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Abstract: Since the beginning of the COVID-19 pandemic, there has been enormous interest in
the development of measures that would allow for the swift detection of the disease. The rapid
screening and preliminary diagnosis of SARS-CoV-2 infection allow for the instant identification
of possibly infected individuals and the subsequent mitigation of the disease spread. Herein, the
detection of SARS-CoV-2-infected individuals was explored using noninvasive sampling and low-
preparatory-work analytical instrumentation. Hand odor samples were obtained from SARS-CoV-
2-positive and -negative individuals. The volatile organic compounds (VOCs) were extracted from
the collected hand odor samples using solid phase microextraction (SPME) and analyzed using gas
chromatography coupled with mass spectrometry (GC-MS). Sparse partial least squares discriminant
analysis (sPLS-DA) was used to develop predictive models using the suspected variant sample subsets.
The developed sPLS-DA models performed moderately (75.8% (±0.4) accuracy, 81.8% sensitivity,
69.7% specificity) at distinguishing between SARS-CoV-2-positive and negative -individuals based
on the VOC signatures alone. Potential markers for distinguishing between infection statuses were
preliminarily acquired using this multivariate data analysis. This work highlights the potential of
using odor signatures as a diagnostic tool and sets the groundwork for the optimization of other
rapid screening sensors such as e-noses or detection canines.

Keywords: SARS-CoV-2; COVID-19; odor signature; HS-SPME-GC-MS; machine learning; sPLS-DA
modeling; non-invasive diagnostic tool

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the
deaths of over 6 million people on a global scale since the start of the COVID-19 pandemic
in 2019 [1]. Due to the widespread expansion of this disease, along with its high capacity
for infection even among asymptomatic individuals, there have been multiple studies
on the development of technology and tools that would aid in its rapid screening and
diagnosis [2–5]. The most common tools currently used for confirmatory diagnosis are the
reverse transcriptase–quantitative polymerase chain reaction (RT-qPCR) test, which has
been known to have ~90% sensitivity, on average [6–8], and the antigen test, which varies
widely in terms of sensitivity and can range from 35 to 72% depending on the brand [6,7,9].
Despite the high sensitivity RT-qPCR is known for, there are several disadvantaging factors
that can lead to false negatives such as a degraded sample or inadequate sample collection,
a limit of detection higher than the available viral content, viral mutations, and a poor
performance in sample testing [10]. False negative tests can result in further spreading of
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the disease by undiagnosed patients. Additionally, PCR-based tests seem to have a long
turnaround time, with individuals receiving a notification of their test results 24–48 h
after specimen collection, further enhancing viral circulation. On the other hand, antigen
tests are more efficient for patient screening, as they produce swift responses, are less
expensive, and allow for self-testing [7,9]. Unfortunately, the sensitivity of the assay is
sacrificed in exchange for a rapid response time. The sensitivity is even further reduced in
asymptomatic populations [9]. Moreover, both RT-qPCR and antigen diagnostic tests can
require a marginally invasive and uncomfortable sample collection from the patient [11],
which could discourage individuals from seeking diagnostic services. There remains
a pressing need for effective screening and diagnostic testing for public health surveillance,
as SARS-CoV-2 has been proven to cause severe health outcomes.

