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Abstract: Artificial intelligence, particularly machine learning, has gained prominence in medical
research due to its potential to develop non-invasive diagnostics. Pulmonary hypertension presents a
diagnostic challenge due to its heterogeneous nature and similarity in symptoms to other cardiovas-
cular conditions. Here, we describe the development of a supervised machine learning model using
non-invasive signals (orthogonal voltage gradient and photoplethysmographic) and a hand-crafted
library of 3298 features. The developed model achieved a sensitivity of 87% and a specificity of
83%, with an overall Area Under the Receiver Operator Characteristic Curve (AUC-ROC) of 0.93.
Subgroup analysis showed consistent performance across genders, age groups and classes of PH.
Feature importance analysis revealed changes in metrics that measure conduction, repolarization and
respiration as significant contributors to the model. The model demonstrates promising performance
in identifying pulmonary hypertension, offering potential for early detection and intervention when
embedded in a point-of-care diagnostic system.

Keywords: artificial intelligence; digital health; front line; pulmonary hypertension; point-of-care

1. Introduction

Since the advent of modern computational technologies and the increasing accumu-
lation of healthcare data, artificial intelligence has evolved into an active area of research
within the medical domain. Deep learning algorithms are a popular choice, in part due to
their ability to discover features from unprocessed data, eliminating the need for domain
expertise. However, deep learning algorithms require large datasets with tens of thou-
sands to hundreds of thousands of examples to perform well, and as a result, practitioners
routinely utilize tangentially related data sources to supply sufficient data (consequently
biasing the models). Further, the interpretability of the prediction mechanism of deep
learning algorithms, including the nature of the learned features and their importance, is an
area of active research, and cannot yet be performed consistently in a trustworthy manner.

Conversely, classical supervised machine learning uses a known set of input features
instead of raw data, which reduces data needs by multiple magnitudes to alleviate deep
learning data constraints in complex medical applications where the quantity of ground-
truth data is limiting. The final models generated are transparent and allow understanding
of the physiological mechanisms underpinning the output. However, developing sig-
nificant and relevant features requires a thorough understanding of signal processing,
mathematics and medicine.

Pulmonary hypertension (PH) is a group of heterogeneous disorders characterized by
a mean pulmonary arterial pressure (mPAP) of ≥25 mmHg based on the 2015 ESC/ERS
Guidelines [1] and ≥21 mmHg based on the 2022 ESC/ERS Guidelines [2], measured using
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invasive right heart catheterization (iRHC) [3]. PH is most prevalent in those with left heart
failure (systolic or diastolic), a group in which the PH prevalence estimates are between 25
and 83% [4,5]. The prevalence of PH is strongly and independently correlated with age [6].
It has also been suggested that elevated pulmonary pressure is itself a cardiovascular risk
factor due to its independent association with increased mortality [6]. PH can be divided
into subgroups based on pulmonary capillary wedge pressure and pulmonary vascular
resistance, as shown in Table 1, which also identifies the corresponding World Health
Organization (WHO) groups [7].

Table 1. Definition of PH & subgroups per ECS/ERS guidelines (2015 & 2022), with WHO groups
for each. PCWP = pulmonary capillary wedge pressure, PVR = pulmonary vascular resistance &
WU = Woods units.

