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Abstract: (1) Background: Periodontitis is an inflammatory condition that affects the tissues surround-
ing the tooth and causes clinical attachment loss, which is the loss of periodontal attachment (CAL).
Periodontitis can advance in various ways, with some patients experiencing severe periodontitis
in a short period of time while others may experience mild periodontitis for the rest of their lives.
In this study, we have used an alternative methodology to conventional statistics, self-organizing
maps (SOM), to group the clinical profiles of patients with periodontitis. (2) Methods: To predict the
periodontitis progression and to choose the best treatment plan, we can use artificial intelligence,
more precisely Kohonen’s self-organizing maps (SOM). In this study, 110 patients, both genders,
between the ages of 30 and 60, were included in this retrospective analysis. (3) Results: To discover the
pattern of patients according to the periodontitis grade and stage, we grouped the neurons together
to form three clusters: Group 1 was made up of neurons 12 and 16 that represented a percentage of
slow progression of almost 75%; Group 2 was made up of neurons 3, 4, 6, 7, 11, and 14 in which the
percentage of moderate progression was almost 65%; and Group 3 was made up of neurons 1, 2, 5,
8, 9, 10, 13, and 15 that represented a percentage of rapid progression of almost 60%. There were
statistically significant differences in the approximate plaque index (API), and bleeding on probing
(BoP) versus groups (p < 0.0001). The post-hoc tests showed that API, BoP, pocket depth (PD), and
CAL values were significantly lower in Group 1 relative to Group 2 (p < 0.05) and Group 3 (p < 0.05).
A detailed statistical analysis showed that the PD value was significantly lower in Group 1 relative to
Group 2 (p = 0.0001). Furthermore, the PD was significantly higher in Group 3 relative to Group 2
(p = 0.0068). There was a statistically significant CAL difference between Group 1 relative to Group 2
(p = 0.0370). (4) Conclusions: Self-organizing maps, in contrast to conventional statistics, allow us to
view the issue of periodontitis advancement by illuminating how the variables are organized in one
or the other of the various suppositions.

Keywords: periodontitis; diagnosis; computer simulation; artificial neural networks; self-organizing
maps

1. Introduction

Periodontitis is an inflammatory condition that affects the tissues surrounding the
tooth and causes clinical attachment loss, which is the loss of periodontal attachment (CAL).
Gingival tissue, alveolar bone, cementum, and periodontal ligaments make up the tooth’s
supporting structure (periodontium). Gingivitis, an infection of the gingiva mainly carried
on by tooth plaque, is the most common and mildest form of periodontitis. The gingiva
alterations begin if the microbial biofilm is not properly removed within a few days or
weeks. The patient frequently experiences halitosis, hemorrhage, edema, and redness of the
gingiva [1–4]. Apart from bleeding, pain, and enlargement, erythema, edema, and bleeding
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are typical clinical symptoms of plaque-induced gingivitis [5,6]. Biological changes, dia-
betes, leukemia, smoking, malnutrition, and hormonal changes are all potential factors that
can influence plaque-induced gingivitis. Hormonal alterations, hyperglycemia, leukemia,
smoking, malnutrition, prominent subgingival restoration margins, and hyposalivation are
potential modifying variables of plaque-induced gingivitis [7–9]. Periodontitis and increas-
ing attachment loss are thought to require gingivitis as a prerequisite. Not everyone who
has gingivitis will progress to periodontitis because this process is significantly correlated
with the patient’s immune-inflammatory response [10,11].

Periodontitis can advance in various ways, with some patients experiencing severe
periodontitis in a short period of time while others may experience mild periodontitis for
the rest of their lives. Additionally, the evolution of periodontitis differs depending on
the patient and is less predictable in certain cases than in others. In addition to weight,
genetics, physical activity, or nutrition, well-known risk factors for accelerated bone loss
include nicotine dependence and poorly managed diabetes. Furthermore, nicotinism is a
major risk factor for the changes in oral mucosa such as leukoplakia [12]. The age of the
patient is taken into consideration when the doctor evaluates the stage of periodontitis,
which is an indirect technique to measure each patient’s vulnerability to periodontitis. The
measurement of bone loss on radiograms expressed as a percentage of tooth length and
divided by the patient’s age is a popular method of assessing bone loss in daily practice. In
recent years, dentists assessed the typical clinical attachment loss for the patient’s age by
comparing clinical attachment loss (CAL) with age. The UNC 15 standard probe can be
used to make this measurement [13,14].

