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Abstract: The phenomenon “bufferbloat” occurs when the buffers of the network intermediary
nodes fill up, causing long queuing delays. This has a significant negative impact on the quality of
service of network applications, particularly those that are sensitive to time delay. Many active queue
management (AQM) algorithms have been proposed to overcome this problem. Those AQMs attempt
to maintain minimal queuing delays and good throughput by purposefully dropping packets at
network intermediary nodes. However, the existing AQM algorithms mostly drop packets randomly
based on a certain metric such as queue length or queuing delay, which fails to achieve fine-grained
differentiation of data streams. In this paper, we propose a fine-grained sketch-based proportional
integral queue management algorithm S-PIE, which uses an additional measurement structure
Sketch for packet frequency share judgment based on the existing PIE algorithm for the fine-grained
differentiation between data streams and adjust the drop policy for a differentiated packet drop.
Experimental results on the NS-3 simulation platform show that the S-PIE algorithm achieves lower
average queue length and RTT and higher fairness than PIE, RED, and CoDel algorithms while
maintaining a similar throughput performance, maintaining network availability and stability, and
improving network quality of service.

Keywords: queue management; frequency counting; differentiated packet drop; fine-grained
identification; fairness

MSC: 68M20; 60K30

1. Introduction

Facing 2030+, with the full emergence and digital development of 6G networks and the
continuous convergence of advanced technologies, such as mobile communications, cloud
computing, big data, IoT, and artificial intelligence, the research on low-latency and high-
reliability networks has received extensive attention. For example, modern technologies
such as telemedicine and real-time VR require both perfect network connectivity and low-
latency performance support. Traditional transmission control protocol (TCP) congestion
control technology has gradually failed to meet growing transmission demands [1]. More-
over, to avoid packet loss, network devices tend to deploy large buffers, which can cause
severe bufferbloat problems [2], increase queuing latency, and reduce the user-perceived
Internet speed, especially for latency-sensitive applications that can significantly degrade
their performance.

The active queue management (AQM) algorithm is considered an effective solution
for improving bufferbloats. Unlike the traditional FIFO approach, the AQM algorithm alle-
viates network congestion by actively dropping packets in advance of the queue overflow.
In the case of a high service volume, the AQM algorithm can provide orderly message
forwarding and manage the scheduling of messages in the queue before the queue is full,
which ensures the throughput and stability of network transmission and improves the

Axioms 2023, 12, 814. https://doi.org/10.3390/axioms12090814 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12090814
https://doi.org/10.3390/axioms12090814
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-5840-2251
https://orcid.org/0000-0002-0385-2327
https://orcid.org/0000-0002-5806-5662
https://doi.org/10.3390/axioms12090814
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12090814?type=check_update&version=2


Axioms 2023, 12, 814 2 of 15

quality of service of the network. Various AQM algorithms have been proposed in recent
years, mainly random early detection (RED) [3], BLUE [4], controlled delay (CoDel) [5],
proportional integral controller enhanced (PIE) [6], etc. However, these existing AQM algo-
rithms drop data packets frequently and randomly in order to guarantee certain metrics,
such as buffer queue length, queuing delay, etc., resulting in some TCP flows with weaker
transmission capacity and lower bandwidth utilization being more impaired. The research
goal of this study is to perform the fine-grained identification of data streams on the basis
of guaranteeing the stability and throughput of data streams.

To address the problem that the existing AQM algorithm cannot identify the net-
work congestion status and distinguish the packet drop at a fine-grained level, this paper
introduces the traffic measurement method into the traditional AQM algorithm PIE and pro-
poses a Sketch-based proportional integral queue management algorithm S-PIE. The Sketch
helps to find out which packets are in “large flows”, i.e., which flows are congestion-causing
flows, to decide which packets are more likely to be dropped, to reduce the bandwidth
pressure when congestion is likely to occur, and to maintain better fairness. S-PIE has the
following main features: (1) the Sketch structure is used to map and store the message
information, and then the frequency of transmission of the current message in a certain
time period can be obtained by querying the index of the Sketch, and to determine whether
the packet corresponding to that data stream has a high traffic volume, so as to execute
a differential drop policy; (2) the algorithm has lightweight characteristics, querying the
frequency values of corresponding messages through Sketch and calculating the frequency
of different data streams forwarded by the weighted averaging method, which has better
robustness; (3) S-PIE can improve fairness between data flows and reduce queuing latency
while maintaining throughput.