2015 ESC/ERS
Guidelines

2022 ESC/ERS
Guidelines WHO Groups

Pre-Capillary PH
mPAP ≥ 25 mmHg
PCWP ≤ 15 mmHg
PVR > 3 WU

mPAP ≥ 21 mmHg
PCWP ≤ 15 mmHg
PVR > 2 WU

1, 3, 4, 5

(Isolated) Post-Capillary PH
mPAP ≥ 25 mmHg
PCWP > 15 mmHg
PVR ≤ 3 WU

mPAP ≥ 21 mmHg
PCWP > 15 mmHg
PVR ≤ 2 WU

2, 5

Combined Pre- &
Post-Capillary PH

mPAP ≥ 25 mmHg
PCWP > 15 mmHg
PVR > 3 WU

mPAP ≥ 21 mmHg
PCWP > 15 mmHg
PVR > 2 WU

2, 5

PH is ubiquitous, affecting an estimated 1% of the world population and up to 10%
of people over 65 years of age, as well as 50% of patients with heart failure [8]. The
vast majority of people with PH (80%) live in areas with limited access to appropriate
medical care [9]. PH is a life-threatening condition with significant morbidity and mortality
regardless of etiology or group classification [3]. There is potential to alter the course of this
disease, improve survival and increase health equity if PH is detected early enough, which
requires readily available testing methods to permit necessary interventions and therapies.
Importantly, PH patients present with symptoms similar to those of other cardiovascular
disease states (i.e., coronary artery disease and left-sided heart failure), further increasing
the complexity of its recognition and ultimately its diagnosis. iRHC serves as the gold
standard for diagnosing PH. Furthermore, patients with a specific form of PH, pulmonary
arterial hypertension (PAH), which affects younger females in particular, are frequently
diagnosed years after symptom onset, at a point when the pathophysiologic changes
have become irreversible. There is a clear need for novel point-of-care diagnostics that
identify patients with PH earlier in the clinical pathway. Specifically, point-of-care testing
is performed where the clinician is assessing the patient, not requiring referral to off-site
testing services or higher levels of care (secondary/tertiary care), increasing the accessibility
of the test.

Transthoracic Echocardiography (TTE) is a routinely performed point-of-care test
that may provide some information on PH status. Janda et al., in their meta-analysis
comprising 29 studies and a total of 1995 patients, compared the efficacy of TTE to iRHC in
diagnosing PH. Their findings revealed that in 41% of cases, the tricuspid regurgitant (TR)
jet, necessary for systolic pulmonary arterial pressure evaluation, was unmeasurable [10].
A similar challenge was observed by Lam et al., where TR jets were analyzable in only
69% of subjects [6]. Notably, most cases with unmeasurable TR jets stemmed from studies
predominantly involving chronic obstructive pulmonary disease (COPD) patients. These
results underscore the limitations of TTE in accurately assessing elevated PAP across diverse
populations. Sensitivity and specificity were dependent on disease state and demonstrated
a wide range of performance; from 0.58 to 0.97 for sensitivity and 0.46 to 1 for specificity [10].
When the various results assessed in the review were combined, the sensitivity was found
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to be 0.83 (0.73 to 0.90), and the specificity was found to be 0.72 (0.53 to 0.85) [10]. Janda
found that a TTE assessment yielded a result in only 59% of the subjects tested; considering
the entire population, versus solely that part for which a TTE result may be obtained,
the sensitivity may be more correctly stated as 0.49 (0.83 × 0.59), with specificity of 0.42
(0.72 × 0.59).

While TTE remains widely available in hospitals and cardiology clinics, its diagnostic
accuracy hinges on skilled parameter measurement, requiring expert operators. However,
the inability to assess mPAP in a significant proportion of cases, often only discovered post-
test, results in wasted time and resources and delayed treatment. In contrast, we believe
that it is possible to develop an algorithm to assess for elevated mPAP at point-of-care
with high performance, without reliance on expert operators, and in patients currently left
behind by TTE due to unmeasurable TR.

Although a few rule-based models have been described for detecting PH, their relia-
bility is still questionable. For example, a recent study compared different methodologies
using a rule-based and machine learning (ML) models for identifying PH, finding that
all the ML models outperformed the rule-based models [11]. However, the proposed
ML models rely heavily on patient age, medical history (e.g., heart failure, primary PH,
valvular heart disease and cardiomyopathy) and outcomes of other non-invasive tests (e.g.,
electrocardiography and echocardiography). However, the applicability of such models
can face limitations when such information is unavailable.

Thus, herein, we sought to employ machine learning to develop a high-performance
model for the detection of PH in symptomatic patients without the use of patient metadata
or medical history. Such a model can be employed in a system to assess PH at point-of-care,
without the need for expert TTE operators, and reliance on TTE measures such as TR jet
velocity. The development methodology parallels that used to successfully develop a model
to assess for coronary artery disease (CAD) [12].