Some other methods of detection that have been preliminarily conceptualized include—
but are not limited to—the use of analytical instrumentation [4,12], e-noses [13], and
canines [4,12,14]. Each of the aforementioned research studies have implemented the
analysis of volatile organic compounds (VOCs) that are characteristic of SARS-CoV-2-
infected individuals. VOCs are emitted by humans and other living organisms through
various bodily secretions such as breath, saliva, urine, and sweat [15,16]. These VOCs can
change over time and are often influenced by alterations in metabolic conditions, such as
those induced by diseases [17]. Multiple reviews have been published over the past decade
on the scent of diseases and how odor expression can potentially be used to diagnose
various ailments such as gastro-intestinal diseases, infected wounds, and cancer [17–19].
Recently, the diagnosis of SARS-CoV-2 infection through the analysis of exhaled breath
VOCs has become more thoroughly explored as an alternative screening method [3,20–22].
In 2020, Ruszkiewicz et al. performed a preliminary study wherein they discovered that
they were able to distinguish between individuals who were SARS-CoV-2-infected and
those who were presenting similar symptoms using gas chromatography (GC) and ion
mobility spectroscopy with approximately 80.7% accuracy [22]. They hypothesized that
a series of compounds including methanol and various ketones could provide a foundation
for the development of a breath test for SARS-CoV-2 infection. Another study in 2021
commented on the reduced concentrations of acetone in the breath samples of SARS-CoV-
2-infected individuals [20]. Additionally, Abumeeiz et al. (2021) assessed the opportunities
and challenges of using a breathalyzer for the diagnosis of SARS-CoV-2 infections. The
authors remarked that while high upfront costs and standardization might become an
issue, the implementation of this technology could provide a worthwhile, noninvasive,
and rapid test that would enable better disease management and responses to community
outbreaks [3]. The researchers also took on a different approach to collect VOC odor from
patients in a less invasive fashion, that is, from the hands versus the breath. Numerous
studies have been published on the availability of VOCs from the hands of individuals and
the ability of these VOCs to differentiate between subjects [23–25].

Hand odor collection would allow for a more rapid screening of individuals for disease
states versus breath analysis methodologies, which require large volumes of exhaled breath
to be collected for disease state determination. The analysis of hand odor also proves less
invasive than the nasopharyngeal swabbing incurred for various RT-qPCR and antigen
diagnostic tests. Additionally, hand odor swabs can be treated as a “clean sample” requiring
no sample cleanup or liquid extraction prior to analysis by analytical instrumentation.

For these reasons, this research seeks to leverage the VOC detection of human hand
odor using headspace solid phase microextraction (HS-SPME) sampling and gas
chromatography-mass spectrometry (GC-MS) analysis to identify chemical biomarkers
that may distinguish between SARS-CoV-2-positive and -negative individuals. The use of
chemometric tools allows for efficient data manipulation and machine learning to develop
sPLS-DA predictive models. This is the first in a set of papers that lays the groundwork for
a non-invasive diagnostic approach for SARS-CoV-2. It is the belief of the researchers that
the further expansion and successful implementation of this approach will also result in
a framework for the development of rapid diagnostic tools for other diseases.
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2. Materials and Methods
2.1. Human Hand Odor Collection
2.1.1. Sample Collection Details

Human hand odor samples were collected at three different time periods correspond-
ing to the height of the Delta variant and the two Omicron SARS-CoV-2 subvariants (Table 1).
The samples collected during late 2021 (Delta variant’s dominance) were repurposed from
a separate task. As such, the sample sets collected during 2021 and 2022 were collected
using different collection procedures.

Table 1. SARS-CoV-2-Positive and -Negative Samples.

SARS-CoV-2
Infection Status Timeframe Collection Timespan

Dominant SARS-CoV-2
Variant at Time of

Collection
Number of Samples

Positive
Late 2021 June 2021–October 2021 Delta 20
Early 2022 February 2022–May 2022 Omicron BA.2 13
Mid 2022 July 2022–September 2022 Omicron BA.5 23

Negative 2021–2022 September 2021–October 2022 Delta/Omicron BA.2/
Omicron BA.5 46

All samples were collected by researchers at the Penn Acute Research Collaboration-
Penn Presbyterian Medical Center (PARC-PPMC) in Philadelphia, PA. The samples were
collected from a patient population present in the Emergency Department at the time of
sampling. All samples were collected under the approval of the University of Pennsylva-
nia’s Institutional Review Board (IRB# 848819). The VOC analysis of the collected samples
was conducted by researchers at Florida International University in Miami, Florida.

