes were firstly filtered out; outliers measured by the sample tree were
also eliminated from subsequent analyses. Thereafter, the “pickSoftThreshold” function
calculated the optimal soft threshold, serving as a prerequisite of the “blockwiseMod-
ules” function to construct a co-expression matrix in one step. Subsequently, modules
were visualized with different colors, and links between modules and immuno-subtypes
were questioned. Finally, with the aid of the “clusterProfiler” package [29], gene ontology
(GO) analysis was used to annotate genes in the module that were most correlated with
immune subtypes.

2.10. Anticancer Drug Sensitivity Analysis

The impacts of genomic alterations in cancerous cells on patients’ responses to multifar-
ious anti-cancer drugs indeed existed but were ill-defined. The genomics of drug sensitivity
in cancer (GDSC) database was developed to fill this gap in 2013 [30]. This database was
constituted mainly of two data sets: the gene expression pattern of diverse cancer cells with-
out disturbance and sensitivities of these cells to hundreds of commonly used compounds
quantified by the half maximal inhibitory concentration (IC50). On the basis of a ridge
regression model, the R package “oncoPredict” [31], using data from the GDSC as a training
set, could predict the sensitivity of PRCC patients to anticarcinogens, and drug-sensitivity
variations in individuals with different immune subtypes were investigated further.

3. Results
3.1. Identification of Potential Tumor Antigens of PRCC

A flowchart of the study is shown in Figure 1. In the quest for potential tumor antigens
of PRCC, the abnormally over-accumulated genes were interrogated and a total of 1014 up-
regulated genes were screened out, which held the likelihood of encoding TAAs (Figure 2A).
Adding up to 8315 mutated genes (also prone to generate TAAs) allowed subsequent iden-
tification, by virtue of profiling the altered genome fraction (Figure 2B) in conjunction with
mutation counts (Figure 2C) in each sample. As shown in Figure 2D, the top ten frequently
mutated genes, within the fraction of the genome altered group, were piccolo presynaptic
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cytomatrix protein (PCLO), importin 4 (IPO4), aminoadipate aminotransferase (AADAT),
ankyrin repeat domain 37 (ANKRD37), acidic nuclear phosphoprotein 32 family member C
(ANP32C), apelin receptor early endogenous ligand (APELA), basic helix-loop-helix family
member e23 (BHLHE23), baculoviral IAP repeat containing 7 (BIRC7), chromosome 20
open reading frame 204 (C20ORF204), chromosome 4 open reading frame 47 (C4ORF47). In
addition, within the mutation count group (Figure 2E), the top ten genes were as follows:
glutamate rich 1 (ERICH1), fucosyltransferase 10 (FUT10), transglutaminase 4 (TGM4),
collagen type V alpha 3 chain (COL5A3), cadherin 9 (CDH9), unc-13 homolog A (UNC13A),
titin (TTN), spectrin repeat containing nuclear envelope protein 2 (SYNE2), karyopherin
subunit alpha 5 (KPNA5), phenylalanyl-tRNA synthetase subunit alpha (FARSA). In aggre-
gate, 333 genes were ascertained by the intersection of mutated and overexpressed genes.
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3.2. Identification of Tumor Antigens Associated with Antigen Presenting Cells and
Patients’ Prognoses

The prognostic value of these mutated and amplified genes was further analyzed
by sieving out prognosis-pertinent tumor antigens that could be considered as candi-
dates for the design of mRNA vaccines. In light of the Kaplan–Meier (KM) analysis, a
total of 2012 OS-related genes remained, and 42 common genes were identified which
participated in subsequent analyses (Figure 3A), which were mainly involved in signal
transduction, cell communication, metabolism, and immune response (Figure 3B). Next,
from the perspective of cancer vaccine development, expression correlations between these
genes with macrophages, dendritic cells and B cells were thoroughly investigated, indicat-
ing that only 5 out of 42 genes showed significantly positive correlations (Figure 3C–H).
The lower expressions of arachidonate 15-lipoxygenase type B (ALOX15B), heparan sulfate-
glucosamine 3-sulfotransferase 2 (HS3ST2), polymeric immunoglobulin receptor (PIGR),
zinc finger MYND-type containing 15 (ZMYND15) and higher expression of LIM domain
kinase 1 (LIMK1) were relevant to prominently deteriorated OS time of patients with
PRCC (Figure 4A–E). The expression correlations between the five genes were displayed
(Figure 4F). Taken together, five tumor antigens (ALOX15B, HS3ST2, PIGR, ZMYND15, and
LIMK1), with potentially provocative effects on immunological functions, were identified
and considered as eligible candidates for anti-PRCC mRNA vaccine development.