2. Materials and Methods
2.1. Clinical Studies & Population

The subjects used in the present work were drawn from the CADLAD (NCT02784197),
IDENTIFY (NCT03864081) and IDENTIFY-PH (NCT04031989) prospective studies, as well
as the RADPH retrospective study, all of which were approved by the Western Institutional
Review Board. Informed consent was obtained from all subjects. CADLAD enrolled
subjects prior to invasive coronary angiography (ICA) by left heart catheterization, and
iRHC was also performed in a subset of subjects. The IDENTIFY study both continues
and extends CADLAD; IDENTIFY Group 2 is identical to CADLAD, while IDENTIFY
Group 4 enrolled subjects with new-onset cardiovascular symptoms referred by their
physician for Computed Coronary Tomography Angiography (CCTA) for assessment of
CAD. IDENTIFY Group 3 enrolled subjects with new-onset cardiovascular symptoms
referred by their physician for Single-Photon Emission Computed Tomography Myocardial
Perfusion Imaging (SPECT MPI) for assessment of CAD. IDENTIFY-PH enrolled subjects
with new-onset cardiovascular symptoms referred for iRHC. RADPH enrolled subjects
who had previously undergone iRHC (within 18 months of screening for the study), where
that iRHC showed an mPAP of at least 30 mmHg. See inclusion/exclusion criteria for all
studies in Supplement Section S1.

The CorVista Capture device (Analytics for Life; Toronto, ON, Canada & Bethesda,
MD, USA) [13] non-invasively acquired orthogonal voltage gradient (OVG) and photo-
plethysmogram (PPG) signals simultaneously from each subject at rest prior to the reference
test (CCTA and MPI-SPECT in IDENTIFY or iRHC in IDENTIFY-PH and CADLAD) or
after the reference test (iRHC in RADPH). Subjects in IDENTIFY Groups 3 and 4 must have
had a TTE within 90 days of signal collection that showed a low probability of PH using
the ESC/ERS guidelines [2], in addition to being negative for diastolic dysfunction [14].
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Training and internal validation refers to the process of iteratively training and gener-
ating naïve predictions within the cross-validation procedure for performance evaluation.
Table 2 shows the contribution of subjects from each study. IDENTIFY-PH contributed
N = 252 PH+ subjects in total, composed of N = 120 females and N = 132 males. PH-
subjects were sourced from IDENTIFY Group 3, composed of N = 43 males (and no fe-
males), and IDENTIFY Group 4 (N = 161), composed of N = 106 females and N = 55 males.
IDENTIFY-PH and IDENTIFY Group 4 were only used for the internal validation process
because of the enhanced confidence in the absence of CAD granted by CCTA over SPECT.
IDENTIFY Group 3 was used in training only to compensate for the shortfall of male
subjects in IDENTIFY Group 4.

Table 2. Demographics and disease used in the training.

Characteristic PH−
IDENTIFY Groups 3 & 4

PH+
IDENTIFY PH p-Value

Number of Subjects 204 252

Age
Mean ± Std 54.6 ± 12.2 64.7 ± 12.3 <0.05
Age ≥ 65 19.6% (40/204) 53.6% (135/252)

<0.05Age < 65 80.4% (164/204) 46.4% (117/252)

Sex 0.358
Male 48.0% (98/204) 52.4% (132/252)

0.397Female 52.0% (106/204) 47.6% (120/252)

BMI <0.05
Mean ± Std 31.3 ± 6.7 33.5 ± 9.2 <0.05
BMI ≥ 30 53.0% (108/204) 58.7% (148/252)

0.217BMI < 30 47.0% (96/204) 40.9% (103/252)

PH Subgroups *
Combined Pre-

& Post-Capillary 51 (20.2%)

Isolated
Post-Capillary 65 (25.8%)

Pre-Capillary 40 (15.9%)
* Subgroups do not add up to 100% due to (1) inability to categorize subjects lacking pulmonary capillary
wedge pressure and/or pulmonary vascular resistance measurement or (2) subjects belonging to the unclassified
PH subgroup.

Given that the point-of-care system in which we planned to embed the resultant
algorithm to assess for elevated mPAP is intended to be used on any symptomatic patient
indicated for TTE assessment of PH, and TTE can reliably detect the absence (but not
presence) of mPAP elevation, the subjects from IDENTIFY-PH provided the elevated
cohort using the gold standard of iRHC, while the TTE subjects negative for PH provided
the non-diseased cohort. In combination, we refer to these two cohorts as the Intended
Use Population.