2.1.2. Late 2021 Hand Odor Samples

Prior to the sample collection, the patients were asked to “cleanse” their hands by
wiping them with a WaterWipes® wipe. They were then instructed to dry their hands with
a paper towel or air-dry them. Samples were collected using sterile medical gauze. The
gauze packaging was opened by the researcher without touching the gauze. The patient
was instructed to (1) grab the exposed gauze and ball it up in their hands, (2) hold it in
between their closed palms for approximately 10 s, and then (3) wipe both hands with the
gauze before (4) placing it into a plastic specimen bag.

The specimen bag was labeled with a patient identifier. The hand odor sample was
collected in conjunction with an underarm odor sample and a method control (blank)
sample. All samples were packaged into separate specimen bags. The hand odor and
control samples were used in this study; the underarm odor samples were not. The samples
were stored below 3 ◦C until they were transferred to Florida International University for
SPME odor extraction and subsequent GC-MS analysis.

2.1.3. Early-2022 and Mid-2022 Hand Odor Samples

Samples were collected using pre-treated sterile gauze [26]. The researcher prepared
for the collection procedure by opening a vial containing the gauze and removing it with
a pair of clean tweezers. The gauze was placed into the patient’s hand, and the patient was
instructed to (1) wipe both palms fully, (2) hold the gauze between their closed palms for
30 s, and then (3) ball-up the gauze and push it through the opening of the vial (held by the
researcher). The researcher then resealed the vial and placed it into an aluminum barrier
bag. This bag and the vial were labeled with patient information and then stored at −20 ◦C
until they were ready for analysis. The samples were transferred into FIU’s custody for
chemical analysis and were delivered along with three method blank samples per shipment.
The samples were generally received monthly during active sample collection periods.
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2.2. Confirmation of SARS-CoV-2 Infection

In this study, 95 individuals were tested and diagnosed for SARS-CoV-2 infection
using the Roche cobas® SARS-CoV-2 Duo Test for use on the cobas® 6800/8800 systems
(Roche Diagnostics, Basel, Switzerland). The healthcare provider collected nasopharyngeal
swab samples from all 95 patients for this PCR diagnostic test, which is the standard
SARS-CoV-2 diagnostic method used by PPMC. Positive results were reported, as per the
FDA EUA instructions for use, and signify the presence of SARS-CoV-2 RNA [27]. Three
(3) individuals were tested using the Abbott BinaxNOW antigen test (Abbott Laboratories,
Chicago, IL, USA), which consisted of a self-collected anterior nasal swab specimen. The
results of this test indicated whether the nucleocapsid protein antigen of SARS-CoV-2 was
identified [28]. Finally, the remaining four (4) individuals were not tested at PPMC; while
the results of their SARS-CoV-2 test were relayed to the researchers, the sample specimen
and test type remain unknown.

2.3. Patient Demographics

All patients were asked to verbally disclose the following information to the re-
searchers: age, race/ethnicity, sex at birth, symptomology, vaccination status, and chief
health complaint (what brought them to the hospital). This information can be found in the
Appendix A in Table A1.

2.4. Preparation of Collection Materials
2.4.1. Vial Cleaning Procedure

The utilized 10 mL vials were (1) sonicated in a mild, soapy cleaning solution, followed
by scrubbing and rinsing under tap water, (2) sonicated in a water bath, (3) sonicated in a
bath of deionized water, (4) rinsed with acetone, and (5) baked at 105 ◦C for a minimum of
an hour prior to being used to store collection materials. The sonicator was set to a 30 min
cycle and held at 30 ◦C at each instance of use.

2.4.2. Pre-Treatment of Cotton Gauze

Sterile cotton gauze pads (100% cotton) served as the sorbent medium for the collection
of Early-2022 and Mid-2022 human hand odor samples. Gauze pads of 2′′ by 2′′ and eight-
ply density (Dukal Corporation, Syosset, Oyster Bay, NY, USA) were acquired and treated
to a cleaning procedure prior to their use in sampling. The undergone pre-treatment
procedure entails spiking 1 mL of HPLC-grade methanol (Fisher Chemical, Bridgewater,
NJ, USA) onto the sterile gauze and baking the substrate for a minimum of one hour at
105 ◦C.