Artificial intelligence (AI) is gaining importance in the fields of medicine and dentistry
nowadays. It can be beneficial in a variety of areas where helping humans is possible.
It can be useful in many situations where new technologies might benefit and help peo-
ple. In the above study, Kohonen’s self-organizing maps (SOM) were used. Artificially
intelligent systems have the ability to remotely conduct quantitative calculations and can
recognize aspects in clinical photographs that human specialists hardly ever discover. Deep
learning algorithms are frequently utilized in picture prediction and diagnosis due to their
advantages in terms of speed, accuracy, and reproducibility [15–17].

The aim of this study was to assess the progression and grade of periodontitis with
the usage of given data and with the help of the self-organizing model. In this study, we
have used an alternative methodology to conventional statistics, self-organizing maps
(SOM), to group the clinical profiles of patients with periodontitis. Using this technique, we
will be able to divide the study participants into a specific number of neurons. The value
of each research variable relating to each of those neurons will be determined using the
SOM algorithm. This allows for the simultaneous visualization of the values of each study
variable in each group of patients contained in a neuron. With the use of this grouping
technique, we can see how each variable affects the various patient groups and identify
behavioral patterns that are related to a particular variable, in this case, the requirement to
carry out a fenestration.

2. Materials and Methods
2.1. Patients’ Population

This was a retrospective study, and the database consisted of 110 patients; both genders
aged 30 to 60 were included. The selection of the patients was performed in 2022 in the
Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdansk.
Only the patients with all necessary measurements were included in the study. All groups
included patients generally healthy or with diabetes or/and smokers. Patients with other
systemic diseases and patients with dental implants were excluded. A dental assessment
of the patients was performed, and the following indicators were included: gender, age,
active nicotinism, the number of preserved teeth, approximal plaque index, bleeding on
probing, pocket depth, and clinical attachment loss. The measurements were performed by
one dentist with the use of a standardized periodontal probe with 15 mm scaling. The study
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only included participants with all required measurements. Stadium I periodontitis affected
12, stadium II periodontitis affected 19, stadium III periodontitis affected 42, stadium IV
periodontitis affected 27, and gingivitis affected 10. Patients who were usually healthy, had
diabetes, or smoked were included in all categories. Patients having dental implants and
those with other systemic disorders were not included.

2.2. Network and Programming
2.2.1. Basics of Kohonen Neural Networks

In 1982, in the article titled “Self-Organized Formation of Topologically Correct Feature
Maps”, T. Kohonen proposed a new algorithm of artificial neural networks, which was
named Kohonen networks [18]. Those networks can be characterized as self-learning with
built-in competition and a neighborhood mechanism. They are constructed from two layers:
input and output. Self-learning is based on the fact that learning, also known as network
training, takes place in the “unsupervised learning” (self-organizing) mode, which means
that for the given input data for training there is no presented correct answer.

The network is not familiar with what output signals should correspond to the input
signals. Competition is the mechanism by which neurons learn to recognize input signals
by competing with each other. The neuron which reacts most strongly to a given input
signal wins: the more the neurons’ weights are similar to the input signals (input values),
the stronger the reaction “wins” in the competition of recognizing specific input signals.
Other neurons become winners in recognizing other input signals (values). Neighborhood
is understood here as such teaching of the network that the neighbors of the neuron that
are victorious in recognizing specific signals learn along with it, although less intensely.
Such network training causes the neighboring neurons to respond to similar input signals
(values). The training result of the network (output layer neurons) is plotted in a graph
called a Kohonen map or topological map. The individual observations are called input or
training cases.

2.2.2. Architecture and Training

The KNN architecture consists of a multi-dimensional input layer and a typically
one-dimensional or two-dimensional output layer. The neurons fight with one another
in the output layer, also known as the competitive layer, and only one is chosen as the
winner, or put another way, as the class most appropriate for a certain input vector x. Each
component of the input vector is connected to every component of the output layer in these
networks. Weight wij between the input neurons j and the output layer’s neurons i serves
as a proxy for the strength of the connections.

The Euclidean distances Di between the input vector and the weights connected
to each of the output neurons are calculated during the training of the KNN model, as
indicated by the following equation:

Di =

√
∑K

j=1

(
xj −wij

)2, i = 1, 2, 3, . . . , L, (1)

where K is the input vector x’s dimension, L is the total number of neurons in the output
layer, and xj is the input vector x’s j-th component.