Equal treatment of both genders was of critical importance in the development of
the PH Algorithm, and as discussed, IDENTIFY Group 3 was required to supplement the
relative lack of males in IDENTIY Group 4 (Table 2). Given the use of IDENTIFY Group 3,
the dataset was approximately balanced by gender and disease, and therefore there was no
need for any measures to impose balance (otherwise, sample weighting or other similar
approaches would have been explored). Finally, note that the description of the validation
(in training and internal validation) is intended to convey that all performances derived
from that data are estimates only, given that the gold-standard methodology for validating
a ML algorithm is a large, blinded dataset that is assessed only once—which is under
review in a manuscript describing the clinical validation of this model.
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2.2. Overview of Model Development Process

The PH algorithm is the series of processing steps to take in a signal from the CorVista
Capture device and return a prediction reflective of PH status (i.e., PH Score). The de-
velopment process began with assessment of the quality of captured signal, then feature
extraction from OVG and PPG signals [15], followed by univariate feature selection to iden-
tify discriminative features. Statistical tests were employed to retain only the significant
features, reducing the dimensionality of the dataset. Subsequently, Elastic Net (EN) and
Random Forest (RF) models were trained using the selected features, intended to capture
both linear and non-linear relationships. An out-of-fold (OOF) prediction methodology en-
sured comprehensive evaluation across the dataset while maintaining validation integrity.
Gender balance was carefully considered throughout the process. Figure 1 provides a
schematic of the pipeline used in our study, and detailed descriptions of each step are
provided in the following sections.
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2.3. Signal Collection, Quality Assessment and Feature Extraction

Two sources of time-series data were simultaneously acquired (within 1 millisecond)
from each subject: (i) OVG signals and (ii) PPG signals (Red and IR). These signals were
collected at a sampling rate of 8 kHz using a specialized instrument (CorVista Capture, both
hardware and firmware) [13]. OVG signal quality was assessed for possible environmental
interference (i.e., 60 Hz powerline and high-frequency noise, ≥170 Hz). The quality of the
PPG signal was also checked for possible artifacts, i.e., jumps, saturation and clipping, as
described in [13]. Signals with low quality were excluded from further analysis, and upon
passing the quality assessments, features were extracted from the signals. Herein, OVG
and PPG signals were analyzed in their different representations including time-domain,
frequency, time–frequency and phase space. Several techniques have been employed for
feature engineering, such as spectral, scalogram, time-series, dynamical and topological
analysis. Features have previously demonstrated utility in the assessment of CAD [12,15]
and elevated left ventricular end diastolic pressure [15,16]. Detailed description of the
features’ calculation and their reported utility can be found in Supplement Section S2.

2.4. Dimensionality Reduction (Feature Selection)

Given the large feature library (3298 features), particularly as compared to the number
of subjects, a dimensionality reduction step to reduce the number of features was under-
taken using univariate feature selection. Features were assessed for statistical ability to
separate diseased subjects from non-diseased subjects. The statistical testing was performed
on an N = 161 dataset from RADPH, CADLAD and IDENTIFY Group 2, composed of
a roughly equal division into diseased and non-diseased, as described in Table 3. The
N = 83 diseased subjects had mPAP ≥ 21 mmHg across all three study groups. The N = 78
non-diseased subjects had mPAP ≤ 16 mmHg, chosen to be somewhat close to the elevated
group from CADLAD and IDENTIFY Group 2. The negative subgroup used for the dimen-
sionality reduction was selected from the iRHC-negative population and did not include
any of the negative subgroups from TTE used in the training. The feature selection data
was chosen to reduce the effect size between the negative and positive iRHC, which would
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result in the selection of the features with the most predictive power and reduce type I error.
As mentioned, care was taken at this stage (which carries through the process) to ensure
that the genders were treated evenly; in this case, the number of males and females in each
of the diseased and non-diseased groups were within one of each other. It should be noted
that none of the subjects utilized in feature selection were incorporated into the training
process, which ensures the integrity of feature selection by preventing any potential bias
leakage from the feature selection dataset (dimensionality reduction) to the training dataset.

Table 3. Subjects used for dimensionality reduction.

Status Females Males Total Threshold

Positive 41 42 83 mPaP ≥ 21

Negative 39 39 78 mPaP ≤ 16

Univariate tests were used to determine whether the feature significantly separated
the two cohorts. While there are many methods for dimensionality reduction available
in the literature, there is not a specific one applicable to all model types [17]. Herein,
the proposed univariate feature selection was used due to its computational efficiency,
straightforward interpretability and ability to effectively reduce the number of features
to the most predictive. Three metrics were used for feature selection: (I) t-test (to detect
a difference in the means of the distributions); (II) ROC-AUC (treating the feature as a
predictor of the disease state); and (III) mutual information (to detect differences in the
shapes of the distributions). To select features using t-test, a threshold for the p-value was
established at 0.025 (half of the conventional threshold of 0.05). To select features used
ROC-AUC, bootstrap sampling was used to calculate the 95% confidence interval, of which
the lower bound needed to be greater than 0.505 or the upper confidence bound needed
to be less than 0.495. To select features using mutual information, bootstrap sampling
was used to calculate the 95% confidence interval, the lower bound of which needed to be
greater than 1.4. Finally, to remove features with small means and small variations (where
minor changes due to computational precision could lead to significant deviations), the
mean and standard deviation of the feature needed to be greater than 0.001.