2.4.3. Storage & Containment

Pre-treated cotton gauze squares were stored in the cleaned 10 mL vials. The vials were
sealed and secured with parafilm around the screw cap opening. All vials were labeled to
collect information regarding: (a) Sample #, (b) Date, (c) Sex at Birth, and (d) SARS-CoV-2:
Positive or Negative.

2.5. HS-SPME-GC-MS Method

The samples were placed in a digital heating bath set at 50 ◦C and left to equilibrate for
24 h. After this period, a clean 50/30 µm divinylbenzene/ carboxen/ polydimethylsiloxane
(DVB/CAR/PDMS) SPME fiber was exposed to the headspace of the hand odor samples at
a 1-inch fiber exposure setting. After 15 h, the SPME fibers were unexposed and removed
from the sample headspace.

Analytes on the SPME fibers were thermally desorbed at 270 ◦C for 5 min (2-inch fiber
height) into the heated inlet of the GC (Agilent 8890; Agilent Technologies, Santa Clara, CA,
USA). A splitless injection method with a 1 mL/min column flow was implemented on
an HP5-MS UI capillary column (15 m × 0.250 mm × 0.25 µm I.D.; Agilent Technologies).
UHP Helium was used as the carrier gas. The oven temperature parameters started at 40 ◦C
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(1.25 min hold), increased to 165 ◦C (5 ◦C/min rate), and concluded at 270 ◦C (30 ◦C/min
rate). The total method runtime was 29.75 min. A mass spectrometer (MS) (Agilent 5977B
MSD; Agilent Technologies) with an electron impact ionization (EI) source and quadrupole
mass analyzer was used, with the following parameters: the MS source was maintained
at 230 ◦C, the MS Quad at 150 ◦C, the transfer line at 280 ◦C and the EI source at 70 eV.
Samples collected between June 2021 and May 2022 were analyzed using a scan range of
m/z 50–550. Samples analyzed between July 2022 and October 2022 were analyzed using
a 45–400 m/z scan range.

2.6. Data Pre-Processing

Collected human hand odor samples were analyzed using the described HS-SPME-
GC-MS method (Section 2.5). The resulting datafiles were retention time-aligned, and
peak matching was performed across the dataset. Following this procedure, the files were
background-subtracted using the associated control sample. The background-subtracted
samples were separated into four subgroups: (1) Late-2021 SARS-CoV-2-positive samples,
(2) Early-2022 SARS-CoV-2-positive samples, (3) Mid-2022 SARS-CoV-2-positive samples,
and (4) SARS-CoV-2-negative samples.

Within the SARS-CoV-2-positive subgroupings, the variance of each peak of interest
was determined. Peaks of interest that demonstrated zero variance were removed from
consideration from the sample set as a whole. Additionally, peaks corresponding to
background interferents present in the method blank samples or identified as a recurring
non-target such as methylene chloride or siloxanes peaks (present in the column phase and
SPME fiber used) were removed from the sample set. The peaks of interest were able to
be filtered down to include compounds eluting prior to the 21 min mark. The total ion
chromatogram (TIC) peak areas were log10-transformed prior to modeling to reduce the
skewedness in the data; all values of 0 were set to 1 before applying the transformation.

2.7. Statistical Analysis

Sparse partial least squares discriminant analysis was used to form predictive models
indicative of a patient’s SARS-CoV-2 infection status. There were four models developed
using the log10-transformed TIC peak areas of the 40 features of interest. The first model
demonstrates the outcome of informing a model using multiple sample collection time-
frames (2021–2022), and models 2–4 demonstrate predictive models informed by a singular
SARS-CoV-2 sample collection timeframe, which is believed to relate to a single variant’s
dominance in the population.

sPLS-DA modeling was performed using the “mixOmics” packages in R (Version 3.6.1,
Vienna, Austria) [29]. In all cases, the sPLS-DA models were informed by an equal number
of positive and negative samples. The lesser of the two was used as the defined class size,
and the larger group was randomly sampled to provide an equal number of samples from
each class. The models were cross-validated using a five-fold cross-validation, repeated
200 times. This resulted in a random division of the samples into 80% training set and 20%
test set.

