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Abstract: We propose the Rescaled Matching Pursuit (RMP) algorithm to recover sparse signals in
high-dimensional Euclidean spaces. The RMP algorithm has less computational complexity than
other greedy-type algorithms, such as Orthogonal Matching Pursuit (OMP). We show that if the
restricted isometry property is satisfied, then the upper bound of the error between the original signal
and its approximation can be derived. Furthermore, we prove that the RMP algorithm can find the
correct support of sparse signals from random measurements with a high probability. Our numerical
experiments also verify this conclusion and show that RMP is stable with the noise. So, the RMP
algorithm is a suitable method for recovering sparse signals.
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1. Introduction

Compressed sensing (or compressive sensing) [1] has become a very active research
direction in the field of signal processing, after the pioneering work by Candès and Tao
(see [2]). It has been successfully applied in image compression, signal processing, medical
imaging, and computer science (see [3–7]). Compressed sensing refers to the problem of
recovering sparse signals from low dimensional measurements (see [8]). In terms of image
processing, one needs to compress the image first, then the image signal becomes sparse
and its reconstruction belongs to the category of compressed sensing.

Let Rd denote the d-dimensional Euclidean space. Consider a signal x ∈ Rd. We
say x is a k-sparse vector if #supp(x) ⩽ k. Here, we use supp(x) to denote the set of
index such that xi ̸= 0 for all i ∈ supp(x) and #A represents the cardinality of a set A.
By the compressed sensing theory, the recovery of a sparse signal can be mathematically
described as

f = Φx (1)

where x is a d-dimensional k-sparse vector, and Φ ∈ RN×d is the measurement matrix
with N ≪ d. The goal of signal recovery is establishing an algorithm to approximate the
unknown signal x by using the measurement matrix Φ and given data f = Φx.

A well-known method in compressed sensing is basis pursuit (BP), which is also
known as ℓ1 minimization (see [9]). It is defined as

x̂ = arg min
x∈Rd

{∥x∥ℓ1 : subject to f = Φx} (2)

By imposing a “restricted orthonormality hypothesis”, which is far weaker than
assuming orthonormality and defined as the following Definition 1, the ℓ1 minimization
program can recover x exactly. Furthermore, the target sparse signal x could be recovered
with a high probability when Φ is a Gaussian random matrix.
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Definition 1. A matrix Φ is said to satisfy the restricted isometry property at sparsity level k with
the constant δk ∈ (0, 1) if

(1 − δk)∥x∥2
2 ⩽ ∥Φx∥2

2 ⩽ (1 + δk)∥x∥2
2

holds for all k-sparse vectors x. And, we say that the matrix Φ satisfies the restricted isometry
property with parameters (k, δ) if δk < δ.

The ℓ1 minimization method and related algorithms found by solving (2) have been
well studied, and they range widely in effectiveness and complexity (see [1,2,10–12]).
It is known that a linear program problem can be solved in polynomial time by using
optimization software. However, it still takes a long time if the length of the signal is large.

Compared with the BP algorithm, greedy-type algorithms are easy to implement
and have less computational complexity and fast convergence speed. Thus, greedy-type
algorithms are powerful methods for the recovery of signals and are increasingly used in
that field; for example, see [13–17]. To recall this type of algorithm, we first recall some
basic notions on sparse approximation in a Hilbert space H. We denote the inner product
of H by ⟨·, ·⟩. The norm ∥ · ∥ on H is defined by ∥ f ∥ = ⟨ f , f ⟩1/2 for all f ∈ H. We call a
set D ⊂ H a dictionary if the closure of span(D) is H. Here span(D) is the linear space
spanned by D. We only consider normalized dictionaries, that is, for any φ ∈ D, ∥φ∥ = 1.
Let Σm(D) denote the set of all elements which can be expressed as a linear combination of
m elements from D

Σm(D) :=
{

g : g = ∑
φ∈Λ

cφ φ, φ ∈ D, #Λ ⩽ m
}

We define the minimal error of the approximation of an element f ∈ H as g ∈ Σm(D)

σm( f ) := σm( f ,D) = inf
g∈Σm(D)