2.5. Modeling

The primary goal of machine learning is to ensure that performance generalizes to
unseen datasets, and stacked ensembling is a valuable tool to achieve this aim. Two model
types were selected for inclusion in the PH Algorithm: EN and RF. The use of stacked
ensembling, which, in this case, is the averaging of the predictions from RF and EN,
increases generalizability by reducing reliance on either of the single model types. The
selection of EN and RF as the component models of the PH Algorithm was intended to
capture linear and non-linear relationships, respectively, between the features and the PH
status. The usage of EN is particularly well suited for datasets with a large number of
features compared to the number of samples, commonly referred to as high-dimensional
data [18]. Specifically, EN combines the strengths of both Lasso and Ridge regression,
allowing it to effectively handle multicollinearity and select relevant features even when
the number of predictors exceeds the number of observations. Similarly, RF has an inherent
regularization to reduce the risk of overfitting due to the use of a large number of trees and
bootstrapping [19].

Note that there is no way to determine a priori which machine learning algorithm is
best suited for any particular problem, though reasoning can be applied to reduce the suite
of options (i.e., to models known to work well with small datasets). Therefore, we applied
several classifiers/regressors, which are widely used for the assessment of cardiovascular
diseases and cover a wide range of linear and non-linear methods, for the development of
PH models; however, we found that EN and RF outperformed the other models.
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EN is a regularized linear regression that combines weight (w) regularization using
both l1 (‖w‖1 = ∑i wi) and l2 (‖w‖2

2 = ∑i w2
i ) penalties [20].

RF is an ensemble algorithm composed of underlying tree models. Each tree optimizes
the mean squared error loss function ( 1

n ∑n
i=1{y− ŷ}2

)
by selecting features upon which

to split the dataset until a terminal leaf node is reached, containing prediction for the
remaining subset of data. A large collection of trees are trained on differing subsets
of the subjects and the predictions from the trees are averaged to result in the overall
RF prediction.

2.6. Performance Analysis

To enable robust characterization of the PH model, an out-of-fold (OOF) prediction
methodology was developed to enable generation of predictions on the entire Intended
Use Dataset (IDENTIFY-PH and IDENTIFY Group 4); this is a critical functionality to allow
use of the entire Intended Use Dataset in training, while still providing for analysis of the
Intended Use Dataset as an internal validation set for ROC curve generation (including
cut-point selection) and subgroup analysis (most importantly, by gender). The alternative
to OOF prediction is the use of a static training set (within which cross-validation could
still be performed) and a static internal validation set; the disadvantage of this strategy
is the inherent limitation of the usage of each of those datasets. Specifically, the internal
validation data cannot be used for training, impacting the ability of the model to generalize,
and the training data cannot be used for assessment of the model (ROC curve, subgroups,
etc.), limiting confidence in that assessment based on limited dataset size.

OOF prediction is built upon cross-validation, using the same fivefold stratified divi-
sion [21]. However, it was extended as shown in Figure 2; given a model that was trained
on four folds with the fifth withheld for testing, the predictions were stored from that fifth
fold. As the folds were iteratively reserved for testing, the result was complete coverage
of the entire dataset with respect to naïve prediction generation. As in cross-validation,
this process was repeated over 100 iterations to vary how the data was divided into the
five folds.
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Figure 2. Out-of-fold (OOF) prediction generation, with this process repeated over 100 iterations.

It should be noted that the hyperparameters and model configurations were locked
using the cross-validation paradigm, and during OOF retraining, loss function optimization
was not performed. This was an important control to ensure that there was no bias transfer
from the previous training step that could potentially increase the risk of overfitting the
training set. The output of the OOF strategy was 500 models; when evaluating the Intended
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Use Dataset, the median prediction was taken across the 100 models for which each subject
was unseen. Further, when evaluating any other dataset, the median prediction across all
500 models was used. The use of this large number of models, each trained on a different
subset of the data, is known as a bagged ensemble [22].