3. Results
3.1. sPLS-DA Modeling for All Timeframes

Following the pre-processing procedure detailed in Section 2.6, the sample set con-
tained 40 features of interest. This sample set was log10-transformed and used to conduct
modeling of the SARS-CoV-2-positive and -negative hand odor samples. The sPLS-DA
model of the hand odor samples demonstrates the class grouping of the positive and
negative samples (Figure 1). The loading contributions of each feature of interest can be
found in Figures A1 and A2.
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The sPLS-DA model shown in Figure 1 depicts the individual human hand odor
samples collected from SARS-CoV-2-positive (n = 56) and SARS-CoV-2-negative (n = 46)
individuals. These samples were collected across a timespan that included the dominant
presence of both the Delta and Omicron variants of the SARS-CoV-2 virus. The model de-
picted (Figure 1) was cross-validated using a five-fold cross-validation, which was repeated
200 times; this procedure randomly sampled the positive samples to construct models
informed by n = 46 positive and negative samples. Following this cross-validation, the
model was seen to yield an accuracy of 75.8% (±0.4); the model correctly predicted the
SARS-CoV-2 infection status of a sample in 75.8% (±0.4) of attempts (95% CI). This perfor-
mance breaks down to a sensitivity/true positive rate (TPR) = 81.8% (±0.5), specificity/true
negative rate (TNR) = 69.7% (±0.6), false positive rate (FPR) = 30.3% (±0.6), false negative
rate (FNR) = 18.2% (±0.5), positive predictive value (PPV) = 73.0% (±0.4), and negative
predictive value (NPV) = 79.4% (±0.5).

3.2. sPLS-DA Modeling for Individual Timeframes

Figure 2 demonstrates the modeling of Late-2021 positive samples (n = 20) and negative
SARS-CoV-2 infection samples (n = 46). The model depicted (Figure 2) was cross-validated
using a five-fold cross-validation, which was repeated 200 times; this procedure randomly
sampled the negative samples to construct models informed by n = 20 positive and nega-
tive samples. Following this cross-validation, the model yielded an 86.7% (±0.6) accuracy
rate (95% CI). This performance breaks down to a sensitivity/TPR = 84.2% (±0.6), speci-
ficity/TNR = 89.2% (±0.9), FPR = 10.8% (±0.9), FNR = 15.8% (±0.6), PPV = 89.0% (±0.9),
and NPV = 85.0% (±0.5).

Figure 3 demonstrates the modeling of Early-2022 positive (n = 13) and negative SARS-
CoV-2 infection samples (n = 46). The model depicted (Figure 3) was cross-validated using
a five-fold cross-validation, which was repeated 200 times. The negative samples were
randomly sampled to construct models informed by n = 13 positive and negative samples.
The cross-validated model yielded a 64.4% (±1.0) accuracy rate. This performance breaks
down to a sensitivity/TPR = 73.7% (±0.7), specificity/TNR = 55.0% (±1.7), FPR = 45.0%
(±1.7), FNR = 26.3% (±0.7), PPV = 62.7% (±1.0), and NPV = 67.1% (±1.0).
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Figure 4 demonstrates the modeling of Mid-2022 positive (n = 23) and negative SARS-
CoV-2 infection samples (n = 46). The model depicted (Figure 4) was cross-validated using
a five-fold cross-validation, which was repeated 200 times; this procedure randomly sam-
pled the negative samples to construct models informed by n = 23 positive and negative sam-
ples. Following this cross-validation, the model yielded an 83.6% (±0.8) accuracy rate. This
performance breaks down to a sensitivity/TPR = 90.5% (±0.9), specificity/TNR = 76.7%
(±1.0), FPR = 23.3% (±1.0), FNR = 9.5% (±0.9), PPV = 79.7% (±0.8), and NPV = 89.3% (±1.0).
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3.3. Identification of Features of Interest

Out of the 40 features of interest used to inform the sPLS-DA models, the correspond-
ing compound identifications of 14 were determined. These compounds (listed in Table 2)
were identified through manual confirmation using externally run reference standards.