The remainder of this paper is organized as follows. Section 2 describes the related
work, including the active queue management algorithm used in this study and some
related research advances. Section 3 presents the design of the proposed S-PIE algorithm.
Section 4 presents an experimental and performance comparison that analyzes and com-
pares the experimental results of the S-PIE algorithm with those of other classical AQM
algorithms in different scenarios. Finally, Section 5 summarizes the research results and
discusses the future work.

2. Related Works

Queue management methods play an important role in data transfer by effectively
improving data transfer performance and ensuring fairness and reliability among streams
as much as possible. These can be divided into early passive queue management and active
queue management, which have evolved rapidly in recent years.

Passive queue management (PQM) is similar to the traditional “DropTail”. Generally,
the router sets a maximum value for the queue in this algorithm. When the queue length
reaches the threshold, the next packets are dropped indiscriminately until the queue length
returns to the threshold [7]. With the increase in network traffic and the development of
network architecture, passive queue management problems of full queues, slow storage
deadlocks, and global synchronization are becoming more common [8]. Based on this, active
queue management (AQM) algorithms have been proposed, which actively drop packets
in router buffers before congestion occurs and send congestion feedback information to
the source to effectively reduce or avoid congestion; they have become mainstream queue
management methods in the industry and academia.

Floyd and Jacobson et al. proposed the RED [3], which is mainly based on the
average length of the queue to determine whether packets are dropped or not, but the RED
algorithm is very sensitive to parameter configuration and network state, which can lead
to the synchronization of multiple TCPs under specific network load conditions, easily
causing problems such as queue oscillation, reduced throughput, and increased delay jitter,
as well as difficulties in parameter adjustment in the actual network deployment.
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In response to the lag problem caused by AQM algorithms that use the average queue
length as a measure of network congestion, researchers have proposed some new AQM
algorithms, such as BLUE [4], which adjusts the packet marking drop probability by link
idle and buffer overflow conditions and manages congestion by using packet drop events
and link idle events. Although the BLUE algorithm can accomplish congestion control
using a small queue cache, it still suffers from parameter setting problems, especially when
the number of TCP connections changes drastically, which makes the set parameters invalid
and causes the queue to fluctuate drastically between packet drop and low-utilization states.

Nichols and Jacobson et al. proposed CoDel [5] for the bufferbloat problem to de-
termine network congestion based on the packet delay in the queue, where packets are
set a timestamp when they enter the queue, and then packet drop is judged based on the
packet sojourn time in the queue. The FqCoDel [9] algorithm is the derivative version of
CoDel and can effectively solve the bufferbloat problem by preprocessing different data
streams and then entering the queues in different states controlled by CoDel. COBALT(the
CoDel and BLUE Alternate algorithm) [10] is currently used in Linux4.19. When there is no
response flow, COBALT significantly reduces the queue waiting time.

Modeling the system is the basis for exploring the problems of automatic control
theory. A well-known nonlinear TCP/AQM model designed based on fluid theory was
proposed by Hollot et al. [11] and has been used ever since. Hakkı et al. designed a PI
controller based on the TCP/AQM network model [12] to provide feedback control on
network congestion in AQM. The PIE [6] algorithm is also based on the controller and was
proposed based on the bufferbloat problem, which combines the advantages of the easy
implementation of RED and CoDel, using the rate of packets out of the queue to calculate
the packet drop probability and then randomizing packet drop based on the moving trend
of the delay. The parameters of the PIE algorithm are self-adjusting and can be based on the
current average queuing delay without the need to perform additional processing for each
packet, thus, incurring very little overhead and being easy to implement in the hardware
and software.

In the context of data center networks, ref. [13] proposed the delay control-based
congestion control algorithm DX, which uses control theory to effectively reduce the
queuing delay in the network while maintaining a high network throughput and ensuring
good stability of the system. Pan C et al. [14] reconfigure the packet drop policy model based
on the average queue-length change rate, effectively mitigating the delay jitter problem
generated by network traffic changes. Another AQM technique [15] uses a semi-Markov
decision process to estimate the probability of dropping an arriving packet before it enters
the buffer but requires manual setting of the target delay for various network types. Jakub
Szyguła et al. [16] proposed an adaptive mechanism, multiplicative increase/reduction
(MID), which minimizes the queuing delay by eliminating queues generated by AQM that
depend on fixed targets, thereby achieving lower latency and jitter. Sanjeev Patel et al.
proposed ALTDROP [17], a random-drop adaptive queue management algorithm based on
the average queue-size change rate, which can achieve better throughput in the presence of
network congestion.