3. Results
3.1. Selected Features

Figure 3 shows the results of the feature selection, which yielded 217 features from
a library of 3298 hand-crafted features. The most common scenario for selection was by
AUC alone with 66 features (30%). Only 59 (27%) features were selected by two or more
tests, reflecting the necessity of applying all these tests, as that majority of features (158,
73%) originated from only one test (i.e., chosen by only one of the t-test, AUC, or MI).
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3.2. Relationship between EN and RF

As described, the modeling approach employed an ensemble strategy, combining
the strengths of EN and RF algorithms. EN, with its regularization technique, excels at
capturing linear relationships within the data, emphasizing key features that contribute to a
linear model. On the other hand, the RF algorithm is adept at capturing complex non-linear
patterns and interactions among features, providing a robust framework for capturing
intricate relationships that may not be evident in a linear context. By leveraging the
distinctive advantages of both models, the ensemble seeks to harness the complementary
nature of EN’s focus on linear relationships and RF’s ability to capture diverse, non-linear
patterns, resulting in a comprehensive and accurate predictive model. Figure 4a shows a
scatter plot of the EN and RF components of the ensemble individually, which exhibited
Pearson and Spearman correlations of 0.85. Figure 4b shows that the ensembling of EN
and RF reached higher performance than each of them individually. Each dot represents
a different set of selected hyperparameters, which were then used for ensembling. In
assessing the main contributing features for both EN and RF models, there was only one
common feature among the top 10 contributed features between the two model types,
which is another demonstration of the distinct mechanisms by which the outputs from each
were generated.
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3.3. Performance

The resultant ROC curves are shown below in Figure 5, and subgroup performances
are shown in Table 4. As discussed, the 2015 guidelines [1] use a threshold of 25 mmHg,
which has since been updated to 21 mmHg in the 2022 guidelines [2]; however, a significant
corpus of literature, including drug safety and efficacy reporting, has been created with
the 2015 threshold of 25 mmHg, and therefore, that definition was adopted as the primary
disease population for the present work. Figure 5 shows the ROC curves of OOF predictions
(blue) together when naïve predictions of the additional 75 subjects from IDENTIFY-PH
with 21 mmHg ≤ mPAP ≤ 24 mmHg added (orange), to demonstrate the performance
on the 21 mmHg definition from the 2022 guidelines. Table 5 shows the performance,
including subgroups, for 21 mmHg using 2022 guidelines.
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Table 4. Subgroup Performance on Intended Use Dataset (25 mmHg using 2015 guidelines).

Subgroup Size ROC-AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

All Subjects 413 0.93 (0.91–0.95) 87% (84–90%) 83% (79–87%)

Sex

Males 187 0.95 (0.92–0.98) 89% (86–93%) 87% (82–92%)
Females 226 0.90 (0.86–0.94) 85% (80–90%) 80% (75–85%)

Age
≥65 162 0.89 (0.84–0.94) 84% (78–90%) 78% (72–84%)
<65 251 0.94 (0.91–0.97) 91% (87–95%) 84% (79–89%)

BMI
≥30 * 233 0.90 (0.86–0.94) 82% (77–87%) 80% (75–85%)
<30 * 179 0.96 (0.93–0.99) 93% (89–97%) 86% (81–91%)

PH Groups
Combined Pre- & Post-capillary ** 51 0.94 (0.87–1.00) 86% (76–96%) 83% (73–93%)
(Isolated) Post-capillary ** 65 0.92 (0.85–0.99) 88% (80–96%) 83% (74–92%)
Pre-capillary ** 40 0.95 (0.88–1.00) 92% (84–100%) 83% (71–95%)

* One subject did not have BMI available. ** PH subgroup was adjudicated when PCWP and PVR were both
available, and unclassified PH was excluded. Ns include positives only (negatives constant at N = 161).

Table 5. Subgroup Performance on Intended Use Dataset (21 mmHg using 2022 guidelines).