Table 2. Compounds contributing to the discrimination of SARS-CoV-2 infection.

Retention Time
(15 M HP5-MS) CAS# Compound of

Interest

Reported Presence in
Human Skin
Emanations

3.109 00123-42-2 Diacetone alcohol -
4.033 00100-42-5 Styrene [16,30]
6.577 03777-69-3 2-Pentylfuran [16,31]
7.897 00122-78-1 Phenylacetaldehyde [32]
9.552 01120-21-4 Undecane [16,24–26,31,33,34]

10.366 00111-11-5 Methyl caprylate [24–26,31,34,35]
11.235 18829-56-6 trans-2-Nonenal [16,24,25,31,35]
11.679 00143-08-7 1-Nonanol [24,31,34,35]
12.561 00112-31-2 Decanal [16,24–26,30,31,33,35]
12.836 00122-99-6 2-Phenoxyethanol -
17.798 00112-54-9 Dodecanal [24,26,30,31,35]

18.841 00689-67-8 6,10-Dimethyl-5,9-
undecadien-2-one-(E) [16,24–26,30,31,33–35]

19.366 00112-53-8 1-Dodecanol [36,37]
21.668 00143-07-7 Dodecanoic acid [24,30,31,35,38,39]

4. Discussion
4.1. SARS-CoV-2 Infection Diagnostic Model Performance

SARS-CoV-2-infected human odor expression was investigated through the collection
and analysis of hand odor samples. Hand odor samples were collected from 102 individuals;
of these participants, 56 were SARS-CoV-2-positive and 46 were negative for SARS-CoV-
2 at the time of donation. PCR tests were used as the primary confirmatory method
in diagnosing SARS-CoV-2 infection status. The samples were collected using sterile
gauze and analyzed using HS-SPME-GC-MS. The resulting human hand odor profile was
analyzed using the previously described data pre-processing methods, resulting in a key
list of 40 features of interest. Class separation (SARS-CoV-2-positive vs. -negative) was
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modeled using the log10-transformed total ion chromatogram peak areas of the features of
interest. The resulting sPLS-DA modeling of all of the collected SARS-CoV-2-positive and
-negative samples (Figure 1) demonstrated class grouping within the negative and positive
samples. Although a defined separation of classes was not observed, the model reflected
a moderate performance ability with 75.8% accuracy when compared to other screening
and diagnostic techniques such as antigen tests and detection canines (as summarized in
a previous publication [12]). This rate reflected a sensitivity (TPR) of 81.8% and a specificity
(TNR) of 69.7% for predicting the SARS-CoV-2 status. The performance of each model
based on a repeated five-fold cross-validation (n = 200) can be seen in Table 3 below.

Table 3. Overall and Variant-Specific sPLS-DA Performance.

sPLS-DA Model Correct Prediction Rates *

Time Range 2021–2022 Late 2021 Early 2022 Mid 2022

Suspected Variant All Delta Omicron BA.2 Omicron BA.5

Accuracy 75.8% (±0.4) 86.7% (±0.6) 64.4% (±1.0) 84.4% (±0.8)
Sensitivity (TPR) 81.8% (±0.5) 84.2% (±0.6) 73.7% (±0.7) 90.5% (±0.9)
Specificity (TNR) 69.7% (±0.6) 89.2% (±0.9) 55.0% (±1.7) 76.7% (±1.0)

FNR 18.2% (±0.5) 15.8% (±0.6) 26.3% (±0.7) 9.5% (±0.9)
FPR 30.3% (±0.6) 10.8% (±0.9) 45.0% (±1.7) 23.3% (±1.0)
PPV 73.0% (±0.4) 89.0% (±0.9) 62.7% (±1.0) 79.7% (±0.8)
NPV 79.4% (±0.5) 85.0% (±0.5) 67.1% (±1.0) 89.3% (±1.0)

* Error Rate = 100% (Correct Prediction Rate).