∥ f − g∥

Let a dictionary D be given. We define the collection of elements by

Ao
1(D, M) :=

{
f ∈ H : f = ∑

k∈Λ
ck( f )φk, φk ∈ D, #Λ ⩽ ∞, ∑

k∈Λ
|ck( f )| ⩽ M

}
Then, we define A1(D, M) to be the closure of Ao

1(D, M) in H. Finally, we define the linear
space A1(D) by

A1(D) :=
⋃

M>0
A1(D, M)

and we equip A1(D) with the norm

∥ f ∥A1(D) := inf{M : f ∈ A1(D, M)}

for all f ∈ A1(D).
The simplest greedy algorithm in H is known as the Pure Greedy Algorithm

(PGA(H,D)). We recall its definition from [18].
Pure Greedy Algorithm (PGA(H, D))
Step 1: Set f0 = 0.
Step 2:
-If f = fm−1, then stop and define fl = fm−1 = f for l ≥ m.
-If f ̸= fm−1, then choose an element φm ∈ D satisfying

|⟨ f − f PGA
m−1 , φm⟩| = sup

φ∈D
|⟨ f − f PGA

m−1 , φ⟩|
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Define the new approximation of f as

f PGA
m =

m

∑
i=1

⟨ f − f PGA
m−1 , φi⟩φi

and proceed to Step 2.
In [19], DeVore and Temlyakov proposed the Orthogonal Greedy Algorithm

(OGA(H,D)) in H with a dictionary D. We recall its definition.
Orthogonal Greedy Algorithm (OGA(H, D))
Step 1: Set f0 = 0.
Step 2:
-If f = fm−1, then stop and define fl = fm−1 = f for l ⩾ m.
-If f ̸= fm−1, then choose an element φm ∈ D satisfying

|⟨ f − f OGA
m−1 , φm⟩| = sup

φ∈D
|⟨ f − f OGA

m−1 , φ⟩|

Define the new approximation of f as

f OGA
m = Pm( f )

where Pm( f ) is the best approximation of f from the linear space Vm := span{φ1, φ2, · · ·, φm},
and proceed to Step 2.

In fact, the OGA is one of the modifications of the PGA, improving the convergence
rate. The convergence rate is one of the critical issues for the approximation power of
algorithms. If fm is the approximation of the target element f by applying a greedy
algorithm after m iterations, the efficiency of the algorithm can be measured by the decay
of the sequence {∥ f − fm∥}. It has been shown that the PGA and the OGA can achieve
the convergence rates m−1/6 and m−1/2 for ∥ f − fm∥, respectively, if the target element f
belongs to A1(D, M) (see [19]).

Theorem 1. Suppose D is a dictionary of H. Then, for every f ∈ A1(D, M), the following
inequality holds:

∥ f − f PGA
m ∥ ≤ Mm−1/6, m = 0, 1, 2, · · · .

Theorem 2. Suppose D is a dictionary of H. Then, for every f ∈ A1(D, M), the following
inequality holds:

∥ f − f OGA
m ∥ ≤ Mm−1/2, m = 0, 1, 2, · · · .

It is known from [20] that the convergence rate m−1/2 cannot be improved. Thus, as a
very general result for all dictionaries, the convergence rate is optimal.

The fundamental problem of signal recovery is to find out the support of the original
target signal by using the model (1). Since N is much smaller than the dimension d, the
column vectors of the measurement matrix Φ are linearly dependent. Therefore, these
vectors consist of a redundant system. This redundant system may be considered as a
dictionary of RN . It is well known that RN is a Hilbert space with the usual inner product

⟨x, y⟩ =
N

∑
j=1

xjyj, ∀x ∈ RN , y ∈ RN

Thus, signal recovery can be considered as an approximation problem with a dictionary
in a Hilbert space. In particular, the approximation of the original signal is the solution of
the following minimization problem:
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min
x̂1,··· ,x̂d∈R

∥∥∥∥ f −
d

∑
i=1

x̂i φi

∥∥∥∥
2

where φ1, · · · , φd denote the columns of Φ. Naturally, one can adapt greedy approximation
algorithms to handle the signal recovery problem. In CS, one such method is Orthogonal
Matching Pursuit (OMP) (see [21,22]), which is an application of OGA to the field of
signal processing. Compared with the BP, the OMP is faster and it admits an ease of
implementation (see [17,23]). We recall the definition of the OMP from [23].