Yuliang Li et al. 2019 proposed high precision congestion control (HPCC) [18], which
uses in-network telemetry (INT) to obtain accurate link load information and precisely
control traffic. By dealing with the problems of delayed INT information and overreaction to
INT information during congestion, HPCC can simultaneously achieve the three properties
of ultralow latency, high bandwidth, and stability. Szyguła et al. [19] used machine
learning to create a model that replicates the behavior of the AQM mechanism, proposed a
neural network-based AQM mechanism, and demonstrated its effectiveness. Refs. [20,21]
also proposed AQM algorithms based on neural networks. In the literature [22,23], a
mechanism based on neural network decision-making for selecting AQM parameters is
proposed, utilizing a reinforcement learning approach. The literature [24] presents an
improved AQM algorithm based on long short-term memory (LSTM) networks, leveraging
LSTM’s characteristics to predict and compensate for network delays, exhibiting good
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responsiveness in dynamic networks. In recent years, active queue management algorithms
based on fuzzy logic control [25,26] and optimization theory [27,28] have been proposed.

These AQM algorithms are designed for specific performance or specific scenarios
of the network, determine the network state according to a scheme, and then apply the
same drop policy to packets indiscriminately to relieve congestion, although they lack
fine-grained differentiation between data streams and are unable to meet the performance
requirements of both low latency and high fairness. Therefore, this paper proposes a
Sketch-based proportional integral queue-management method based on the PIE algorithm,
which first calculates the departure rate of packets in the queue buffer and the queue length,
calculates the packet drop probability p based on this, and then uses the Sketch structure to
judge the frequency count percentage of packets to identify large flows and makes targeted
modifications to the packet drop probability of large flows in order to quickly alleviate
network congestion based on a differentiated packet drop policy to ensure fairness among
data flows, maintain network availability and stability, and improve the quality of service
of the network.

3. System Model

This section details the algorithmic idea of the Sketch-based fine-grained proportional
integral queue-management algorithm S-PIE that is proposed in this paper. As shown
in Figure 1, S-PIE adds a Sketch-based traffic statistics module to PIE, uses the Sketch
measurement structure to assist in mapping the frequency of packets passing through
the queue, and evaluates the data flows that account for a larger proportion of the queue,
that is, large flows, based on the frequency of current packet occurrences. Then, the drop
policy of the original queue-management method PIE is adjusted to achieve a fine-grained
queue-management policy. The architecture of S-PIE is divided into a traffic statistics part
and a queue-management part, which are described in detail below.

Figure 1. S-PIE algorithm architecture.

3.1. Traffic Statistics

The flow statistics part of the S-PIE is mainly implemented using the measurement
structure Sketch [29]. Sketch is a lightweight data structure that maps packet information
arriving into a two-dimensional array by means of key-value pairs. A more accurate
evaluation of the message frequency is achieved with a small time–space overhead. Thus,
our goal is to introduce the measurement structure Sketch into the queue-management
algorithm, use the frequency counting function of the Sketch structure to identify large
flows, implement a discriminatory packet drop policy based on rapid network congestion
relief, ensure fairness among data flows, and maintain the availability of the network.
Typical Sketch has count-min Sketch (CM Sketch) [30], conservative update Sketch (CU
sketch) [31], count Sketch (C Sketch) [32], etc.

3.1.1. Sketch Structure

A Sketch consists of a two-dimensional array of counters and a set of hash functions
that map items to the array, as shown in Figure 2, where the width of the two-dimensional
array is w, the depth is d, and the d hash functions h1, h2, . . . , hd are independent of each
other [33]. An item is processed by mapping it to each row and incrementing the counters
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to which it was mapped. When a packet arrives, it is mapped and stored in the form of
(key, value), where the key field can be the attribute information in the packet header, such
as a five-tuple (source/destination IP, source/destination port, transport layer protocol),
the value field can be the number of occurrences of the flow or the size of the flow.

Figure 2. The data structure of Sketch.

3.1.2. Basic Operations

The execution process of the traffic statistics module used by Sketch as the S-PIE
algorithm is divided into three steps: item mapping, hash table update, and result query.

(1) Item mapping: when a packet arrives, it is mapped to store the count in the form of
(key, value). where key uniquely represents the data stream from which the packet
came, and value is used to count the packet frequency value of that stream in a
two-dimensional array.

