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Abstract: The aim of the study was to estimate the diagnostic accuracy of textural features extracted
by dual-energy contrast-enhanced mammography (CEM) images, by carrying out univariate and
multivariate statistical analyses including artificial intelligence approaches. In total, 80 patients
with known breast lesion were enrolled in this prospective study according to regulations issued
by the local Institutional Review Board. All patients underwent dual-energy CEM examination
in both craniocaudally (CC) and double acquisition of mediolateral oblique (MLO) projections
(early and late). The reference standard was pathology from a surgical specimen for malignant
lesions and pathology from a surgical specimen or fine needle aspiration cytology, core or Tru-
Cut needle biopsy, and vacuum assisted breast biopsy for benign lesions. In total, 104 samples
of 80 patients were analyzed. Furthermore, 48 textural parameters were extracted by manually
segmenting regions of interest. Univariate and multivariate approaches were performed: non-
parametric Wilcoxon–Mann–Whitney test; receiver operating characteristic (ROC), linear classifier
(LDA), decision tree (DT), k-nearest neighbors (KNN), artificial neural network (NNET), and support
vector machine (SVM) were utilized. A balancing approach and feature selection methods were used.
The univariate analysis showed low accuracy and area under the curve (AUC) for all considered
features. Instead, in the multivariate textural analysis, the best performance considering the CC
view (accuracy (ACC) = 0.75; AUC = 0.82) was reached with a DT trained with leave-one-out
cross-variation (LOOCV) and balanced data (with adaptive synthetic (ADASYN) function) and a
subset of three robust textural features (MAD, VARIANCE, and LRLGE). The best performance
(ACC = 0.77; AUC = 0.83) considering the early-MLO view was reached with a NNET trained
with LOOCV and balanced data (with ADASYN function) and a subset of ten robust features
(MEAN, MAD, RANGE, IQR, VARIANCE, CORRELATION, RLV, COARSNESS, BUSYNESS, and
STRENGTH). The best performance (ACC = 0.73; AUC = 0.82) considering the late-MLO view was
reached with a NNET trained with LOOCV and balanced data (with ADASYN function) and a subset
of eleven robust features (MODE, MEDIAN, RANGE, RLN, LRLGE, RLV, LZLGE, GLV_GLSZM,
ZSV, COARSNESS, and BUSYNESS). Multivariate analyses using pattern recognition approaches,
considering 144 textural features extracted from all three mammographic projections (CC, early MLO,
and late MLO), optimized by adaptive synthetic sampling and feature selection operations obtained
the best results (ACC = 0.87; AUC = 0.90) and showed the best performance in the discrimination of
benign and malignant lesions.
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1. Introduction

Breast cancer is the most common female disease in the word, diagnosed primarily in
over-fifties women [1–3].

Mammography (MX), introduced in the 1960s, plays a pivotal role in cancer screening,
detection, and follow-up, despite the availability of various other breast imaging modal-
ities, such as ultrasound (US) and breast Magnetic Resonance Imaging (MRI), due to its
properties and qualities [4,5].

Contrast-enhanced mammography (CEM) is a diagnostic technique that combines
the advantages of standard full-field digital mammography (FFDM) with the intravenous
administration of an iodinated contrast medium, highlighting neovascularity associated
with actively growing malignancy. The use of contrast agents in cancer detection is based
on the phenomenon that neoplasms induce angiogenesis for further tumor growth. Con-
trast medium can pass through the walls of new rapidly formed vessels into the (tumor)
interstitium, causing enhancement.

In addition, dual-energy CEM is a quick and well-tolerated examination that elimi-
nates breast density as a limiting factor when interpreting two-dimensional (2D) mammo-
grams by utilizing a dual-energy acquisition system, which then generates a subtracted
image to outline areas of enhancement.

Previous studies have evaluated the sensitivity of CEM compared to conventional
digital MX, US, and MRI [6–8]. CEM sensitivity has been reported in the range 90–100% [9],
much higher in comparison to MX and US alone [8]. CEM allows to identify additional
occult cancers at mammography, to assess more accurately the disease extent, and to guide
surgical and treatment planning [8–11].

However, several studies have reported that CEM sensitivity increases compared to
conventional MX at the expense of specificity that ranges in the interval of 58–70% [12].
This issue could be resolved using quantitative feature extracted by CEM images.

Recent significant advancements within the field of medical image analysis relies on
the application of Artificial Intelligence (AI) methods for the processing of large quantities
of data from different imaging modalities [13,14].

Radiomics is the process of extracting quantitative properties, named features, from
images. This feature extraction activity is typically realized by means of pattern recognition
algorithms and provides, as a result, a set of numbers, each one representing a quantitative
description of a specific either geometrical or physical property of the image portion under
consideration. In oncological applications, examples of features are tumor size, shape,
intensity, and texture, collectively providing a comprehensive tumor characterization,
called the radiomics signature of the tumor [15–17].

The texture features analysis characterize intensity histogram and the relationships
between different intensity levels within lesion; moreover, it describe spatial and spectral
frequency patterns [18–20].

Several authors proposed radiomics analysis for breast cancer detection and clas-
sification, based on lesion heterogeneity information (textural features) and opportune
classifiers [21–32].