3.3. Identification of Immune Subtypes of PRCC

The heterogenous immune status of the tumor microenvironment can be disentangled
through exploring the expression pattern of immunological related genes, and the immune
subtype significantly impacts the efficacy of the mRNA vaccine, hence it is a useful indicator
for the proper selection of PRCC patients to receive a vaccine. The expression of 4723
immunologically relevant genes, in PRCC samples, were extracted from the matrix for the
construction of consensus clustering. As shown in Figure 5A,B, when k = 2 the white part
in the consensus matrix was clearly clean without blue additions, and two diverse immune
subtypes were obtained after combining with the results from the consensus distribution
function (Figure 5C) and delta area (Figure 5D). Although without statistical significance
(p = 0.12), the PRCC patients in the IS1 group manifested a declined survival probability
relative to patients belonging to the IS2 group (Figure 5E). The principal component analysis
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(Figure 5F) indicated that the immunophenotyping of PRCC patients was robust, and the
two subtypes were almost totally separated from each other. The proportion of immune
subtypes in the age (<60 or >60), gender (male or female) and stage (I–IV) group were
calculated and individually displayed (Figure 5G–I).
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Figure 3. The associations between five potential PRCC antigens and three types of APCs.
(A) The number of separate and common genes among mutated, upregulated and survival-related
groups. (B) Pie chart from Funrich [32] revealing the major biological processes these common
genes participate in. (C)The expression associations between intersected genes and APCs based
on the ssGSEA method. (D–H) The expression correlations between ALOX15B (D), HS3ST2 (E),
PIGR (F), ZMYND15 (G), LIMK1 (H) and infiltration degrees of APCs were quantified with the
TIMER database.

3.4. The Association of Immune Subtypes with Mutational Status

Previously published studies have proved that, in most cases, higher mutation burdens
of tumors (namely more mutation counts per million bases) possess relatively enhanced
immunogenicity, ultimately impacting the effects of multiple immunological therapies
including the mRNA vaccine. Given this, the count and burden of mutation in PRCC
patients from TCGA were investigated and compared with the other immune subtype. As
revealed in Figure 6A,B, related to IS1, IS2 had a trend of a higher mutation count as well as
mutation burden. Subsequently, frequently mutated genes, such as TTN (20%) and MUC16
(10%), across two immune subtypes in PRCC patients were uncovered by somatic mutation
analysis (Figure 6C), and the expression correlations among recurrent mutated genes were
explored (Figure 6D). The impact of mutation in the three most common genes on patients’
survival was further analyzed, and results indicated that mutant types of TTN and OBSCN
seemed to be poor indicators for prognosis (Figure 6E,G), however the wild-type of MUC16
was likely harmful to patients’ prognoses (Figure 6F). These findings disclosed that, with
respect to the magnitude of mutation burden, there was a certain difference across immune
subtypes and patients in IS2 may be more reactive to a mRNA vaccine.
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Figure 4. Identification of tumor antigens associated with PRCC prognosis. (A–E) Kaplan–Meier
curves showing the overall survival probability of PRCC patients in groups with different expressions
of ALOX15B (A), HS3ST2 (B), PIGR (C), ZMYND15 (D) and LIMK1 (E). (F) The expression correlations
among the five genes.
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Figure 5. Identification of immune subtypes in individuals with PRCC. (A) Consensus clustering
matrix of PRCC samples when k = 2. (B) Consensus clustering matrix of PRCC samples when k = 3.
(C) Consensus clustering CDF when k was in the range of 2 to 6. (D) Relative area under CDF
curve changed when k was in the range of 2 to 6. (E) Survival analysis between OS and two groups.
(F) The prognosis discrepancy of patients in the two clusters. (G–I) Different proportions of immune
subtypes in age, gender, and stage groups.