The SARS-CoV-2-positive samples were further separated into Late-2021, Early-2022,
and Mid-2022 samples and are suspected to correspond to Delta, Omicron BA.2, and Omi-
cron BA.5 variants, respectively. The variant type was not confirmed; it was assigned based
upon the variant that was dominant in the collection area (Philadelphia, Pennsylvania) at
the time of sample donation. This assignment was conducted using the Centers for Disease
Control and Prevention’s variant proportional COVID data reporting platform [40]. The
Late-2021 SARS-CoV-2-positive samples were modeled against the SARS-CoV-2-negative
samples, revealing an increased separability between the classes (Figure 2) compared to
that demonstrated in Figure 1. This observed separation translated into an improved
performance in correctly identifying SARS-CoV-2-infected sample status (86.7% accuracy).
Similarly, the modeling of Mid-2022 SARS-CoV-2 (Figure 4)-positive samples reflected an
increase in the rate of accuracy to 84.4%. However, the individual modeling of Early-2022
SARS-CoV-2-positive samples vs. SARS-CoV-2-negative samples (Figure 3) resulted in
a reduction in discriminatory power, with a reduced rate of accuracy at 64.4%.

The individual modeling of samples by variant indicates that sPLS-DA models trained
on samples collected within the dominance of the Delta or Omicron BA.5 variants yielded
a greater predictive power than models trained using samples collected during the height
of Omicron BA.2 or informed by multiple variant timeframes. The change in model
performance in relation to SARS-CoV-2 variant dominance is an interesting phenomenon
which suggests a difference in the underlying VOC expressions between SARS-CoV-2
variants. This variant-dependent expression of SARS-CoV-2 via volatile emanations is
a topic of future study and will be further investigated by the researchers. Despite the
suggestion of variant dependency in SARS-CoV-2 expression, the predictive power of
the sPLS-DA model informed by all samples collected between June 2021 and October
2022 suggests that there is an underpinning commonality in the human odor expression
associated with SARS-CoV-2 infection.

This work relied upon the sPLS-DA models which were informed by 40 features of
interest. The researchers suggest that these compounds be considered potential biomarkers
for the expression of SARS-CoV-2 via human odor. Of the 40 features of interest utilized in
the machine learning models, 14 compounds have been identified (Table 2). Many of these
compounds consist of aldehydes, alcohols, ketones, and other functional groups that are
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common in human scent [26]. The authors were able to identify instances of the published
presentation of these compounds in human scent samples for 12/14 compounds (Table 2).
The previous reporting of two compounds (diacetone alcohol and 2-phenoxyethanol) in
skin emanations was not determined. However, it is noted that 2-phenoxyethanol has been
detected in human feces and saliva samples, while diacetone alcohol has been identified as
a secondary metabolite and is believed to play a role in signaling processes; both have been
identified in human samples, but to the authors’ knowledge, they have not been reported
in human scent samples.

4.2. Limitations and Future Perspective

Due to the wide performance range of the antigen tests currently on the market, there
remains a fair possibility that the three individuals tested by an antigen test alone were
not accurately accounted for (positive or negative). While the PCR test is the current gold
standard for SARS-CoV-2 detection and diagnostics, it is an imperfect tool as well. As with
most diagnostic tools, it is important to acknowledge the possibility of false positive and
false negative results produced by PCR tests. Additionally, the tests are bound to their
own detection limitations. Participants who tested as “negative” using a PCR test may
have attained this result due to a low viral load or stage of infection as opposed to a “truly
negative” SARS-CoV-2 infection status.