This work has the objective to estimate the diagnostic accuracy of textural features
extracted by dual-energy CEM images by carrying out univariate and multivariate statis-
tical analyses, using artificial intelligence approaches in the classification of benign and
malignant breast lesions.
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2. Methods
2.1. Patient Selection

From October 2017 to April 2018, 80 consecutive patients with known unifocal and or
multifocal/multicentric breast lesions (mean age ± standard deviation of 50.7 ± 11.6 years
(range 26–78)) were enrolled in this prospective study according to regulations issued by
the local Institutional Review Board. All women gave their written informed consent for
research purposes. Inclusion criteria: patient with known breast lesions, histologically
proven, and patient underwent dual-energy CEM examination in both craniocaudal (CC)
and mediolateral oblique (MLO) projections.

Exclusion criteria were breast implants, pregnancy or possible pregnancy, a contraindi-
cation to the intravenous use of iodinated or gadolinium-chelated contrast agent (e.g.,
allergy to either agent or severely impaired renal function), inability to keep upright immo-
bility during the examination, neoadjuvant chemotherapy treatment, hormone treatment
(the most common forms of hormone therapy for breast cancer work by blocking estro-
gen hormones from attaching to receptors on cancer cells or by decreasing the body’s
production of hormones) or radiation therapy at the time of imaging.

Overall, 104 suspected breast lesions of 80 enrolled patients were analyzed. A total
of 19 patients were excluded: 6 for contraindication to the intravenous use of iodinated
or gadolinium-chelated contrast agent; 4 for neoadjuvant chemotherapy treatment; 4 for
breast implants; 2 for inability to keep upright immobility during the examination; and 3
for hormone treatment or radiation therapy.

2.2. Imaging Protocol

All CEM examinations were performed with a dual-energy mammography system
(Hologic’s Selenia® Dimensions® Unit, Bedford, MA, USA). Approximately two minutes
after an intravenous injection of 1.5 mL/kg body weight of iodinated contrast medium
(Visipaque 320; GE Healthcare, Inc, Princeton, NJ, USA) at a rate of 2–3 mL/s, each woman
was properly positioned in a CC view.

Two images were obtained per each breast through a low-energy exposure (26–31 kVp,
according to breast thickness and density) and a high-energy exposure (45–49 kVp), strad-
dling the k-edge of iodine. The low-energy image served as the equivalent of a two-
dimensional FFDM examination, which was previously demonstrated [33–35]. The high-
energy image is not diagnostic and is used for post-processing purposes. The total X-ray
dose delivered to the patient for a pair of low- and high-energy images was estimated
to be between 0.7 and 3.6 mGy, depending on breast thickness (30 to 80 mm) and tissue
composition (0 to 100% glandular tissue); it is approximately 1.2-times the dose delivered
in a standard single-view digital mammography [33–35].

The two previously acquired images are then digitally subtracted of each other to
produce a resultant recombined image that highlights contrast enhancement uptake area
and gives functional information [10], as it can be seen in Figure 1. Four and eight minutes
after contrast agent administration, each breast were compressed in the MLO view: early-
MLO and late-MLO view images were respectively acquired (Figure 1).

2.3. Histopathological Analysis

The reference standard was histopathologic examination. Overall, 104 samples of
80 patients were analyzed histopathologically: 65 surgical specimens for malignant lesions
and 39 samples (surgical specimen or fine needle aspiration cytology (FNAC), core or
Tru-Cut needle biopsy, and vacuum assisted breast biopsy (VABB)) for benign lesions.
Histopathological examination was performed before CEM examination. This procedure
did not change the shape of the lesion and therefore of the segmentation of the lesions.

Tumor stages were classified according to the system implemented by the American
Joint Committee on Cancer staging. Ductal carcinoma in situ and invasive cancer tumors
were counted as malignant lesions including, also, the papillary breast cancer that is a



Diagnostics 2021, 11, 815 4 of 24

very rare type of invasive ductal breast cancer that accounts for fewer than 1% of all
breast cancers.

All other results, including fibroadenoma, ductal hyperplasia, dysplasia, cysts, fibrosis
and adenosis, were considered non-malignant lesions (Table 1).
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Figure 1. CEM subtracted images of a multifocal IDC in a 53-years-old woman with dense breast:
(A) CC view, (B) early-MLO view, (C) late-MLO view.

Table 1. Number and corresponding percentage of the total benign or malignant breast lesions.

Benign (39 Lesions) Number Percentage Value (%)

Fibrosis 8 20.51
Ductal hyperplasia 10 25.64

Fibroadenoma 13 33.33
Dysplasia 4 10.26
Adenosis 4 10.26

Malignant (65 Lesions) Number Percentage Value (%)

Infiltrating lobular carcinoma 8 12.31
Infiltrating ductal carcinoma 36 52.17

Ductal carcinoma in situ 12 18.46
Intraductal papilloma with

DCIS component 2 3.08

Tubular carcinoma 3 4.61
Papillary carcinoma 2 3.08

Mucinous Carcinoma 2 3.08

2.4. Image Processing

Two expert radiologists, with 22 and 15 years of experience respectively, performed
segmentation by drawing manually the regions of interest (ROIs) first separately and then
together and in accordance with each other.

The margins of the breast lesions were defined on dual-energy subtracted (DES)
images, where contrast uptake was emphasized, both in CC and in early and late MLO
view. An example is shown in Figure 2.
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Figure 2. Manual segmentation (red line) of an ILC in a 58-years-old woman with dense breast in (A) CC view, (B) early
MLO view and (C) late MLO view.

DES images of each woman were processed in MATLAB (The MathWorks, Inc., Natik,
MA, USA [36]) and for each ROI radiomics textural features were extracted. They provide
information in the spatial distribution of intensity levels in a neighborhood.