Subgroup Size ROC-AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

All Subjects 488 0.91 (0.88–0.94) 80% (76–84%) 83% (80–86%)

Sex
Males 225 0.94 (0.91–0.97) 83% (78–88%) 87% (83–91%)
Females 263 0.88 (0.84–0.92) 78% (73–83%) 80% (75–85%)

Age
≥65 205 0.87 (0.82–0.92) 78% (72–84%) 78% (72–84%)
<65 283 0.92 (0.89–0.95) 83% (79–87%) 84% (80–88%)

BMI
≥30 * 271 0.89 (0.85–0.93) 78% (73–83%) 80% (75–85%)
<30 * 216 0.93 (0.90–0.96) 84% (79–89%) 86% (81–91%)

PH Groups
Combined Pre- & Post-capillary PH ** 81 0.94 (0.89–0.99) 89% (82–96%) 83% (75–91%)
(Isolated) Post-capillary PH ** 45 0.89 (0.80–0.98) 76% (64–88%) 83% (72–94%)
Pre-capillary PH ** 74 0.94 (0.89–0.99) 88% (81–95%) 83% (74–92%)

* One subject did not have BMI available. ** PH subgroup was adjudicated when PCWP and PVR were both
available, and unclassified PH was excluded. Ns include positives only (negatives constant at N = 161).

3.4. Feature Importance

Understanding model behavior presents a significant challenge in healthcare and
is not yet frequently performed successfully. Here, to emphasize the importance of eX-
plainable Artificial Intelligence (XAI), we conducted a feature importance analysis [23]. To
further extend the interpretability of the current model, the model features were catego-
rized based on their possible underlying physiology. Further information is available in
Supplement Section S2.

Figure 6 illustrates the feature importance for the PH Algorithm by physiological
category. Conduction is the most contributive category, encapsulating features calculating
characteristics of myocardial conduction pathway and variations in that pathway. Repolar-
ization is the next most influential category, quantifying the recovery of the myocardium,
including power distribution, heterogeneity, timing, morphology and variation [24]. Res-
piration features estimate the respiration waveform and evaluate characteristics of that
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estimation, using the PPG and OVG signals. Arterial compliance features employ the first
or second derivative of the PPG (i.e., velocity plethysmogram and acceleration plethys-
mogram), both of which are known to embed characteristics of arterial compliance [25].
‘Perfusion response to cardiac contraction’ features characterize the interplay between the
OVG signal and the PPG signal, therefore embedding the perfusion response to cardiac
pulsation [15]. Atrial structure features capture heterogeneity in atrial composition, includ-
ing atrial enlargement [26]. Finally, perfusion features capture morphology of the PPG
waveform, and the relationship between the infrared and red signals [27]. These findings
are not unexpected from a clinical perspective as PH can often be the result of diastolic
dysfunction, presenting as modified conduction and abnormal repolarization. Further,
changes in respiration are a logical sequelae of PH.
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4. Discussion

A PH Algorithm was developed on a clinically relevant population, designed to
perform equally on both men and women with a diagnostic profile. Initial performance
using OOF predictions demonstrates that these design goals were met, with an overall
performance of ROC-AUC of 0.93, with a sensitivity of 87% and specificity of 83%. It
must be noted that there are no non-invasive methods that achieve similar performance.
The test described here, CorVista, requires no radiation exposure, no stress of any kind
and no contrast agents, and it can be performed in any setting, including rural (the only
requirement being an internet connection) with immediate results, a true point-of-care
test. Critically, the test addresses the disparity in healthcare access for rural vs. urban
populations, given the portability and ease of the test.

The results presented show robust overall performance across both males and females.
Importantly, the algorithm performance is robust as a function of age, an important charac-
teristic since some subtypes of PH have differing age and gender biases. The importance
of this observation is enhanced considering that Table 2 shows significant differences in
age and BMI across the negative and positive training groups; however, Tables 4 and 5
show no statistically significant difference in the model performance across the age and
BMI subgroups. Therefore, the imbalance of BMI and age in training have not been used
by the model for the detection of PH, i.e., no significant confounding effect. PAH is more
common in younger females, and other types of PH (e.g., isolated post-capillary PH) are
more common in patients above the age of 65. Given these demographic variations, it is
thus salient that the AUC, sensitivity and specificity of the algorithm is roughly equivalent
for all subgroups of PH, pre-capillary, combined pre- and post-capillary and isolated post
capillary PH. Further, this is also important given that there are now approved treatments
for Group 1 (PAH, pre-capillary), Group 3 (pre-capillary) and that the drug sotatercept was
found to be a highly effective treatment for the treatment of PAH [28]. In addition, the
SGLT2i class of drugs was recommended for the treatment of HFpEF, the cause of most
cases of Group 2 PH, in the 2022 ACC HF guidelines [29]. The availability of these new
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highly effective treatments for PH significantly augments the population health benefits of
earlier diagnosis of all types of PH.