(2) Hash table update: during the execution of the algorithm, the arrival of new packets
(key, value), d a separate hash function that does the same for key is calculated
separately and the count operation is updated for the counter in the corresponding
hash table. For example, the hash function h with index value i updates the counter, as
shown in Equation (1). When the data stream to be calculated is passed and updated,
statistics on the frequency of occurrence of the inserted data can be obtained.

count[i, hi(keyi)]+ = value i ∈ 1, 2, 3 . . . d (1)

(3) Result query: the Sketch query for packet occurrence frequency estimation. How-
ever, because collisions are predicted, the number was potentially incremented by
occurrences of other items that were mapped to the same position. Given a collection
of counters having the desired count plus noise, the best estimate of the true count of
the desired item is to choose the smallest count of Mincount of these counters [30], as
shown in Equation (2).

query(keyi) = Mincount[i, hi(keyi)] (2)

3.2. Queue Management

Based on the PIE algorithm, the queue management part of the S-PIE algorithm adds
a Sketch-based traffic statistics module, which is mainly divided into: adding Sketch’s
insertion operation and frequency counting function before leaving the queue, adding
Sketch’s query operation when judging packet drop before entering the queue, and ad-
justing packet drop conditions to realize a differentiated packet drop policy. The specific
process is as follows.

• Dequeue: after the packet is queued, the function Insert() of Sketch is called to cal-
culate the mapping position of the packet based on the hash function in the form
of (key, value). The bucket corresponding to the value is selected for updating, that
is, the value is added to the value of the packet, and Sketch’s total mapped packet
counter m_count is updated. After the packet is out of queue, the drop probability is
calculated and updated periodically according to the function CalculateP(), as shown
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in Equation (3), according to the working mode of PIE, where p_old is the packet drop
probability obtained in the previous calculation cycle. del_cur and del_old denote
the current queuing delay and the last estimate of the queuing delay, respectively,
and del_re f denotes the reference value of the delay. α and β are two adjustment
parameters. The parameter α determines how the deviation of the del_cur from the
del_re f affects the drop probability; the parameter β makes an additional adjustment
to the drop probability depending on whether the trend of the delay change is in-
creasing or decreasing. del_cur is calculated as in Equation (4), where q_len is the
current queue length and dq_rate_avg is the calculated average departure rate, as
in Equations (5) and (6), where dq_count indicates the number of packets left since
the last measurement, and ε is the average parameter. In addition, to prevent short,
non-persistent packet bursts that lead to empty queues and render the off-queue
rate measurement less accurate, the algorithm sets a threshold value that reduces the
off-queue rate dq_rate when the queue length exceeds the threshold value. The flow
of the S-PIE algorithm is shown in Algorithm 1.

p = p_old + α
(
del_old− del_re f

)
+ β

(
del_cur− del_old

)
(3)

del−cur =
q_len

dq−rate−aνg
(4)

dq−rate =
dq−count
dq−time

(5)

dq_rate_avg =
(
1− ε

)
∗ dq_rate_avg(old) + ε ∗ dq_rate (6)

• Enqueue: before the packets enter the queue, it first judges whether the queue is full,
and if it is full, the packets are dropped directly. If the queue is not full, the current
network state is judged according to the del_cur obtained when the packets are out of
the queue, and if del_cur < del_re f /3, the network is considered to be in a relatively
uncongested state, and the packets are dropped probabilistically according to the
calculated probability p. Otherwise, the network is considered to be in a relatively
congested state, and the function Query() of Sketch is called to obtain the frequency
of new packets appearing in the current phase m_res, as shown in Equation (7). The
percentage of data stream k corresponding to this packet appearing in the queue
at the same time was calculated, as shown in Equation (8), where m_count is the
total number of packets mapped in Sketch, i.e., the total number of packets passing
through the intermediate nodes of the network in the current time period. Then, the
threshold GThreshold is calculated using Equation (9) when the percentage of the stream
occupying the router cache space reaches the set threshold GThreshold, i.e., when the
packet percentage of a stream exceeds the weighted average queue percentage, the
stream is judged to be a large stream and the packet is dropped. Otherwise, the flow
corresponding to the packet is considered to be a small flow and is allowed to enter
the queue. The flow of the S-PIE algorithm is shown in Algorithm 2.

m_res = Query(key) (7)

Gk =
m_res

m_count
(8)

GThreshold =
∑n

i=1 m_res ∗ Gκ

∑n
i=1 m_res

(9)