The Texture Toolbox of MATLAB® realized by Vallières et al. [37], which includes
48 parameters, calculated according to the Image Biomarker Standardization Initiative [38],
was considered. The package implements wavelet band-pass filtering, isotropic resampling,
discretization length corrections and different quantization tools. The toolbox can be
downloaded at https://it.mathworks.com/matlabcentral/fileexchange/51948-radiomics
(accessed on 15 April 2019).

The textural features (Table 2) include both first-order features and second-order ones;
an extra detailed description for each one has been provided in the Appendix A.

2.5. Statistical Analysis

The statistical analysis included univariate and multivariate approaches and were
performed with the RStudio software [39].

2.5.1. Univariate Analysis

The intra-class correlation coefficient (ICC) was calculated to assess the robustness of
manual segmentation for the radiomics features obtained considering the two volumes of
interest segmented separately by two expert radiologists.

For two-groups comparisons, we used the non-parametric Wilcoxon–Mann–Whitney
test for continuous variables. Receiver operating characteristic (ROC) analysis was performed.

To individuate the optimal cut-off value for each feature the Youden index was
calculated. Area under ROC curve (AUC), sensitivity (SENS), specificity (SPEC), positive
predictive value (PPV), negative predictive value (NPV), and accuracy (ACC) were obtained
considering the optimal cut-off values identified maximizing the Youden index [40].

A p-value < 0.05 was considered as significant. However, false discovery rate (FDR)
adjustment according to Benjamini and Hochberg for multiple testing was considered.

2.5.2. Multivariate Analysis

Multivariate analysis was carried out following the pattern recognition model and
using linear classifier (linear discriminant analysis—LDA), decision tree (TREE), k-nearest
neighbours (KNN), artificial neural network (NNET), and support vector machine (SVM) to
assess the diagnostic accuracy using all extracted metrics of textural parameters. In recent
years, several authors have deepened the subject in their work [18,41–44]. Moreover, a
brief description of each classifier has already been discussed in a previous article [14].

https://it.mathworks.com/matlabcentral/fileexchange/51948-radiomics
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Configuration settings for each classifier are provided in Table 3.

Table 2. Extracted textural features.

Feature Name Acronym

1st Order Gray-Level Statistics
Mean -
Mode -

Median -
Standard Deviation STD

Median Absolute Deviation MAD
Range -

Kurtosis -
Interquartile Range IQR

Variance -
Skewness -

Gray-Level Co-Occurrence Matrix (GLCM)
Energy -

Contrast -
Entropy -

Homogeneity -
Correlation -

Sum Average -
Dissimilarity -

Autocorrelation -

Gray-Level Size Zone Matrix (GLSZM)
Small Zone Emphasis SZE
Large Zone Emphasis LZE

Gray-Level Non-uniformity GLN_ GLSZM
Zone-Size Non-uniformity ZSN

Zone Percentage (ZP) ZP
Low Gray-Level Zone Emphasis LGZE
High Gray-Level Zone Emphasis HGZE

Small Zone Low Gray-Level Emphasis SZLGE
Small Zone High Gray-Level Emphasis SZHGE
Large Zone Low Gray-Level Emphasis LZLGE
Large Zone High Gray-Level Emphasis LZHGE

Gray-Level Variance GLV_GLSZM
Zone-Size Variance ZSV

Neighborhood Gray-Tone Difference Matrix
(NGTDM)
Coarseness -
Busyness -

Complexity -
Strength -

The classification analysis has been cross-validated using 10-fold cross validation
(10-fold CV) and the Leave-one-out cross validation (LOOCV) approaches and median
values of AUC, accuracy, sensitivity, specificity, PPV e NPV were obtained.

Each classifier received the same set or subset of robust features, identified by a feature
selection with the least absolute shrinkage and selection operator (LASSO) method [45].
In the LASSO method, 10-fold cross-validation was used to select the optimal regularization
parameter alpha, as the average of mean square error of each patient was the smallest.
With the optimal alpha, features with a non-zero coefficient in LASSO were reserved. Note
that the shrinkage requires the selection of a tuning parameter (lambda) that determines
the amount of penalization. Feature selection was carried out considering both the λ value
with the minimum Mean Squared Error (minMSE) and the largest λ value within one
standard error of it (1SE) [46].
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Table 3. Configuration settings for each classifier.

Classifier Configuration Settings

LDA Covariance structure: full; optimizer options: hyperparameter options disabled

Decision tree Fine Tree; maximum number of splits: 100; split criterion: Gini’s diversity index; surrogate
decision splits: off; optimizer options: hyperparameter options disabled

Artificial neural network Hidden = 3; linear output to TRUE; optimizer options: hyperparameter options disabled

K-nearest neighbors Fine KNN; number of neighbors: 100; distance metric: Euclidean; distance weight: equal;
standardize data: true; optimizer options: hyperparameter options disabled

Support vector machine
Linear SVM; kernel function: linear; kernel scale: automatic; box constraint level: 1;

multiclass method: one-vs-one; standardize data: true; optimizer options; hyperparameter
options disabled

In addition, the presence of less-represented classes has led the use of two techniques
to synthesize data and, therefore, to help balance the classes (malignant and benign) giv-
ing the possibility to better train the considered classifiers: the self-adaptive synthetic
over-sampling (SASYNO) approach and the adaptive synthetic sampling (ADASYN) ap-
proach. This allowed to boost the performance both overall and in terms of confusion
matrix [47–51].

A brief informal description of LASSO method parameters and of SASYNO and
ADASYN functions has already been discussed previously [52].