The winner neuron is the output neuron i with the least Euclidean distance relative to
the input vector. The Kohonen rule [19] is then used to update the weights related to this
neuron i and the neurons nearby Vi*, as stated in the following equation:

wij(n) = wij(n− 1)+ ∝
[
xj(n)−wij(n− 1)

]
, i ∈ Vi∗ , j = 1, 2, . . . , K (2)

where n is an index that specifies the order in which samples are presented to the network,
and α is the learning rate.

The Euclidean distance becomes lower as a result of the Kohonen rule, which drives
the weights linked to the winner neuron and its neighbors to move in the direction of the
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input vector provided to the network. As a result, these neurons learn to identify related
vectors. The full dataset can also be used to present input vectors to the network prior to
any weight updates. Batch mode is the name given to this display style. In this scenario,
each input vector is searched for the winning neuron, and the weight vector is then changed
to a position determined by the average of the input vectors for which the winning neuron
or its neighbor was present. After several iterations of the input dataset presentations, the
weights typically stabilize.

2.2.3. Application of the KNN Model

In our study, the structure of the Kohonen network was not complicated compared
to other types of neural networks. The Kohonen network consists of input and output
layers, but it does not have any hidden layers, as with other types of networks. Technical
data for network maintenance have been standardized. The data were normalized before
scheduling so that the average would be 0 and the unit standard deviation would be 1.
Each patient was represented by a vector of the number of coordinates and factors that
need to be taken into account: in our case, 171 variables initially, in order to generate a SOM
(sex, age, smoking, oral hygiene, periodontal pocket depth, and maximum interproximal
loss of connective tissue attachment); see Table 1. The patients were divided into blocks
called neurons using an iterative method with the goal that the patients making up each
neuron have similar characteristics and distinct ones from those making up other neurons.

Table 1. Variables represented on the SOM.

Variable Description Valuation

Sex Woman/man 0 = woman. 1 = man

Age Initial age on beginning
treatment Decimal age (years)

Smoking Smoking cigarettes 0 = no. 1 = yes
API 1 Approximal plaque index 0 = no. 1 = yes
BoP 1 Bleeding on probing 0 = no. 1 = yes
PD 1 Pocket depth Decimal (mm)

CAL 1 Clinical attachment loss Decimal (mm)

Mobility 1 Tooth mobility

0 = normal (physiologic) tooth mobility;
1 = detectable mobility (up to 1 mm
horizontally); 2 = detectable mobility

(more than 1 mm horizontally);
3 = detectable vertical tooth mobility

Furcation 1 Severity of furcation
involvement

0 = furcation not detectable;
1 = furcation detectable, with a horizontal

component of probing ≤3 mm;
2 = furcation detectable, with a

horizontal component of probing >3 mm;
3 = furcation is opened through

and through
1 for each tooth (28).

In this study, the vectors of the input layer had 195 neurons representing information
from the patients’ records regarding sex, age, smoking, oral hygiene, periodontal pocket
depth, and maximum interproximal loss of connective tissue attachment (Table 1). Each
patient was represented by a vector of the number of coordinates and factors that need to
be taken into account, in our case, 171 variables initially, in order to generate a SOM.

A popular method of mapping elements into layers was divided into its forms of a
two-dimensional network, and shared with (rectangles, circles) in preparation from the
software that corresponds to individual neurons.

At the start of the SOM, a decision must be made regarding the number of neurons and,
consequently, the number of groups to form. Between a few dozen and several thousand
neurons may exist. In our instance, the number of patients and variables to be researched
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led us to select a collection of 16 neurons which are related to the periodontitis grade
(Healthy, A–C) and stage (I–IV). The distribution of the patients on the map after the SOM
training process revealed that certain neurons had more patients than others or even had
empty neurons. Not one of our patients had the pattern that corresponded to that neuron,
as seen by empty neurons.

2.2.4. Computer Processing and Program

We used a computer Intel® Core™ i7–9850H CPU© 2.60 GHz, 16 GB RAM, and 512GB
HDD. The algorithm described by Haykin [20] was applied to the neural network routine
that was created, and Statistica Automated Neural Networks, TIBCO Software Inc. (2017).
Statistica (data analysis software system), version 13. http://statistica.io (accessed on 13
January 2023) was used to process the results.