In addition to concerns over ground truth SARS-CoV-2-infected patient status, there
are concerns over previous contractions of SARS-CoV-2 and the possibility that patients
were afflicted by long-COVID at the time of sample collection. Recent work in the field
of biomedical scent detection has suggested that canines trained to detect SARS-CoV-2-
infected positive samples may also be able to detect long-COVID, which is the persistent
effects of COVID-19 that remain beyond PCR test positivity (post-COVID affliction) [41].
These new findings suggest that there is more similarity between long-COVID odor presen-
tation and SARS-CoV-2-positive odor presentation than there is between long-COVID and
SARS-CoV-2-negative presentations. Due to the difficulty in properly determining previous
SARS-CoV-2 infection (individuals may have been asymptomatic or have gone untested
during a period of illness), the researchers did not actively seek to identify and remove
individuals who may have been suffering from long-COVID. This consideration is viewed
as a reasonable approximation of the real-world application of this work, as patients would
be subject to SARS-CoV-2 screening regardless of long-COVID status.

The authors intend to continue their investigation of the VOC expression of SARS-CoV-
2 infection as it relates to human hand odor. This work served as an initial investigation
of the probative value of human hand odor as a medium for SARS-CoV-2 infection status
determination. The authors intend to continue this discussion in a secondary manuscript
wherein the influence of the suspected SARS-CoV-2 variant is evaluated as a factor driving
class separation. Additionally, the separability of SARS-CoV-2 variants will be examined.

The presented methodology of using human hand odor as a potential diagnostic
medium is a promising prospect for an adaptive field-deployable technology. While the
authors note that the infrastructure does not currently exist for the wide application of this
technology, they believe that human hand odor analysis is a viable diagnostic medium
that has the capacity to be expanded upon and adapted into a fieldable methodology. The
greatest benefit of this technology would reside in mass-screening venues such as airports
or other readily visited areas with elevated concerns of transmission. This begins with the
adoption of portable GC-MS instrumentation, allowing for lower-cost installations. This
methodology could also open a pathway for the continual improvement of the technology
through the periodic introduction of new SARS-CoV-2-positive and -negative samples
(verified by PCR testing). As status is confirmed, more samples can be added to the
model, allowing for continual training; as SARS-CoV-2 variants evolve, so will the model.
The adoption of a machine learning-backed approach provides a route to teaching and
improving diagnostic models at a rate that is competitive regarding the continual evolution
of our targeted virus.
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5. Conclusions

This work demonstrated that HS-SPME-GC-MS could be used jointly with a developed
sPLS-DA model to predict the SARS-CoV-2 infection status of a patient. Furthermore, the
developed method shows that using odor samples from the hands of subjects is sufficient to
serve as a potential diagnostic medium. The developed model displayed a 75.8% accuracy.
The performance rate was seen to be similar for the sensitivity rate (81.8%) and specificity
rate (69.7% correct) for correctly predicting SARS-CoV-2 infection status, implying that this
technology has the capacity to be competitive with antigen testing in terms of performance
metrics. This model displays an improved overall performance ability when compared to
the model informed by a timespan-specific subset corresponding to the dominant Omicron
BA.2 and reflects decreased performance when compared to the models trained on the Delta
and Omicron BA.5 correlated sample subsets. The computational model was informed
by 40 features of interest; at this time, the compound identities of 14 out of 40 features
have been identified and confirmed using certified reference standards. This noninvasive,
low-preparatory-analysis scheme has the potential to be continually informed to evolve
alongside the SARS-CoV-2 virus. The further optimization of this diagnostic analysis could
facilitate the rapid screening and mitigation of disease spread and could potentially be
adapted to other infectious diseases with expressed human odor profile variations.
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Appendix A

Table A1. Demographic Breakdown of Patients.

Race
Sex at Birth SARS-CoV-2 Infection Status Age

Male Female Delta (+) Omicron
BA.2 (+)

Omicron
BA.5 (+) (−) 18–30 31–45 46–60 60+

Asian 3 0 0 0 0 3 1 2 0 0
Black 29 46 18 4 17 36 15 19 19 22

Hispanic/Latinx * 0 1 0 1 0 0 1 0 0 0
Unknown 1 0 1 0 0 0 0 0 1 0

White 7 15 1 8 6 7 8 3 6 5

* Self-identified as a white Hispanic and/or Latinx person.

https://sharing.nih.gov/
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