The best model was chosen considering the highest area under the ROC curve and
highest accuracy.

3. Results

The ICC for radiomics textural features was excellent (median value 0.92, range
0.87–0.98), for all extracted features by DCE-MRI.

Table 4 reports the diagnostic accuracy of textural parameters for CC and early and
late MLO view in terms of AUC and p-value.

Table 4. List of most significant textural features with the corresponding area under curve (AUC)
and p-value.

Mammography
Projection Textural Parameters AUC Values p-Value

CC view

MAD 0.72 0.000

IQR 0.71 0.000

VARIANCE 0.72 0.000

COARSNESS 0.73 0.000

BUSYNESS 0.73 0.000

STRENGTH 0.74 0.000

early MLO view

VARIANCE 0.70 0.001

BUSYNESS 0.70 0.001

STRENGTH 0.70 0.000

late MLO view

GLV_GLRLM 0.70 0.001

GLV_GLSZM 0.70 0.001

COARSNESS 0.74 0.000

BUSYNESS 0.71 0.000

STRENGTH 0.70 0.001
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Figures 3–5 show ROC curves trend of significant textural features: MAD, IQR,
VARIANCE, COARSNESS, BUSYNESS, and STRENGHT for CC projection, VARIANCE,
BUSYNESS and STRENGHT for early-MLO projection and GLV_RLRLM, GLV_GLSZM,
COARSNESS, BUSYNESS, and STRENGHT for late-MLO projection.
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Considering these results, the univariate analysis showed low accuracy and area under
the curve for all considered features in the differentiation of benign and malignant lesions.

Figures 6–8 show the boxplots, related to above-mentioned parameters, to separate
benign from malignant lesions.
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Figure 8. Boxplot of significant textural features for late-MLO view.

As regard multivariate analysis, only the most useful results for the purposes of this
work will be reported. Tables 5–8 report the performance achieved by best classifiers to
discriminate benign from malignant lesions.

Table 5. Performance of the best classifier using textural features extracted from CC view.

Classifier Cross-
Validation ACC SENS SPEC PPV NPV AUC

Performance for classifiers trained with balanced data (with ADASYN function) and a set of 3 textural features (by LASSO
and λ1SE).

TREE LOOCV 0.75 0.75 0.74 0.75 0.74 0.82

SVM LOOCV 0.76 0.77 0.74 0.76 0.75 0.81

Performance for classifiers trained with balanced data (with ADASYN function) and subset of 34 textural features (AUC ≥ 0.60).

LDA LOOCV 0.79 0.72 0.85 0.84 0.75 0.80
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Table 6. Performance of the best classifier using textural features extracted from early-MLO view.

Classifier Cross-
Validation ACC SENS SPEC PPV NPV AUC

Performance for classifiers trained with balanced data (with SASYNO function) and a set of 23 robust textural features (by LASSO
and λminMSE).

SVM 10-fold CV 0.79 0.80 0.77 0.78 0.79 0.80

Performance for classifiers trained with balanced data (with SASYNO function) and a subset of 15 robust textural features
(AUC ≥ 0.60).

KNN 10-fold CV 0.78 0.77 0.77 0.77 0.77 0.81

Performance for classifiers trained with balanced data (with ADASYN function) and a set of 10 robust textural features (by LASSO
and λminMSE).

KNN 10-fold CV 0.78 0.75 0.80 0.79 0.76 0.81

NNET LOOCV 0.77 0.8 0.73 0.75 0.78 0.83

Table 7. Performance of the best classifier using textural features extracted from late-MLO view.

Classifier Cross-
Validation ACC SENS SPEC PPV NPV AUC

Performance for classifiers trained with balanced data (with ADASYN function) and all 48 textural features.

LDA 10-fold CV 0.78 0.71 0.84 0.81 0.76 0.79

Performance for classifiers trained with balanced data (with ADASYN function) and a subset of 11 robust textural features
(by LASSO).

NNET
10-fold CV 0.74 0.77 0.70 0.70 0.77 0.78

LOOCV 0.73 0.74 0.71 0.71 0.75 0.82

Table 8. Performance of the best classifier using textural features extracted from all three mammographic projection (CC,
early MLO and late MLO).

Classifier Cross-
Validation ACC SENS SPEC PPV NPV AUC

Performance for classifiers trained with balanced data (with ADASYN function) and all 144 features.

SVM LOOCV 0.87 0.86 0.87 0.88 0.86 0.90

Performance for classifiers trained with balanced data (with SASYNO function) and a subset of 18 robust textural features (by
LASSO and λminMSE).

LDA
10-fold CV 0.85 0.83 0.86 0.86 0.84 0.89

LOOCV 0.85 0.85 0.86 0.86 0.85 0.89

Performance for classifiers trained with balanced data (with ADASYN function) and set of 13 robust textural features (by LASSO
and λ1SE).

LDA
10-fold CV 0.84 0.83 0.85 0.84 0.83 0.89

LOOCV 0.84 0.85 0.83 0.83 0.84 0.89

The best performance considering the CC view (ACC = 0.75; SENS = 0.75; SPEC = 0.74;
PPV = 0.75; NPV = 0.74; AUC = 0.82) was reached with a DT trained with LOOCV
and balanced data (with ADASYN function) and a subset of three features (by LASSO
and λminMSE). The subset of three robust textural features includes MAD, VARIANCE
and LRLGE.