Orthogonal Matching Pursuit (OMP)
Input: An N × d matrix Φ, f ∈ RN , the sparsity index k.
Step 1: Set r0 = f , the index set Λ0 = ∅, and m = 1.
Step 2: Define Λm := Λm−1 ∪ {im} such that

|⟨rm−1, φim⟩| = sup
φ∈Φ

|⟨rm−1, φ⟩|

Then,

xm = arg min
z:supp(z)∈Λm

∥ f − Φz∥2, f o
m = Φxm

and

rm = f − f o
m = f − Φxm

Step 3: Increment m, and return to Step 2 if #Λm < k.
Output: If #Λm ⩾ k, then output Λm and x̂ = xm.
It is clear from the available literature that the OMP algorithm is the most popular

greedy-type algorithm being used for signal recovery. The OMP algorithm, with a high
probability, can exactly recover each sparse signal by using a Gaussian or Bernoulli matrix
(see [17]). And, it is shown that the OMP algorithm can stably recover sparse signals in
l2 under measurement noise (see [24]). Although the OMP algorithm is powerful, the
computational complexity of the orthogonality step is quite high, especially for large-scale
problems. See [25] for the detailed computation and the storage cost of the OMP. So, the
main disadvantage of the OMP is its high computational cost. In particular, when the
sparsity level k of the target signal is large, OMP may not be a good choice, since the cost of
orthogonalization increases quadratically with the number of iterations. Thus, in this case,
it is natural to look for other greedy-type algorithms to reduce the computational cost.

In Section 2, we propose an algorithm called Rescaled Matching Pursuit (RMP) for
signal recovery. This algorithm has less computational complexity than the OMP, which
means it can save resources such as storage space and computation time. In Section 3, we
analyze the efficiency of the RMP algorithm under the RIP condition. In Section 4, we
prove that the RMP algorithm can be used to find the correct support of sparse signal from
a random measurement matrix with a high probability. In Section 5, we use numerical
experiments to verify this conclusion. In Section 6, we summarize our results.

2. Rescaled Matching Pursuit Algorithm

In [26], Petrova presented another modification of the PGA which is called the escaled
pure greedy algorithm (RPGA). This modification is very simple. It simply rescales the
approximation in each iteration of the PGA.

We recall the definition of the RPGA(H, D) from [26].
Rescaled Pure Greedy Algorithm (RPGA(H, D))
Step 1: Set f0 = 0, r0 = f .
Step 2:
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-If f = fm−1, then stop and define fk = fm−1 = f for k ≥ m.
-If f ̸= fm−1, then choose an element φm ∈ D satisfying

|⟨rm−1, φm⟩| = sup
φ∈D

|⟨rm−1, φ⟩|

with

λm = ⟨rm−1, φm⟩, f̂m := fm−1 + λm φm, sm =
⟨ f , f̂m⟩
∥ f̂m∥2

Then, define the the new approximation of f as

fm = sm f̂m, rm = f − fm

and proceed to Step 2.

The following theorem on the convergence rate of the RPGA was also obtained in [26].

Theorem 3. Suppose D is a dictionary of H. Then, for every f ∈ A1(D), the RPGA satisfies the
following inequality:

∥ f − fm∥ ≤ ∥ f ∥A1(D)(m + 1)−1/2, m = 0, 1, 2, · · ·

Notice that the RPGA only needs to solve a one-dimensional optimization problem at
each step. Thus, the RPGA is simpler than the OGA. Together with Theorem 3, it is known
that the RPGA is a greedy algorithm with minimal computational complexity to achieve
the optimal convergence rate m−1/2. Based on this result, the RPGA has been applied
successfully to solve the problems of convex optimization and regression, see [27–29]. In
solving these two types of problems, the RPGA performs better than the OGA. The main
reason is that the RPGA has smaller computational cost than the OGA. For more detailed
results about the RPGA, one can refer to [26–30]. Besides, in [31] the authors propose the
Super Rescaled Pure Greedy Learning Algorithm and investigate its behavior. The success
of the RPGA inspires us to consider its application in the field of signal recovery.

In the present article, we will design an algorithm based on the RPGA to recover
sparse signals and analyze its performance. Suppose that x is a k-sparse signal in Rd and
Φ is an N × d matrix. We denote the columns of Φ as φ1, . . . , φd. Then, we design the
Rescaled Matching Pursuit (RMP) for sparse signal recovery.