The data used in the present work is a manageable clinical dataset with respect to
size, representing significant effort to enroll, yet still presents challenges for deep learning
approaches. In contrast, to address the dataset size, we manually engineered or “hand-
crafted” a large feature library and performed dimensionality reduction of the feature space
using feature selection, followed by classical machine learning using a stacked ensemble of
EN and RF.

A key advantage of classical machine learning, such as EN and RF used here, is ease
of model interpretation, whereas that process is much more complex in deep learning.
The feature importance analysis provides insight into the prediction mechanism of the PH
Algorithm. This algorithm puts high importance on differences in myocardial conduction
and the characteristics of repolarization. Intuitively these changes make sense as a hallmark
of sustained pressure increase leading to myocardial remodeling. However, the nature of
the changes is heterogenous and therefore a single measure of the myocardium or a specific
element of conduction are not able to evaluate disease with any efficacy; however, if several
features change in several patients who all have PH, then a machine learning algorithm
can assemble the relationships between the features and the disease.

5. Conclusions

In conclusion, our study demonstrates that utility of machine learning for the detection
of pulmonary hypertension in symptomatic patients with AUC-ROC of 0.93, sensitivity of
87% and specificity 83%. Importantly, subgroup analysis revealed consistent performance
across genders, ages and classes of PH, underscoring the model’s generalizability and
applicability in diverse patient populations.

When implemented into an integrated system with OVG and PPG sensors, such as
the CorVista System used in this study, the proposed model can serve as a non-invasive
point-of-care diagnostic test. By leveraging machine learning algorithms, we can stream-
line diagnostic processes and ultimately improve patient outcomes. The CorVista System
with the PH Algorithm described in this manuscript was validated on a large, indepen-
dent, blinded dataset and subsequently received FDA 510(k) clearance through the device
breakthrough program (April 2024).

Our study represents a significant step towards harnessing the power of artificial
intelligence for enhancing medical diagnostics and improving patient care in complex
diseases such as pulmonary hypertension.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/diagnostics14090897/s1, Supplement Section S1—Study Inclusion/Exclusion
Criteria: Table S1: Inclusion Exclusion Criteria of IDENTIFY & CADLAD. Table S2: Inclusion Exclusion Cri-
teria of IDENTIFY-PH. Table S3: Inclusion Exclusion Criteria of RADPH. Supplement Section S2—Features:
Table S4: Analysis methods with description and utility of the model features [13,30–45]. Figure S1:
Example of a feature capturing conduction pathway, as ventricular depolarization relates to repolar-
ization, in a PH- subject (a), which exhibits a repolarization vector lying within the depolarization in
phase as compared to a PH+ subject (b), in which repolarization is not enveloped by depolarization.
Figure S2: Assessment of repolarization using wavelet time-frequency analysis, where, in contrast to
PH- subjects (a), PH+ subjects tend to exhibit larger values of this feature, corresponding to longer
repolarization, which is a characteristic indicative of repolarization deficits. Figure S3: Example of a
PH- subject exhibiting dynamic changes in the respiration amplitude and frequency (a), PH+ subject
exhibiting invariant respiration barring a single breath. Figure S4: Example of PH- subject (a) showing
negative arterial compliance feature value (with visually identifiably low amplitude acceleration
plethysmogram) and example of PH+ subject (b) showing positive arterial compliance feature value
(with visually identifiably high amplitude acceleration plethysmogram). Figure S5: Example of a
perfusion response to cardiac contraction feature, which examines the mutual information between
the OVG and PPG signals, showing a high value in PH- (a), and lower value in PH+ (b). Figure S6:
Example of atrial structure feature examining for the presence of additional deflections of notching in
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Diagnostics 2024, 14, 897 13 of 15

the atrial depolarization waveform, which are not present in the PH- subject (a), but are visible in the
PH+ subject (b). Figure S7: Example of a feature capturing perfusion, as the red plethysmographic
(blue trace) signals relates to infrared (red trace), demonstrating typical perfusion in a PH- subject (a)
in contrast reduced perfusion in a PH+ subject (b).
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