The best performance considering the early-MLO (ACC = 0.77; SENS = 0.80; SPEC = 0.73;
PPV = 0.75; NPV = 0.78; AUC = 0.83) was reached with a NNET trained with LOOCV
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and balanced data (with ADASYN function) and a subset of ten features (by LASSO and
λminMSE). The subset of ten robust textural features includes MEAN, MAD, RANGE, IQR,
VARIANCE, CORRELATION, RLV, COARSNESS, BUSYNESS, and STRENGTH.

The best performance considering the late-MLO (ACC = 0.73; SENS = 0.74; SPEC = 0.71;
PPV = 0.71; NPV = 0.75; AUC = 0.82) was reached with an NNET trained with LOOCV
and balanced data (with ADASYN function) and a subset of eleven features (by LASSO).
The subset of eleven robust textural features includes MODE, MEDIAN, RANGE, RLN,
LRLGE, RLV, LZLGE, GLV_GLSZM, ZSV, COARSNESS, and BUSYNESS.

However, the best result (ACC = 0.87; SENS = 0.86; SPEC = 0.87; PPV = 0.88; NPV = 0.86;
AUC = 0.90), were obtained considering 144 textural features extracted from all three mam-
mographic projections (CC, early MLO, and late MLO) at the same time with an SVM
trained with LOOCV and with balanced data (with ADASYN function).

Figure 9 shows the ROC curve of the best classifiers.
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Figure 9. ROC curve of the best classifier in (A) a TREE using a subset of three robust textural
features extracted by CC view; in (B) a NNET using a subset of ten robust textural features extracted
by early-MLO view; in (C) an NNET using a subset of eleven robust textural features extracted by
late-MLO view; in (D) a SVM using the all-balanced textural features set extracted from all three
mammographic projections (CC, early MLO, and late MLO).

4. Discussion and Conclusions

Numerous studies have demonstrated increased sensitivity and specificity of CEM
compared MX, FFDM, Ultrasound, or Digital Breast Tomosynthesis (DBT). In addition,
CEM rivals the sensitivity of more costly and time-consuming examinations, such as MRI
and molecular breast imaging [9,11,14,53–59].

Studies of CEM focused on imaging analysis with an auxiliary system for reporting,
and on radiomics features for benignant and malignant differentiation [60,61].

The radiomics analysis of tumor features extracted from CEM images combined with
qualitative and quantitative information on morphology and functionality represents an
important tool for breast tumor characterization [60–63]. A summary data was provided in
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the Table 9 in order to report the main findings using radiomic and artificial intelligence
analysis on CEM.

Table 9. Summary table of main findings using radiomic and artificial intelligence analysis on CEM.

Reference Extracted Features Used Classifier Results

[60]

Statistical measures on original ROIs,
gradiented images, Haar

decompositions of the same original
ROIs, and on gray-level

co-occurrence matrices of each
sub-ROI obtained by Haar transform.

SVM classifier

The features extracted from each sub-ROI
decomposed by two levels of Haar transform
were predictive only when they were all used
without any selection, reaching the best mean

accuracy of about 80%.

[61] Statistical Features Random Forest classifier

The present method resulted highly
performing in the prediction of

benign/malignant ROIs with median values of
sensitivity and specificity of 87.5% and 91.7%,

respectively. The classification model
outperformed the human reader, by increasing

the specificity over 8%.

[62]

Radiomic features were derived from
first-order HIS, COM, RLM, absolute
gradient, autoregressive model, the

discrete Haar WAV, and lesion
geometry. Fisher, probability of error
and average correlation (POE + ACC),

and mutual information (MI)
coefficients informed

feature selection.

Linear discriminant
analysis followed by
k-nearest neighbour

classification.

Radiomics analysis achieved the highest
accuracies of 87.4% for differentiating invasive

from non-invasive cancers based on COM +
HIS/MI, 78.4% for differentiating HR positive

from HR negative cancers based on COM +
HIS/Fisher, 97.2% for differentiating

HER2-positive/HR-negative from
HER2-negative/HR-positive cancers based on

RLM + WAV/MI, 100% for differentiating
triple-negative from triple-positive breast
cancers mainly based on COM + WAV +

HIS/POE + ACC, and 82.1% for differentiating
triple-negative from HR-positive cancers

mainly based on WAV + HIS/Fisher.
Accuracies for differentiating grade 1 vs.

grades 2 and 3 cancers were 90% for invasive
cancers (based on COM/MI) and 100% for

non-invasive cancers (almost entirely based on
COM/MI).

[63] Fourteen statistical features Multivariate Linear
Discriminant Analysis

The highest performances were obtained for
discriminating HER2+/HER2− (90.87%),

ER+/ER− (83.79%) and
Ki67+/Ki67− (84.80%).

Our Study
48 textural parameters were extracted

by manually segmenting regions
of interest.

Linear classifier, decision
tree, k-nearest

neighbours, artificial
neural network and

support vector machine
were utilized.

Multivariate analyses considering 144 textural
features extracted from all three

mammographic projections (CC, early MLO
and late MLO) optimized by adaptive

synthetic sampling and feature selection
operations obtained the best results

(ACC = 0.87; AUC = 0.90) and showed the best
performance in the discrimination of benign

and malignant lesions.

Marino et al. [62] investigated the potential of CEM and radiomics analysis for the non-
invasive differentiation of breast cancer invasiveness, hormone receptor status, and tumor
grade. Radiomics features were derived from first-order histogram (HIS), co-occurrence
matrix (COM), run length matrix (RLM), absolute gradient, autoregressive model, the
discrete Haar wavelet transform (WAV), and lesion geometry. They reported that radiomics
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analysis with CEM has potential for noninvasive differentiation of tumors with different
degrees of invasiveness, hormone receptor status, and tumor grade.