Rescaled Matching Pursuit (RMP)
Input: Measurement matrix Φ, vector f , the sparsity index k.
Step 1: Set r0 = f , f0 = 0, the index set Λ0 = ∅, and m = 1.
Step 2: Define Λm := Λm−1 ∪ {im} such that

|⟨rm−1, φim⟩| = sup
φ∈Φ

|⟨rm−1, φ⟩|

Then,
fm = sm f̂m

where θm = ⟨rm−1, φim⟩, f̂m = fm−1 + θm φim , and sm =
⟨ f , f̂m⟩
∥ f̂m∥2

2
. Next, update the

residual

rm = f − fm

Step 3: Increment m, and return to Step 2 if #Λm < k.
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Output: If #Λm ⩾ k, then output Λm and x̂. It is easy to see that x̂ has nonzero indices
at the components listed in Λm. If im1 = im2 = · · · = ims = ij, then we can figure out the
value of x̂ in component ij through

x̂(ij) =
s

∑
l=1

θml

k

∏
i=ml

si

The main procedure of the algorithm can be divided into selecting the columns of Φ
and constructing the approximation fm. In Step 2, the approximation fm is obtained by
solving a one-dimensional optimization problem. In fact, fm is an orthogonal projection of
f onto the one-dimensional space span{ f̂m}. The RMP algorithm is broadly similar to the
OMP algorithm, while the computational complexity differs. For the OMP algorithm, the
approximation f o

m := Φx̂ is obtained by solving the m-dimensional least squares problem
at m iteration in Step 2, which has a total cost of O(mN). For the RMP algorithm, as
argued above, the approximation fm is obtained by solving a one-dimensional optimization
problem at the m iteration in Step 2, which has a total cost of O(N). It is not difficult to see
that the computational cost is less expensive than most existing greedy algorithms, such
as the OMP algorithm. That is, we can save a lot of resources such as storage space and
computation time by using the RMP algorithm.

3. Efficiency of the RMP under the Restricted Isometry Property

Suppose that the matrix Φ satisfies the RIP condition which is defined in Definition 1.
Then, we study the performance of the RMP for k-sparse signal recovery.

Under the RIP, we obtain the convergence rate of the error between the given data
vector f and its approximation fm.

Theorem 4. Assume that x is an arbitrary k-sparse signal in Rd and the measurement matrix
Φ ∈ RN×d satisfies the RIP condition with parameters (k, δ). Then, for f = Φx and every positive
integer m, we have

∥ f − fm∥2 ⩽
k1/2∥ f ∥2

(1 − δ)
(m + 1)−1/2, m = 0, 1, . . .

Moreover, we derive the upper bound of the difference between the original signal x
and the estimate x̂ of x.

Theorem 5. Assume that x is an arbitrary k-sparse signal in Rd and the measurement matrix
Φ ∈ RN×d satisfies the RIP condition with parameters (2k, δ). Given the data f = Φx, if
#ΛL = k, L ⩾ k, we have

∥x − x̂∥2 ⩽
k1/2∥ f ∥2

(1 − δ)3/2 (L + 1)−1/2

To prove Theorems 4 and 5, we will use a lemma which was obtained in [32].

Lemma 1. Let the positive constants ℓ, r, and B be given. Suppose {am} and {rm} are finite or
infinite sequences of positive real numbers such that

aJ ⩽ B, am ⩽ am−1

(
1 − rm

r
aℓm−1

)
, m = J + 1, J + 2, . . .

Then, am has the following upper bound:

am ⩽ max{1, ℓ−1/ℓ}r1/ℓ
(

rB−ℓ +
m

∑
k=J+1

rk

)−1/ℓ

, m = J + 1, J + 2, . . .
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Proof of Theorem 4: It follows from the definitions of f̂m and θm that

∥ f − f̂m∥2
2 =

〈
f − f̂m, f − f̂m

〉
= ⟨ f − fm−1 − θm φim , f − fm−1 − θm φim⟩
= ∥ f − fm−1∥2

2 − 2θm⟨ f − fm−1, φim⟩+ θ2
m∥φim∥

2
2

= ∥ f − fm−1∥2
2 − 2⟨ f − fm−1, φim⟩

2 + ∥φim∥
2
2⟨ f − fm−1, φim⟩

2

From the design of the RMP, we know that fm is the orthogonal projection of f onto
span{ f̂m}. Thus, the following must be true:

∥ f − fm∥2
2 ⩽ ∥ f − f̂m∥2

2

= ∥ f − fm−1∥2
2 − 2⟨ f − fm−1, φim⟩

2 + ∥φim∥
2
2⟨ f − fm−1, φim⟩

2

We continue to estimate the approximation error of fm by using the RIP condition with
parameters (k, δ) of the matrix Φ. Hence, the above inequality can be estimated as