3.5. Association between Immune Subtypes of PRCC and Immune Modulators

Immune modulators, especially inhibitory ICPs and stimulatory ICD modulators, play
significant roles in the delicate control of immunity against cancer. In this context, the
expression levels of these important players in the two groups were investigated. Among
forty-seven ICPs (Figure 7A), differences in a total of thirty-seven genes were of statistical
significance, and it was very clear that the vast majority (33 out of 37) of genes were
more expressed in IS1, particularly PDCD1, CD274 and CTLA-4. Among twenty-two ICD-
involved genes (Figure 7B), the differences between groups were noticeable in seventeen
genes. There were eleven (CXCL10, FPR1, HGF, TLR4, CALR, LRP1, P2RX7, PANX1,
P2RY2, IFNAR2, EIF2AK4) and six (EIF2AK1, MET, IFNE, HMGB1, IFNA1, ANXA1)
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genes with relatively higher expression in the IS1 and IS2 group, respectively. Therefore,
immunotyping of patients was indicative of the expression levels of various ICPs and ICD
modulators, and the effectiveness of a mRNA vaccine for IS1 patients could be undermined
by these widely over-expressed ICPs in the microenvironment.
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Figure 6. Mutation landscape of TCGA PRCC patients from different immune subtypes.
(A,B) Mutation count and mutation burden evaluated in the two immune subtypes. (C) Top 20
genes in mutation frequency of the two subtypes. (D) The correlation of expression between most
frequently mutated genes. (E–G) The survival diversity between the wild-type and mutant type of
TTN, MUC16, and OBSCN.
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Figure 7. Expression associations between immune subtypes and ICPs and ICD modulators. (A) The
expression pattern of ICPs among PRCC immune subtypes in the TCGA cohort. (B) Expression
comparison of ICD modulators between the two subtypes in the TCGA cohort. * p < 0.01, ** p < 0.001,
*** p < 0.0001, and **** p < 0.00001.

3.6. Cellular and Molecular Characteristics of Immune Subtypes

The gradually aggravated dysregulation of TIME is a pivotal hallmark of PRCC, in-
escapably disabling immune cells necessary for the clearance of malignant cells, which
eventually leads to disease progression, even metastasis, and compromises the efficacy
of many immunotherapies including the mRNA vaccine. At the beginning, revealed by
the ESTIMATE algorithm, variations were grossly evident with the IS1 group possessing
a higher immune score (Figure 8A), stromal score (Figure 8B) and lower tumor purity
(Figure 8C), when compared with its counterpart. After that, ssGSEA assessing the richness
of immune cells (in total, 28 kinds) was utilized to reveal differences between groups. Pal-
pable distinctions, regarding the immune cell constitution, were demonstrated between the
two subtypes (Figure 8D). On the whole, the IS1 group had more accumulation of activated
B cells, activated CD4 T cells, activated CD8 T cells, natural killer cells, monocytes, type
1 T helper cells, myeloid-derived suppressor cells (MDSC), macrophages and regulatory
T cells, among others. Lastly, the CIBERSORT analysis (Figure 8E) also exposed several
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remarkable dissimilarities. Compared to IS2, samples in IS1 exhibited larger proportions of
some kinds of immune cells, for instance, the CD8 T cells, M1 macrophages, plasma cells,
naïve B cells and resting dendritic cells; while samples in IS2 had larger proportions of
activated NK cells, monocytes, resting CD4 memory T cells and resting mast cells.
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Figure 8. Analysis of the degree of immune cell infiltration in PRCC patients with different immune
subtypes. (A–C) Immune score, stromal score and tumor purity of each sample were assessed by the
ESTIMATE algorithm. (D) The immune cell infiltration pattern uncovered by the ssGSEA method.
(E) Immune cell infiltration differences evaluated by CIBERSORT algorithm. * p < 0.01, ** p < 0.001,
*** p < 0.0001, and **** p < 0.00001.
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3.7. Identification of Gene Co-Expression Modules of PRCC