La Forgia et al. [63] evaluated radiomics features for predicting histological outcome
and two cancer molecular subtypes, namely, Human Epidermal growth factor Receptor 2
(HER2)-positive and triple-negative suggesting an interesting role for radiomics in CEM to
predict histological outcomes and particular tumors’ molecular subtype.

In this study, we aimed to evaluate radiomics analysis with texture features extracted
by dual-energy CEM images in the classification of malignant and benign breast. We per-
formed the evaluation considering both a univariate analysis and a multivariate analysis
using pattern recognition approaches.

The univariate analysis on features extracted from CC view shows statistically positive
results for MAD (AUC = 0.72), IQR (AUC = 0.71) and VARIANCE (AUC = 0.72) among
first order gray-level statistics, in addition to COARSNESS, BUSYNESS and STRENGTH
as regards Neighborhood Gray-Tone Difference Matrix. Considering these results, the
univariate analysis showed low accuracy and area under the curve for all considered
features in the differentiation of benign and malignant lesions.

As regards multivariate analysis, using the unbalanced dataset showed no significant
results; in particular, specificity assumed low values. After a balancing operation (with
ADASYN function) and a features selection operation (with LASSO approach) higher
values of accuracy, specificity and AUC were measured. A TREE trained with balanced
data and a subset of three robust textural predictors (MAD, VARIANCE and LRLGE)
achieved the best performance with an accuracy of 0.75 and an AUC of 0.82.

As regards the early MLO view univariate analysis, higher AUC values occurred in
correspondence with VARIANCE, BUSYNESS and STRENGTH (AUC = 0.70 in all three
cases). With the multivariate analysis, a balancing operation (both with the ADASYN
function and the SASYNO function) and a features selection operation allowed to reach
good improvements. The best performance (accuracy of 0.77 and AUC of 0.83) was obtained
with a NNET trained with balanced data (with ADASYN function) and a subset of robust
textural features including MEAN, MAD, RANGE, IQR, VARIANCE, CORRELATION,
RLV, COARSNESS, BUSYNESS, and STRENGTH.

With the univariate analysis on features extracted from late MLO view, significant
results were measures in correspondence of COARSNESS (AUC = 0.74), BUSYNESS (AUC
= 0.71), and STRENGTH (AUC = 0.70), in addition to GLV as regards both the Gray-Level
Run-Length Matrix and the Gray-Level Size Zone Matrix (AUC values of 0.70 in either case).

As for the multivariate analysis, the best performance (accuracy of 0.73 and AUC of
0.82) using late MLO features was reached with an NNET trained with balanced data (with
ADASYN function) and a subset of robust textural features including MODE, MEDIAN,
RANGE, RLN, LRLGE, RLV, LZLGE, GLV_GLSZM, ZSV, COARSNESS and BUSYNESS.

Presently, the determination of the breast malignancies is performed with biopsy.
Unfortunately, this examination is invasive and then, there is great interest in alternative,
non-invasive and cheaper methods to derive the same information directly from the radio-
logic images. Another important observation of automated systems for radiomics analysis
is that these are not affected by factors such as breast density or background parenchymal
enhancement (BPE), which may be limiting breast lesions differentiation. Consequently,
these systems also preserve their reliability in more complex breast investigations. There-
fore, also that textural analyses is again little used in clinical routine practice; in this context,
the radiomics analysis of tumor textural features extracted from CEM images represent an
important robust tool for breast tumor characterization.

The small cohort of studied patients represents an initial finding to validate by increas-
ing the sample size of the study in the future. The segmentation of the ROIs slice by slice
was manual, and this can be time-consuming, can be operator variable, can be difficult in
the segmentation of multicentric lesions or in cases of background parenchymal enhance-
ment. In this study is not reported a comparison of accuracy in the breast lesions detection
of CEM respect to FFDM. The future endpoint is to include in the analysis an automatic
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segmentation of the lesions. The radiomics analysis did not consider tumor histological
differences, while the integration of texture metrics combined with histopathology results
may provide other important prognostic information for the classification of malignant
breast lesions both in early and late phase. This could improve the performance in the
classification problem and allow classifying breast lesions according grading and histotype.
We did not evaluate the possible impact on texture values considering the different impact
of the “void sign” after VAAB vs. post FNAC. This could be evaluated in a future study.

In conclusion, multivariate analyses using pattern recognition approaches optimized
by adaptive synthetic sampling and feature selection operations obtained the best results
to separate benign and malignant lesions. Overall, textural features extracted from CC
view images, showed the best performance. However, the best results (ACC = 0.87;
AUC = 0.90) were reached by considering all textural features extracted from dual-energy
CEM images, using an SVM trained with balanced data. These findings represented a
preliminary experience that should be validate with a larger sample size including patients
by different centers.
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Appendix A. Definition of Textural Features

First-Order Gray-Level Statistics
First order gray-level statistics describe the distribution of gray-values within the

volume. Let X denote the 3-D image matrix with N voxels, P the first order histogram, P(i)
the fraction of voxels with intensity level i and Nl the number of discrete intensity levels.

• Mean, the mean gray-level of X.

mean =
1
N

N

∑
i=1

X(i)

• Mode, the most frequent element(s) of array X.
• Median, the sample median of X, or the 50th percentile of X.
• Standard deviation (STD)

STD =

(
1

N − 1

N

∑
i=1

(
X(i)− X

)2
)1/2

• Mean Absolute Deviation (MAD), the mean of the absolute deviation of all voxel
intensities around the mean intensity value.