3. Results
3.1. Basic Characteristics

Of the 110 patients, 65.5% were female, and the study group included 9.1% of healthy
individuals free of periodontitis, 13.6% of patients with grade A, 39.1% of patients with
grade B, and 38.2% of patients with grace C. In total, 10.9% of the study group’s patients had
stage I periodontitis, followed by stage II patients 17.3%, stage III patients 38.2%, and stage
IV patients 24.5%. The average age was 45.2 (95% CI: 43.8–46.6). The mean approximal
plaque index (API) was 77.9% (95% CI: 73.4–82.4), bleeding on probing index (BOP) was
60.0% (95% CI: 53.5–66.5), interproximal clinical attachment loss (CAL) was 3.63 mm (95%
CI: 3.19–4.08), and pocket depth was 2.90 mm (95% CI: 2.75–3.05). Most of the patients
(about two-thirds) had non-physiologic tooth mobility. Over 68% of the study group had
furcation that could not be detected.

3.2. SOM Analysis

Each patient was represented by a vector made up of as many components and
variables as there were in the study, or initially 171 variables, as described in the preceding
section. When the patients had comparable traits, we could classify them into neurons
by analyzing the minimal distances between those vectors. Our study used a map of
171 neurons because there were so many instances involved, and the 110 patients were
dispersed among them as indicated in Figure 1a,b.
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Using the criteria outlined in the Material and Methods section, where a higher
percentage of a neuron’s filling denotes a greater number of patients with that pattern and
an empty neuron denotes the absence of any cases exhibiting the characteristics associated
with that neuron, we can see that neuron 13 had the most patients with 19 and that neurons
1, 4, 15, and 16 each had 8–16 patients. Between one and seven patients were present in
the other neurons. As a result, each neuron displayed the many patient patterns that were
discovered during our study (Figure 1b).

The distribution of each of these magnitudes in the pattern corresponding to each
neuron is shown in Figure 2 for the clinical attachment loss of the 28 variables included
in the study on a color scale. Because the procedure projected the value of the variable
that would correspond to that neuron, it can be seen in this situation that every neuron,
including the empty ones, had a value assigned for the variable specified. The pattern
associated with those vacant neurons is unimportant to our investigation because no
patients were allocated to them during the course of it.
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Figure 2. The distribution of study variable values in each neuron that contains a pattern of patients
with a comparable minimum distance in accordance with the artificial neural network algorithm for
the 28 variables (clinical attachment loss, all tooth) taken into consideration is referred to as the map
component for each of the 16 variables. Over each map, the variable under analysis is shown.

It is clear that some variables’ values greatly varied between the investigated neurons,
whereas their values in other neurons were more or less the same (Table 2).
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Table 2. Average values of the patient pattern corresponding to each neuron (N) considered.