Based on the expression similarity between any two highly variant genes, different
modules were identified and further correlated with immune subtypes. To begin with,
building on the results from mean connectivity combined with scale-free fit index, six
was selected as the key parameter (soft-thresholding power) to enter into subsequent
analyses (Figure 9A). Then, a total of ten modules with distinct colors were ascertained
using average linkage hierarchical clustering (Figure 9B), and the number of genes involved
in these modules were separately displayed (Figure 9C). Afterwards, the relationships
between modules and traits (immune subtypes in this context) were explored, and for IS1,
the three mostly positively correlated modules, judged by the magnitude of the correlation
coefficient (Figure 9D), were the green module (MEgreen: rho: 0.58, p < 0.01), brown
module (MEbrown: rho: 0.55, p < 0.01) and yellow module (MEyellow: rho: 0.51, p < 0.01),
while blue module (MEblue: rho: −0.44, p < 0.01) was negatively correlated with IS1.
Module membership versus gene significance analysis to the green module was performed
and visualized by a scatter plot (Figure 9E) which, once again, confirmed the highly
positive relationship between the green module and IS1 (r = 0.72, p < 0.01). Lastly, the GO
enrichment analysis of genes extracted from the green module suggested that these genes
primarily participated in the B cell receptor signaling pathway, humoral immune response,
and phagocytosis, among others (Figure 9F).

3.8. Association between Immune Subtypes and Anti-Cancer Drug Sensitivity

Drug sensitivity analysis of anti-cancer medicines available for PRCC patients was car-
ried out in samples from the TCGA-PRCC cohort, which may provide some other options
for patients who were less suitable for receipt of the mRNA vaccination. Surprisingly, for
relatively lower IC50 values, most of these drugs were predicted to be more efficacious in
patients clustered into IS1, including axitinib (Figure 10A), foretinib (Figure 10B), crizotinib
(Figure 10C), sunitinib (Figure 10D), and cabozantinib (Figure 10E). In regard to pazopanib
(Figure 10F), IS1 appeared to be more sensitive than IS2 (p = 0.085). Taken together, individ-
uals in the IS1 group may receive a larger benefit from the targeted therapy, particularly
drugs exploiting the vascular endothelial growth factor receptor (VEGFR) and MET proto-
oncogene as targets, and these conspicuous divergences also confirmed the unavoidable
heterogeneity among patients, reflecting the urgency of individualized treatments.
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Figure 9. Identification of a gene co-expression network. (A) Scale-free fit index and mean connectiv-
ity under consecutive soft-thresholding powers (β). (B) Dendrogram of all differentially expressed
genes clustered in accordance with a dissimilarity measure (1-TOM). (C) Dot plot of the co-expression
gene modules. (D) Correlation analysis between modules and immune clusters. (E) Scatterplot of
gene significance versus module membership to the green module. (F) GO functional enrichment
analysis of genes in the green module.
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4. Discussion

In the last two decades, continuous and intensive efforts have been made by re-
searchers across the world to develop drugs for patients with advanced renal cell carcinoma,
and various medicines have been successively identified to improve the prognosis of these
patients, notably those inhibiting the VEGF signal pathway [33]. As for the incidence rate,
the papillary cell type is secondary to the clear cell type, accounting for about 50% of
non-clear cell renal cell carcinoma, and the clinical management of this disease is similar to
that of the clear type; for patients in early-stage, radical operation with maximal attempts
to retain renal function is always given with a high priority, whereas molecular targeting
of drugs is undoubtedly the basis of treatment for late-stage patients, since both types
show little sensitivity to radiotherapy and chemotherapy [34,35]. Compared with the era
of cytokines, obvious improvements in patients’ lifetimes have been obtained with VEGF
receptor inhibitors; nevertheless, results from several clinical trials testing the efficacy of
sunitinib or sorafenib suggest that the response rate and survival benefit of patients with
PRCC are markedly inferior to that of patients with clear cell renal cell carcinoma, probably
due to the disparate genetic background [36–38]. In addition, MET inhibitors and im-
mune checkpoint blockers (cabozantinib and nivolumab, for instance) are also feasible for
metastatic PRCC patients, displaying a higher responsivity than VEGF receptor inhibitors
on the whole [39,40]. Despite these ameliorations, the overall clinical outcome of patients
diagnosed with advanced PRCC is far from satisfactory, and most of them eventually die
after suffering all kinds of treatment strategies, putting an insufferable financial burden on
their families [41]. Hence, the exploration of new remedies is, without doubt, necessary
to complement currently available drugs for the prolongation of survival time and the
enhancement of quality of life in patients with PRCC.