∥ f − fm∥2
2 ⩽ ∥ f − fm−1∥2

2 − 2⟨ f − fm−1, φim⟩
2 + (1 + δ)⟨ f − fm−1, φim⟩

2

= ∥ f − fm−1∥2
2 − (1 − δ)⟨ f − fm−1, φim⟩

2 (3)

Now, we will derive a lower bound for |⟨ f − fm−1, φim⟩|. Note that fm is orthogonal
to f − fm, that is, the following applies

⟨ f − fm, fm⟩ = 0, m ≥ 0 (4)

It is observed that

f = Φx =
d

∑
i=1

xi φi = ∑
i∈supp(x)

xi φi (5)

From (4), (5), and the Hölder inequality, we have

∥ f − fm−1∥2
2 = ⟨ f − fm−1, f − fm−1⟩
= ⟨ f − fm−1, f ⟩
= ∑

i∈supp(x)
xi⟨ f − fm−1, φi⟩

⩽ ∑
i∈supp(x)

|xi| |⟨ f − fm−1, φi⟩|

⩽ |⟨ f − fm−1, φim⟩| ∑
i∈supp(x)

|xi|

⩽ |⟨ f − fm−1, φim⟩| k1/2

 ∑
i∈supp(x)

|xi|2
1/2

= k1/2|⟨ f − fm−1, φim⟩| ∥x∥2

From the RIP condition of Φ with the parameters (k, δ), we obtain

∥ f − fm−1∥2
2 ⩽ k1/2|⟨ f − fm−1, φim⟩| ∥x∥2

⩽ k1/2(1 − δ)−1/2|⟨ f − fm−1, φim⟩| ∥Φx∥2

= k1/2(1 − δ)−1/2|⟨ f − fm−1, φim⟩| ∥ f ∥2
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which implies

|⟨ f − fm−1, φim⟩| ⩾
(1 − δ)1/2

k1/2∥ f ∥2
∥ f − fm−1∥2

2

Thus, combining the above inequality with (3), we have

∥ f − fm∥2
2 ⩽ ∥ f − fm−1∥2

2 − (1 − δ)
(1 − δ)

k∥ f ∥2
2
∥ f − fm−1∥4

2

= ∥ f − fm−1∥2
2

(
1 − (1 − δ)2

k∥ f ∥2
2
∥ f − fm−1∥2

2

)

= ∥ f − fm−1∥2
2

1 −
[

k1/2∥ f ∥2

(1 − δ)

]−2

∥ f − fm−1∥2
2


Note that

∥ f − f0∥2 = ∥ f ∥2 ⩽
k

(1 − δ)2 ∥ f ∥2
2

Applying Lemma 1 with am = ∥ f − fm∥2
2, B =

(
k1/2∥ f ∥2

1−δ

)2
, rm := 1, r =

(
k1/2∥ f ∥2

1−δ

)2
, J = 0,

and ℓ = 1, then we have

∥ f − fm∥2
2 ⩽

(
k1/2∥ f ∥2

1 − δ

)2

(m + 1)−1, m ⩾ 1

which completes the proof of Theorem 4.

Based on the result of Theorem 4, we can prove Theorem 5.

Proof of Theorem 5: If the matrix Φ satisfies the RIP condition with parameters (2k, δ),
then by Theorem 4, we can estimate the upper bound of ∥x − x̂∥ as follows:

∥x − x̂∥2
2 ⩽ (1 − δ)−1∥Φ(x − x̂)∥2

2

= (1 − δ)−1∥Φx − Φx̂∥2
2

= (1 − δ)−1∥ f − fL∥2
2

⩽
k∥ f ∥2

2
(1 − δ)3 (L + 1)−1

Thus, the proof of Theorem 5 is finished.

It is known from Theorem 5 that RMP can obtain a good approximation of the sparse
signal f . In this case, it is worse than the OMP, since OMP can recover f exactly if the
RIP condition is satisfied. The key point is that one can establish the ideal Lebesgue-type
inequality for OMP but not for RMP; for example, see [22,33,34]. On the other hand, as far
as we know, until now, it is impossible to construct a deterministic matrix satisfying the
RIP condition. In practice, one usually uses the random matrix in signal recovery. We will
show that the performance of the RMP is similar to the OMP in this case.