Neuron Sex Age Smoking API BoP PD CAL Mobility Furcation

1 0.3 46.5 0.3 0.91 0.93 4.26 6.12 0.65 0.17

2 0.8 42.3 0.5 1.00 0.89 3.34 4.37 0.37 0.09

3 0.5 47.0 0.2 0.94 1.00 3.02 4.59 0.20 0.03

4 0.4 43.9 0.1 0.91 0.96 2.91 3.75 0.09 0.02

5 0.5 45.5 0.8 0.87 1.00 3.26 4.04 0.42 0.08

6 0.3 46.3 0.3 0.73 0.76 3.26 3.79 0.39 0.07

7 0.7 47.0 0.0 0.79 0.67 2.75 4.56 0.30 0.01

8 1.0 39.0 0.5 0.68 0.76 2.99 2.48 0.02 0.01

9 0.3 52.3 0.3 0.86 1.00 2.76 3.21 0.35 0.02

10 0.0 46.0 0.5 0.66 0.38 3.32 4.56 0.28 0.02

11 0.0 50.3 0.3 0.69 0.44 2.68 2.95 0.21 0.01

12 0.3 42.2 0.1 0.54 0.41 2.40 2.88 0.01 0.01

13 0.6 52.0 0.3 0.97 0.32 3.29 3.21 0.34 0.10

14 0.0 51.7 0.3 0.65 0.38 2.59 3.17 0.35 0.01

15 0.0 43.8 0.0 0.78 0.46 2.96 3.91 0.02 0.01

16 0.4 38.3 0.3 0.57 0.20 2.18 1.92 0.03 0.01

To discover the pattern of patients according to the periodontitis grade and stage, we
grouped the neurons together to form three clusters: Group 1 was made up of neurons
12 and 16 that represented a percentage of slow progression of almost 75%; Group 2 was
made up of neurons 3, 4, 6, 7, 11, and 14 in which the percentage of moderate progression
was almost 65%; and Group 3 was made up of neurons 1, 2, 5, 8, 9, 10, 13, and 15 that
represented a percentage of rapid progression of almost 60%. Table 3 displays the pattern
for each of the groups taken into consideration, and a variance analysis revealed the
variables that were important for differentiating between these three patient groups. The
significance values for each variable are shown in Table 3. There were no statistically
significant differences in age, sex, and smoking on periodontitis progression. Mean values
for API in the slow, moderate, and rapid progression groups were 59.71 vs. 82.27 vs. 89.56.
There were statistically significant differences in API, BoP, PD, CAL, mobility, and furcation
versus groups (p < 0.0001). The post-hoc tests showed that API values were significantly
lower in Group 1 relative to Group 2 (p = 0.0010) and Group 3 (p = 0.0001). Furthermore,
the BoP was significantly lower in Group 1 relative to Group 2 (p = 0.0029) and Group 3
(p = 0.0002). A detailed statistical analysis of PD showed that the PD value was significantly
lower in Group 1 relative to Group 2 (p = 0.0001). Furthermore, the PD was significantly
higher in Group 3 relative to Group 2 (p = 0.0068). There was a statistically significant CAL
difference between Group 1 relative to Group 2 (p = 0.0370). The post-hoc tests showed
that mobility was significantly lower in Group 1 relative to Group 2 (p = 0.0121) and Group
3 (p = 0.0002). A detailed statistical analysis of furcation showed that the furcation was
significantly lower in Group 1 relative to Group 2 (p = 0.0057). Furthermore, the furcation
was significantly higher in Group 3 relative to Group 2 (p = 0.0015) (Table 3).
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Table 3. Periodontitis grade: probability of progression.

Group 1 Group 2 Group 3 p-Value

Progression Slow Moderate Rapid

Sex 0.3 0.3 0.4 0.4827
Age 43.4 47.3 47.0 0.0638

Smoking 0.2 0.2 0.4 0.1028
API 0.60 0.82 0.90 <0.0001
BoP 0.34 0.65 0.74 <0.0001
PD 2.40 2.90 3.41 <0.0001

CAL 2.51 3.72 4.19 0.0212
Mobility 0.02 0.21 0.37 <0.0001
Furcation 0.02 0.04 0.16 0.0007

4. Discussion

Nowadays, the disciplines of medicine and dentistry are becoming more and more
dependent on artificial intelligence (AI) [15,21]. It can be helpful in a range of circumstances
when new technology could be advantageous and helpful to people. In the medical field, AI
can be useful, especially in fields such as radiology, pathomorphology, oncology, cardiology,
psychiatry, nuclear medicine, and many others [22–26]. The use of computer models of
neural networks is one way to understand how the nervous system functions, which we
are unable to study under natural conditions due to the limitations of current research
techniques [27–31]. Recent years have seen a significant increase in the application of in
silico approaches to find novel pharmaceutical treatments for conditions such as cancer,
autoimmune disease, and neurodegeneration [32–34].