MAD =
1
N

N

∑
i=1

∣∣X(i)− X
∣∣
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• Range, the range of intensity values of X.

range = max(X)−min(X)

where max(X) is the maximum intensity value of X and min(X) is the minimum
intensity value of X.

• Interquartile range (IQR), the interquartile range is defined as the 75th minus the
25th percentile of X.

• Kurtosis

kurtosis =
1
N ∑N

i=1
(
X(i)− X

)4(√
1
N ∑N

i=1
(
X(i)− X

)2
)2

where X is the mean of X.
• Variance, Variance is the square of the standard deviation.

variance =
1

N − 1

N

∑
i=1

(
X(i)− X

)2

where X is the mean of X.
• Skewness

skewness =
1
N ∑N

i=1
(
X(i)− X

)3(√
1
N ∑N

i=1
(
X(i)− X

)2
)3

where X is the mean of X.

Gray-Level Co-Occurrence Matrix (GLCM)
A normalized GLCM is defined as P(i, j; δ, α), a metric with size Ng × Ng describing

the second-order joint probability function of an image, where the (i, j)th element represents
the number of times the combination of intensity levels i and j occur in two pixels in the
image, that are separated by a distance of δ pixels in direction α, and Ng is the maximum
discrete intensity level in the image. Let:

- P(i, j) be the normalized (i.e., ∑ P(i, j) = 1) co-occurrence matrix, generalized for any
δ and α,

- px(i) =
Ng

∑
j=1

P(i, j),

- py(j) =
Ng

∑
i=1

P(i, j),

- µx be the mean of px, where µx =
Ng

∑
i=1

Ng

∑
j=1

iP(i, j),

- µy be the mean of py, where µy =
Ng

∑
i=1

Ng

∑
j=1

jP(i, j),

- σx be the standard deviation of px, where σx =
Ng

∑
i=1

Ng

∑
j=1

P(i, j)(i− µx)
2,

- σy be the standard deviation of py, where σy =
Ng

∑
i=1

Ng

∑
j=1

P(i, j)
(

j− µy
)2.

• Energy

energy =
Ng

∑
i=1

Ng

∑
j=1

[P(i, j)]2
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• Contrast

contrast =
Ng

∑
i=1

Ng

∑
j=1
|i− j|2P(i, j)

• Entropy

entropy = −
Ng

∑
i=1

Ng

∑
j=1

P(i, j)log2[P(i, j)]

• Homogeneity

homogeneity =
Ng

∑
i=1

Ng

∑
j=1

P(i, j)
1 + |i− j|

• Correlation

correlation =
∑

Ng
i=1 ∑

Ng
j=1 ijP(i, j)− µxµy

σxσy

• Sum Average

sum average =
1

Ng × Ng

Ng

∑
i=1

Ng

∑
j=1

[iP(i, j) + jP(i, j)]

• Dissimilarity

dissimilarity =
Ng

∑
i=1

Ng

∑
j=1
|i− j|P(i, j)

• Autocorrelation

autocorrelation =
Ng

∑
i=1

Ng

∑
j=1

ijP(i, j)

Gray-Level Run-Length Matrix (GLRLM)
Run length metrics quantify gray level runs in an image. A gray level run is defined

as the length in number of pixels, of consecutive pixels that have the same gray level value.
In a gray level run length matrix p(i, j|θ) , the (i, j)th element describes the number of times
j a gray level i appears consecutively in the direction specified by θ. Let:

- p(i, j) be the (i, j)th entry in the given run-length matrix p, generalized for any direc-
tion θ,

- Ng the number of discrete intensity values in the image,
- Nr the maximum run length,

- Ns the total numbers of runs, where Ns =
Ng

∑
i=1

Nr
∑

j=1
p(i, j)

- pr the sum distribution of the number of runs with run length j,

where pr(j) =
Ng

∑
i=1

p(i, j),

- pg the sum distribution of the number of runs with run length i,

where pg(i) =
Nr
∑

j=1
p(i, j),

- Np the number of voxels in the image, where Np =
Nr
∑

j=1
jpr,

- µr the mean run length, where µr =
Ng

∑
i=1

Nr
∑

j=1
jpn(i, j),



Diagnostics 2021, 11, 815 18 of 24

- µg the mean gray level, where µg =
Ng

∑
i=1

Nr
∑

j=1
ipn(i, j).

• Short Run Emphasis (SRE)

SRE =
Nr

∑
j=1

pr

j2

• Long Run Emphasis (LRE)

LRE =
Nr

∑
j=1

j2 pr

• Gray-Level Nonuniformity (GLN)

GLN =
Ng

∑
i=1

pg
2

• Run-Length Nonuniformity (RLN)

RLN =
Nr

∑
j=1

pr
2

• Run Percentage (RP)

RP =
Ns

Np

• Low Gray-Level Run Emphasis (LGRE)

LGRE =
Ng

∑
i=1

pg

i2

• High Gray-Level Run Emphasis (HGRE)

HGRE =
Ng

∑
i=1

i2 pg

• Short Run Low Gray-Level Emphasis (SRLGE)

SRLGE =
Ng

∑
i=1

Nr

∑
j=1

p(i, j)
i2 j2

• Short Run High Gray-Level Emphasis (SRHGE)