4. Signal Recovery with Admissible Measurements

Since one could not construct a deterministic matrix satisfying the RIP condition, it is
natural to consider a random matrix. In practice, almost all approaches to recovering sparse
signals using greedy-type methods involve some kind of randomness. In this section, we
choose a class of random matrices which have good properties. This class of matrices is



Axioms 2024, 13, 288 9 of 17

called admissible matrices. We first recall the definition of this class of matrices. Then,
we prove that the support of a k-sparse target signal in Rd can be recovered with a high
probability by applying the RMP algorithm. This shows that RMP is a powerful method of
recovering sparse signals in high-dimensional Euclidean spaces.

Definition 2. An admissible measurement matrix for a k-sparse signal in Rd is an N × d random
matrix Φ satisfying the following conditions:

(M1) The columns of Φ are stochastically independent.

(M2) E(∥φj∥2
2) = 1 for j = 1, · · · , d.

(M3) Let {um} be a sequence of k vectors whose ℓ2 norm do not exceed 1. If φ is a column of Φ
independent from {um}, then

Prob
{

max
m

|⟨φ, um⟩| ⩽ ε
}
⩾ 1 − 2ke−C3ε2 N

for a positive constant C3.

(M4) For a given N × k submatrix Z from Φ, the kth largest singular value σk(Z) satisfies

Prob
{

σk(Z) ⩾
1
2

}
⩾ 1 − e−C4 N

for a positive constant C4.

We illustrate some points about the conditions (M3) and (M4). The above condition
(M3) offers a limitation of the singular value of the submatrix, which is analogous to the
RIP condition (see [17]). Furthermore, the condition (M4) controls the inner product, since
the selection of index at Step 2 of the RMP algorithm relates to the inner product. Two
typical classes of admissible measurement matrices are the Gaussian matrix and Bernoulli
matrix, which were first introduced by Candès and Tao for signal recovery and defined as
follows (see [2]).

Definition 3. A measurement matrix Φ is called a Gaussian measurement if every entry of Φ is
selected from the Gaussian distribution N (0, N−1), of which the density function p(x) is

p(x) = 1√
2πN

e−x2 N/2, for x ∈ R

Definition 4. A measurement matrix Φ is called a Bernoulli measurement if every entry of
Φ is selected to be ± 1√

N
with the same probability, i.e., Prob{Φij = 1/

√
N} = Prob{Φij =

−1/
√

N} = 1
2 , where i = 1, · · · , N, j = 1, · · · , d.

Obviously, for Gaussian and Bernoulli measurements, the properties (M1) and (M2)
are straightforward to verify. We can check the other two properties using the following
known results. See [17] for more details.

Proposition 1. Suppose {um} is a sequence of k-sparse vectors. The ℓ2 norm of each um does not
exceed 1. Choose z independently to be a random vector with i.i.d. N (0, N−1) entries. Then

Prob
{

max
m

|⟨z, um⟩| ⩽ ε
}

⩾ 1 − ke−2ε2 N/2

Proposition 2. Let Z be an N × k matrix whose entries are all i.i.d. N (0, N−1) or else i.i.d.
uniform on ± 1√

N
. Then

1
2
∥x∥2 ⩽ ∥Z∥2 ⩽

3
2
∥x∥2, for all x ∈ Rk
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with a probability of at least

1 − 2 · 24k · e−cN

For the RMP algorithm, we derive the following result.

Theorem 6. Let x be a k-sparse signal in Rd and Φ be an N × d admissible matrix independent from
the signal. For the given data f = Φx, if the RMP algorithm selects k elements in the first L ⩾ k
iterations, the correct support of x can be found with the probability exceeding 1− 4L(d− k)e−cN/k,
where c is a constant dependent on the admissible measurement matrix Φ.

Proof of Theorem 6: Without a loss of generality, we may assume that the first k compo-
nents of x are nonzero and the other remaining components of x are zeroes. Obviously,
f can be expressed as a linear combination of the first k columns of measurement matrix
Φ. We decompose the measurement matrix Φ into two parts Φ = [Φopt|Ψ], where Φopt is
the submatrix formed by the first k columns of Φ, and Ψ is the submatrix formed by the
remaining d − k columns. For Φopt, we assume that

Φopt = [φ1, · · · , φk], φ1, · · · , φk ∈ Φ

and

f = Φx =
k

∑
i=1

φixi

Furthermore, we can know that f = Φx is independent from the random matrix Ψ.
Denote Esucc as the event where the RMP algorithm recovers all k elements from the

support of x correctly in the first L ⩾ k iterations. Define Σ as the event where σk(Φopt) ⩾ 1
2 .