Periodontitis progression evaluation is a crucial phase in the treatment planning pro-
cess for a dentist, and it may also be useful in encouraging patients to actively engage in
their care. The study mentioned above also considers periodontitis staging and grading
according to the classification from 2017 of periodontitis. The relationship between plaque
(API) and the onset of periodontitis is widely understood. Gingivitis will occur in all indi-
viduals who do not brush their teeth properly; however, the development of periodontitis
is more complicated, more varied, and depends on numerous circumstances. The immune-
inflammatory response of the host, which is dependent on genetic polymorphism, must
participate [35,36]. The development of a disease is determined by these polymorphisms as
well as environmental factors [37–39]. The primary indicator of gingivitis and periodontitis
is bleeding on probing (BoP), which also distinguishes between localized and generalized
forms of each ailment and provides information on the degree of inflammation. Addition-
ally, a significant percentage of pockets with a depth of more than 6 mm signal greater
severity. There are already some studies in which radiographic bone loss is measured with
the use of artificial neural networks. To improve the quality and efficiency, deep learning
models with the use of panoramic radiographs or intraoral radiographs have been devel-
oped to assist clinicians in interpreting and measuring alveolar bone to reach a periodontal
diagnosis with high accuracy and reliability [40,41]. Kohonen networks are used in other
medical fields, for example, in detecting breast cancer. In the study of Ashokkumar et al.
deep learning techniques have been proposed as a potential way to accurately predict
breast cancer in its early stages. The Kohonen self-organizing algorithms, feed forward, and
radial basis functions are examples of assessment techniques for artificial neural networks.
The outcomes of the study indicate that the deep learning model can more accurately assess
the final diagnosis of the axillary lymph node metastatic from US imaging of initial breast
cancer [42]. Kohonen’s artificial neural networks were also used to select new inhibitors
of SARS-CoV-2 activator protein furin. In this research, it was found that 15 existing FDA
antiviral drugs can have the potential to inhibit furin. Kohonen’s self-organizing maps
(SOM) are widely employed today in pharmaceutical research to establish the connection
between structure and biological activity for medication discovery [43]. In the study of
Zhao Y et al. an upgraded collaborative neural network model was suggested in order
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to address the self-organizing mapping network’s Kohonen layer structure. The study
investigated the relationship between branch retinal vein occlusion and arteriosclerosis by
quantitatively measuring retinal vessel diameter and choroidal thickness with the use of
Kohonen networks [44]. In addition, in psychiatry, neural networks can be successfully
used, for example, in the study of Loula et al. where according to Brazilian statistics on
mortality and the prevalence of major depressive disorder, a virtual population was created,
and its five different types of inhabitants were clustered using Kohonen’s self-organizing
map (SOM) [45]. In another study, Kohonen networks were used to assess the nutrition
quality with frailty syndrome among the elderly [46]. Self-organizing maps (SOMs) were
used with the socio-demographic data such as age, gender, and race to perform the correct
classification of asthma outcome. Kohonen self-organizing maps, especially when inte-
grating multi-dimensional data, are effective classification models for studying asthma
outcomes, according to the study’s findings [47]. In the dermatologic study of Styła et al.
the dermatoscopic images were used to train Kohonen neural networks to provide fully
automatic diagnostic systems capable of determining the type of pigmented skin lesion [48].
Referring to the above and recent studies, it was shown that machine learning algorithms,
particularly Kohonen networks, might be useful in medicine and can improve diagnosis
and give clinicians more tools in treatment planning [42–52]. According to our study, we
can recommend other specialists use Kohonen networks in their daily practice to ease the
prediction of the progression of periodontitis with the usage of data: gender, age, active
nicotinism, the number of teeth still present, the approximate plaque index (API), bleeding
on probing (BoP), pocket depth (PD), and clinical attachment loss. After giving all of these
input data, neural networks may predict the possibility of the progression of periodontitis
that may be helpful for the clinicians, researchers, but also for the patients to outline the
severity and probability of progression of the disease.

The methodology that we have employed allows us to notice some of variables which
present statistically significant differences in terms of the probability of progression. The
dependences of these magnitudes do not appear when a customary statistics method
comparing the means between the several groups is undertaken [21].

5. Conclusions

We discovered the pattern of patients according to the periodontitis grade and stage,
and grouped the neurons together to form three clusters: Group 1 represented a percentage
of slow progression of almost 75%; Group 2 in which the percentage of moderate pro-
gression was almost 65%; and Group 3 represented a percentage of rapid progression of
almost 60%. More map nodes are shared between patients from Groups 2 and 3 than the
more narrowly focused Group 1. When examining the patterns of each of these groups,
it becomes clear that Groups 2 and 3 are interconnected, since we identify neurons that
contain examples from both of these groups. However, this circumstance is a reflection of
reality, rather than a flaw in the network.

To conclude, we can say that self-organizing maps can be taken into consideration
while assessing the risk of the progression of periodontitis. It can be helpful especially for
clinicians, but also for scientists while defining the stage of periodontitis.
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32. Świetlik, D.; Białowąs, J.; Kusiak, A.; Krasny, M. Virtual Therapy with the NMDA Antagonist Memantine in Hippocampal.
Models of Moderate to Severe Alzheimer’s Disease, in Silico Trials. Pharmaceuticals 2022, 15, 546. [CrossRef]
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