Cancer vaccines, like immune checkpoint inhibitors and chimeric antigen receptor
(CAR)-T cell immunotherapies, are also determined to reinvigorate the anti-tumor im-
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munity of patients for the control of cancer and a longer survival period [42,43]. Dating
back to 2006, the Gardasil quadrivalent vaccine has been approved by the Food and Drug
Administration (FDA), and belongs to the prophylactic vaccines and indirectly prevents the
oncogenesis of cervical cancer through the avoidance of high-risk human papillomavirus
(HPV) infection [44]. Therapeutic cancer vaccines are more needed since most malignancies
have no definite associations with viruses. In 2010, more excitingly, a therapeutic vaccine
named Sipuleucel-T was approved by the FDA to treat prostate cancer patients at the
hormone-refractory stage, and an increment (4.1 months) in median was observed when
compared with the placebo group [45]. Cancer vaccines are mainly classified into cell-based
(tumor/immune cells) and non-cell-based (peptide, DNA, mRNA) types [46]. The mRNA-
type vaccine appears posterior to other types for several limitations such as instability,
immunogenicity and impurities; however, after entering the 21st century, attributable to
technological breakthroughs in optimizing the mRNA vaccine, it becomes more feasible
than before [47]. The core of a mRNA vaccine is the mRNA sequence that is composed
of two untranslated regions, one cap, one poly (A) tail and, more importantly, one open
reading frame (ORF) encoding the vaccine antigen. Apart from the ORF, other structures
are available to be modified, boosting the efficacy of mRNA vaccines. Exogeneous mRNA
with innate immunogenicity can be recognized by endosomes and pattern recognition
receptors, resulting in accelerated degradation or inhibitory translation of the mRNA;
chemical modifications such as replacing cytidine and uridine with 5-methylcytidine and
5-methyluridine, respectively, can decrease the immunogenicity of mRNAs [48]. In addi-
tion, by increasing the GC proportion in the sequence, the stability of the mRNA can be
enhanced, guaranteeing the expression effect of target antigens [49]. Currently, the most
popular method used to synthesize mRNAs is in vitro transcription (IVT) which produces
some unwanted sequences including short RNAs and double stranded RNAs, both of
which disturb translation in vivo [50]. Other than decreasing Mg2+ concentration in the
reaction mixture, recently, Baiersdorfer et al. has introduced a new method that can remove
the vast majority of dsRNAs (up to 90%) [51]. Moreover, the mRNA-based vaccine exhibits
several specific advantages compared to other vaccine types. First, it is characterized by de-
livering multiple tumor-associated antigens at a time and inducing the antibody-mediated
humoral and cell-mediated immune responses synchronously, by which the possibility of
vaccine resistance is decreased [52]. Second, unlike the peptide vaccine, it enables APCs to
simultaneously present more epitopes via encoding whole-length tumor antigens, which
can trigger a wider T cell response [53]. Last, it belongs to non-infectious vaccines and is
free of proteins or contaminants derived from the production phase, thereby exhibiting
better tolerability and safety than other types of vaccines [54]. Given the above-mentioned
improvements and merits of mRNA-type vaccines, as well as a lack of vaccines in the clinic,
it is worthwhile to develop such a vaccine for the treatment of PRCC patients.