Then, we have

Prob{Esucc} ⩾ Prob{Esucc ∩ Σ}
= Prob{Esucc|Σ} · Prob{Σ}

For an N-dimensional vector r, define

ρ(r) :=
∥ΨTr∥∞

∥ΦT
optr∥∞

=
maxψ |⟨ψ, r⟩|
∥ΦT

optr∥∞

where ψ is a column of the matrix Ψ. If r is a residual vector derived by the Step 2 of the
RMP algorithm and ρ(r) satisfies ρ(r) < 1, it means that a column from matrix Φopt has
been selected.

If we execute the RMP algorithm with input signal x and measurement matrix Φopt for
L iterations, then we obtain a sequence of residual vectors r0, r1, · · · , rL−1. Obviously, the
residual vectors are independent from the matrix Ψ and can be considered as the functions
of x and Φopt. Instead, suppose that we execute the RMP algorithm with the input signal
x and matrix Φ for L iterations. If the RMP algorithm recovers all the k elements of the
support of x correctly, the columns of Φopt should be selected at each iteration. Thus, the
sequence of residual vectors should be same as when we execute the algorithm with Φopt.

Therefore, the condition probability satisfies

Prob{Esucc|Σ} ⩾ Prob{max
m

ρ(rm) < 1|Σ}

where rm is a random vector depending on Φopt and stochastically independent from Ψ.
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Assume that Σ occurs. Since ΦT
optr is a k-dimensional vector, then

ρ(rm) =
maxψ |⟨ψ, rm⟩|
∥ΦT

optrm∥∞
⩽

√
k maxψ |⟨ψ, rm⟩|
∥ΦT

optrm∥2

By the basic property of singular values, we have

∥ΦT
optr∥2

∥r∥2
⩾ σk(Φopt) ⩾

1
2

for any vector r in the range of Φopt. Thus, for vector rm, we have ∥um∥2 ⩽ 1, where
um := 1

2
rm

∥ΦT
optrm∥2

. Then, the have the following:

ρ(rm) ⩽

√
k maxψ |⟨ψ, rm⟩|
∥ΦT

optrm∥2

= 2
√

k max
ψ

∣∣∣∣
〈

ψ,
rm

2∥ΦT
optrm∥2

〉∣∣∣∣
= 2

√
k max

ψ
|⟨ψ, um⟩|

for each index m = 0, 1, · · · , L − 1.
Thus, we have

Prob{ρ(rm) < 1|Σ} ⩾ Prob
{

max
m

max
ψ

|⟨ψ, um⟩| <
1

2
√

k

∣∣Σ}
Since the columns of Ψ are stochastically independent from each other, we can ex-

change the two maxima to obtain

Prob{max
m

ρ(rm) < 1|Σ} ⩾ ∏
ψ

Prob
{

max
m

|⟨ψ, um⟩| <
1

2
√

k

∣∣Σ}

Obviously, each column of Ψ is independent from {um} and Σ. By condition (M3),
we have

Prob{max
m

ρ(rm) < 1|Σ} ⩾ [1 − 2Le−C3 N/4k]d−k

By the property (M4), we have

Prob{Σ} = Prob
{

σk(Φopt) ⩾
1
2

}
⩾ 1 − e−C4 N

Therefore, the following applies:

Prob{Esucc} ⩾ Prob{Esucc|Σ} · Prob{Σ}
⩾ Prob{max

m
ρ(rm) < 1|Σ} · Prob{Σ}

⩾ [1 − 2Le−C3 N/4k]d−k · [1 − e−C4 N ]
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By using the following known inequality for k ≥ 1, x ≤ 1,

(1 − x)k ⩾ 1 − kx

we have

Prob{Esucc} ⩾ 1 − 2L(d − k)e−C3 N/4k − e−C4 N

⩾ 1 − 4L(d − k)e−cN/k

We finish the proof of this theorem.

We remark that a similar result holds for the OMP (see [17]). So, the performance of
the RMP is similar to that of the OMP in the random case. In the next section, we will verify
the conclusion of Theorem 6 via numerical experiments.