SRHGE =
Ng

∑
i=1

Nr

∑
j=1

p(i, j)i2

j2

• Long Run Low Gray-Level Emphasis (LRLGE)

LRLGE =
Ng

∑
i=1

Nr

∑
j=1

p(i, j)j2

i2
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• Long Run High Gray-Level Emphasis (LRHGE)

LRHGE =
Ng

∑
i=1

Nr

∑
j=1

p(i, j)i2 j2

• Gray-Level Variance (GLV)

GLV =
1

Ng × Nr

Ng

∑
i=1

Nr

∑
j=1

(
ip(i, j)− µg

)2

• Run-Length Variance (RLV)

RLV =
1

Ng × Nr

Ng

∑
i=1

Nr

∑
j=1

(jp(i, j)− µr)
2

Gray-Level Size Zone Matrix (GLSZM)
A gray level size-zone matrix describes the amount of homogeneous connected areas

within the volume, of a certain size and intensity. The (i, j)th entry of the GLSZM p(i, j)
is the number of connected areas of gray-level (i.e., intensity value) i and size j. GLSZM
features therefore describe homogeneous areas within the tumor volume, describing tumor
heterogeneity at a regional scale [5]. Let:

- p(i, j) be the (i, j)th entry in the given GLSZM p,
- Ng the number of discrete intensity values in the image,
- Nz the size of the largest, homogeneous region in the volume of interest,

- Ns the total number of homogeneous regions (zones), where Ns =
Ng

∑
i=1

Nz
∑

j=1
p(i, j)

- pz the sum distribution of the number of zones with size j, where pz(j) =
Ng

∑
i=1

p(i, j),

- pg the sum distribution of the number of zones with gray level i,

where pg(i) =
Nz
∑

j=1
p(i, j),

- Np the number of voxels in the image, where Np =
Nz
∑

j=1
jpr,

- µr the mean zone size, where µr =
Ng

∑
i=1

Nz
∑

j=1
jp(i, j

∣∣∣∣∣θ) ,

- µg the mean gray level, where µg =
Ng

∑
i=1

Nz
∑

j=1
ip(i, j

∣∣∣∣∣θ) .

• Small Zone Emphasis (SZE)

SZE =
Nz

∑
j=1

pz

j2

• Large Zone Emphasis (LZE)

LZE =
Nz

∑
j=1

j2 pz

• Gray-Level Non-uniformity (GLN)

GLN =
Ng

∑
i=1

pg
2
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• Zone-Size Non-uniformity (ZSN)

ZSN =
Ng

∑
i=1

pz
2

• Zone Percentage (ZP)

ZP =
Ns

Np

• Low Gray-Level Zone Emphasis (LGZE)

LGZE =
Ng

∑
i=1

pg

i2

• High Gray-Level Zone Emphasis (HGZE)

HGZE =
Ng

∑
i=1

i2 pg

• Small Zone Low Gray-Level Emphasis (SZLGE)

SZLGE =
Ng

∑
i=1

Nz

∑
j=1

p(i, j)
i2 j2

• Small Zone High Gray-Level Emphasis (SZHGE)

SZHGE =
Ng

∑
i=1

Nz

∑
j=1

p(i, j)i2

j2

• Large Zone Low Gray-Level Emphasis (LZLGE)

LZLGE =
Ng

∑
i=1

Nz

∑
j=1

p(i, j)j2

i2

• Large Zone High Gray-Level Emphasis (LZHGE)

LZHGE =
Ng

∑
i=1

Nz

∑
j=1

p(i, j)j2i2

• Gray-Level Variance (GLV)

GLV =
1

Ng × Nz

Ng

∑
i=1

Nz

∑
j=1

(
ip(i, j)− µg

)2

• Zone-Size Variance (ZSV)

ZSV =
1

Ng × Nz

Ng

∑
i=1

Nz

∑
j=1

(jp(i, j)− µz)
2

Neighborhood Gray Tone Difference Matrix (NGTDM)
The ith entry of the NGTDM s(i|d) is the sum of gray level differences of voxels with

intensity i and the average intensity Ai of their neighboring voxels within a distance d. Let:
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- ni be the number of voxels with gray level i,
- N = ∑ ni, the total number of voxels,

- s(i) =

{
∑
ni

|i− Ai| f or ni > 0

0 otherwise
, generalized for any distance d,

- Ng be the maximum discrete intensity level in the image,
- p(i) = ni

N , the probability of gray level i,
- Np, the total number of gray levels present in the image.

• Coarseness

coarseness =

[
ε +

Ng

∑
n=1

p(i)s(i)

]−1

where ε is a small number to prevent coarseness becoming infinite.
• Contrast

contrast =

(
1

Np
(
1− Np

) Ng

∑
i=1

Ng

∑
j=1

p(i)p(j)(i− j)2

)(
1
N

Ng

∑
i=1

s(i)

)

• Busyness

busyness =
∑

Ng
i=1 p(i)s(i)

∑
Ng
i=1 ∑

Ng
j=1|ip(i)− jp(j)|

, p(i) 6= 0, p(j) 6= 0

• Complexity

complexity =
Ng

∑
i=1

Ng

∑
j=1
|i− j| p(i)s(i) + p(j)s(j)

N(p(i) + p(j))
, p(i) 6= 0, p(j) 6= 0

• Strength

strength =
∑

Ng
i=1 ∑

Ng
j=1[p(i) + p(j)](i− j)2

ε + ∑
Ng
n=1 s(i)

, p(i) 6= 0, p(j) 6= 0

where ε is a small number to prevent strength becoming infinite.
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