In this study, somatic mutated and over-expressed genes in PRCC tissues were first
disclosed as tentative tumor antigens. In order to pick out the genes with significant
biological functions in PRCC, the prognostic value on overall survival and correlations
with the abundance of APCs were further investigated. After that, five tumor antigens
(ALOX15B, HS3ST2, PIGR, ZMYND15, and LIMK1) were identified to be candidates for
the mRNA-based vaccine development, all of which were correlated with survival time of
PRCC patients and the degree of APC infiltration. According to the above analyses, mRNA
sequences of the five genes including ALOX15B, HS3ST2, PIGR, ZMYND15, and LIMK1
can be synthesized using the in vitro transcription (IVT) system and further modified by
chemical methods. It was then encapsulated into lipid nanoparticles, and the optimized
mRNA vaccine was injected into PRCC patients, with the aim of inducing immune re-
sponses against malignant cells. The potential of these tumor antigens for the development
of an anti-PRCC mRNA vaccine has been proposed. Overexpression of HS3ST2 can in-
crease the proliferation and colony-forming units of the BT-20 breast cancer cell line by
enhancing the expression of anti-apoptotic molecules including survivin and XIAP [55].
The migratory and invasive ability of breast cancer MDA-MB-231 cells are significantly
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enhanced after the transfection of HS3ST2 [56]. Circulating extracellular vesicles from
patients with advanced hepatocellular carcinoma have an abundance of PIGR, which can
promote cancer aggressiveness together with stemness of Huh7 cells through activating
the PDK1/Akt/GSK3β/β-catenin signaling axis, and PIGR is over-accumulated in hepa-
tocellular cancer tissues predicting a decreased disease-free survival rate [57,58]. LIMK1
is highly expressed by colon cancer tissues, and inhibiting the expression of LIMK1 can
reduce the proliferation, invasion and epithelial–mesenchymal transition of colon cancer
cells by interacting with STK25 [59]. The expression of LIMK1 is significantly elevated in
peritoneal metastatic tissues from patients with gastric cancer, and the knockout of LIMK1
can result in migration and invasion retardation of gastric cancer cells [60]. ALOX15B is
highly enriched in colorectal cancer tissues in contrast to normal colorectal tissues and is
also a poor indicator of patients’ overall survival [61].

Similar to other immunotherapeutic medicines for cancer, it was observed that only
a portion of patients respond well to vaccine treatment and obtain extended survival
time; in light of this, PRCC patients were classified into different groups with specific
expression patterns of immune-associated genes to guide the use of mRNA-based vaccines
in clinical practice. Two immune subtypes were finally identified, which exhibited diverse
clinical and molecular characteristics. The IS1 group showed a trend of decreased overall
survival possibilities (p = 0.12), and a larger sample size is needed to determine whether
immunotypes could serve as a robust prognostic indicator for PRCC. Intriguingly, the two
immune subtypes manifested significantly different sensitivities to several drugs that were
routinely used in the clinical setting, additionally providing a reference for patients who
were not suitable for vaccination and emphasizing the necessity of personalized treatment.

The efficacy of a mRNA-based cancer vaccine is greatly dependent on types of im-
mune cells in the TIME and their functions. IS1 had a higher immune score than IS2,
which reflected the immune “hot” and “cold” status of IS1 and IS2, respectively. The
TIME of IS1 was rather complicated, and was composed of immune-stimulating immune
cells such as activated CD8+ and CD4+ T cells, as well as immune-inhibiting immune
cells, however these activated T cells were transformed to an exhausted phenotype as a
result of overexpression of multiple immune-inhibitory molecules. Notably, expressions of
regulatory T cells and myeloid-derived suppressor cells, which can inhibit the function of
immune effector cells by various mechanisms [62], were significantly elevated in IS1. More
importantly, the vast majority of ICP were highly expressed in the IS1, particularly the PD-1,
PD-L1 and CTLA4, suggesting the immune-suppressive microenvironment in IS1, and this
condition can largely weaken the performance of ICD modulators [63]. Taken together,
IS1 was characterized by enhanced expressions of multiple immune-suppressive cells as
well as molecules, both of which can compromise the efficacy of the mRNA vaccine, and
PRCC patients in the IS1 can be administered with immune checkpoint blockers to improve
the inhibitory status of TIME before using an anti-PRCC mRNA vaccine. Although the
infiltration degree of immune cells in IS2 was lower than that in IS1, it still retained the
expression of immune cells to some extent and receiving a mRNA vaccine in IS2 patients
may trigger the hosts’ immune response towards a “hot” state to clear malignant cells.

5. Conclusions

In conclusion, ALOX15B, HS3ST2, PIGR, ZMYND15, and LIMK1 are potential targets
for the development of PRCC mRNA vaccines, and patients who belong to the IS2 group
may obtain more benefits from this therapy. Additionally, our research provides some
insights into the design of an anti-PRCC mRNA vaccine and selects suitable patients to be
vaccinated for future reference.
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