5. Simulation Results

In the present section, we check the efficiency of the Rescaled Matching Pursuit (RMP)
algorithm defined in Section 2. We adopt the following model. Assume that x ∈ Rd is the
target signal. We want to recover it by using the following information:

f = Φx (6)

where Φ ∈ RN×d is a Bernoulli measurement matrix.
In our experiments, we generate a k-sparse signal x ∈ Rd by randomly choosing k

components, and each of them is selected from a standard normal distribution N (0, 1). We
execute the RMP algorithm with a Bernoulli measurement matrix under the model (6). We
measure the performance of the RMP algorithm with the mean square error (MSE), which
is defined as

MSE =
1
d

d

∑
j=1

(xj − x̂j)
2

where x̂ ∈ Rd is the estimate of the target signal x.
The first plot, Figure 1, displays the performances of the OMP and the RMP for an

input signal with different sparsity indexes k, different dimensions d, and different numbers
of measurements N. The red line denotes the original signal, the blue squares represent the
approximation of the RMP, and the black dots denote the approximation of the OMP.

From Figure 1, we know that the RMP can obtain a good approximation for a sparse
signal even in a high dimension or when N is much smaller than d. After repeating the test
100 times, we can figure out the mean square errors of the above four cases as follows:

(a) MSE(OMP) = 4.1767 × 10−6; MSE(RMP) = 2.3491 × 10−4

(b) MSE(OMP) = 1.5524 × 10−6; MSE(RMP) = 1.1254 × 10−4

(c) MSE(OMP) = 1.03 × 10−6; MSE(RMP) = 1.28 × 10−4

(d) MSE(OMP) = 5.44 × 10−5; MSE(RMP) = 9.422 × 10−3

Thus, taking a suitable number of measurements, the performance of the RMP is
similar to the OMP within allowable limits.

Figure 2 shows that the RMP can approximate the 40 sparse signal well under noise,
even in a high dimension, which implies that the RMP is stable with the noise.
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Figure 1. The recovery of an input signal for the OMP and the RMP under different sparsity levels
k, different dimensions d, and different numbers of measurements N. (a) k = 40, N = 250, d = 512;
(b) k = 40, N = 250, d = 1024; (c) k = 40, N = 250, d = 2048, (d) k = 125, N = 500, d = 5000.

Figure 3 displays the relation between the percentage (of 100 input signals) of the
support that can be determined correctly and the number N of measurements in different
dimensions d. It reveals how many measurements are necessary to reconstruct a k-sparse
signal x ∈ Rd with a high probability. A percentage equal to 100% means that support
for all 100 input signals can be found. That is to say, the support of the input signal can
be exactly recovered. Furthermore, Figure 3 indicates that to guarantee the success of
recovering the target signal, the number N of the measurements must increase when the
sparsity level k increases.

The numerical experiments show that the RMP is efficient for the recovery of the
sparse signals even in the noised case. The RMP can determine the support of the target
signal in a high-dimension Euclidean space with a high probability, if the number N is
large enough.
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Figure 2. The recovery of an input signal with sparsity level k = 40 and number of measurments
N = 250 via RMP in different dimensions d and different noise levels: (a) d = 512, no noise;
(b) d = 512, Gaussian noise; (c) d = 1024, no noise; (d) d = 1024, Gaussian noise. The red line denotes
the original signal. The blue squares stand for the approximation obtained by applying the RMP.
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Figure 3. The percentage of the support of 100 input signals being recovered correctly as a function
of the number N of Bernoulli measurements for different sparsity levels k in different dimensions d
via RMP: (a) d = 512; (b) d = 1024.

6. Conclusions

We design the Rescaled Matching Pursuit (RMP) algorithm for the recovery of the
target signal in Euclidean space with a high dimension. The RMP algorithm performs
with great advantages in terms of computational complexity over other greedy-based
compressive sensing algorithms, such as the OMP algorithm, since its total cost is O(N)
at m iterations. By using the RIP condition, we derive the convergence rate of the error
between the original signal and its approximation for the RMP algorithm. Moreover, we
prove that the RMP algorithm can recover the support of the original sparse signal by using
an admissible matrix with a high probability. Our numerical simulation results also verify
this conclusion. And, we show that the RMP can obtain a good approximation for original
sparse signal under noise, namely, the RMP is stable with noise. Thus, in both theory and
practice, we show that the RMP algorithm is powerful in random cases. Although the
computational cost of the RMP is smaller than that of the OMP, the performance of the
RMP is not better than the OMP in the deterministic case. However, in randomized cases,
the two algorithms perform similarly. Thus, if the sparsity level k of the target signal is
large and computational resources are limited, then the RMP with random measurements
may be a good choice.
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