Axioms 2023, 12, 814 7 of 15

Algorithm 1 DoDequeue for S-PIE

1: if q_len > q_threshold then
2: CalculateP() for time_update;
3: while T > Tthreshold do
4: ClearMemory;

Algorithm 2 DoEnqueue for S-PIE

1: for each arriving packet pkt do
2: if queue is full then
3: drop pkt;
4: else if del_cur < del_re f /3 then
5: drop pkt with p;
6: Enqueue(pkt) with 1-p;
7: Sketch ->Insert(pkt);
8: m_count++;
9: else

10: m_res = Sketch->Query(pkt);
11: Gk = m_res/m_count;
12: if Gk < Gthreshold then
13: drop pkt;
14: else
15: Enqueue(pkt);
16: Sketch -> Insert(pkt);
17: m_count++;

4. Experimental Evaluation

The experimental operating platform is the NS-3.27 network simulation platform and
uses Ubuntu16.04. NS-3.27 is an open computer network simulation environment based on
a discrete-event simulation that supports a wide range of network technologies, including
wired and wireless networks, protocol stacks, routing, traffic control, congestion control,
network topologies, etc., making it possible to simulate a variety of network scenarios and
applications [34].

4.1. Simulation Scenario Setup
4.1.1. Network Topology

The experiments in this study used the NS-3 simulation platform with a dumbbell
topology model, and the network topology is shown in Figure 3. S1 to Sn represent a
certain number of packet senders and R1 to Rn represent a certain number of packet
receivers. Routing nodes Router1 and Router2 form a bottleneck link. The sender sends
messages using an ON/OFF model. In the experiments, the TCP protocol congestion control
algorithm NewReno was deployed uniformly on the sender side, and the AQM algorithm
was implemented in the router Router1 queue. In the specific simulation experiments, this
paper mainly uses two simulation scenarios, Scenario 1 makes a clear distinction between
sending packets on the sender side, with half of the senders delivering a large amount
of data to simulate a “large flow” and half of the senders delivering a small amount of
data to simulate a “small flow”. Scenario 2 does not differentiate between senders but
sends random packets to simulate a general scenario. The detailed parameters are listed in
Table 1.
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Figure 3. The data structure of Sketch.

Table 1. Detailed parameters.

Parameters Value

LeafLink Bandwidth 100 Mbps
BottleneckLink 50 Mbps
LeafLink Delay 5 ms

BottleneckLink Delay 20 ms
Active Sender 100

Maxsize 50 p

Scenario 1: Set 100 nodes on the sender side, the packet rate of S1 to Sn (1 ≤ n ≤ 50) is
set to 1 Mbps, and the packet rate of S1 to Sn (51 ≤ n ≤ 100) is set to 50 Mbps. This scenario
is implemented to simulate a scenario where the data flows from S1 to Sn (1 ≤ n ≤ 50) are
“small flow” and the data flows from S1 to Sn (51 ≤ n ≤ 100) are “large flow”.

Scenario 2: Set 100 nodes on the sender side, and the packet rate of S1–Sn is set to
10 Mbps. This scenario implements a simulation of random data flow deployment.

4.1.2. Evaluation Metrics

• Average queue length: this is a crucial indicator to determine how well network
congestion is addressed. The degree of queue fullness and the likelihood of network
congestion increase with the average queue-length value. Network congestion is
significantly decreased if the AQM algorithm is used for early packet drops.

m = m_ptc ∗ (nTime− sTime) (10)

new_qAvg = qW ∗ nPkt + old_qAvg ∗ (1− qW)m (11)

where m_ptc represents the packet time constant, nTime represents the current time,
sTime represents the start time of the idle period, new_qAvg and old_qAvg represent
the average queue length, qW represents the queue weight of the current queue sample,
and nPkt represents the number of packets entering the queue within a period of time.

• RTT: RTT (round-trip time) indicates the time elapsed from the time a packet is sent
by the sender to the time an ACK of that packet is received, and the time measured by
RTT includes the transmission time, queuing time, and processing time. Transmission
delay refers to the time the packet is used on the link, excluding the waiting time
in the device buffer, whereas queuing delay refers to the waiting time of the packet
in the device buffer. Therefore, if in the same network, the difference in the RTT of
different packets is mainly determined by the queuing delay, which is related to the
queue length of the buffer. However, maximizing throughput and minimizing RTT
may be orthogonal. High throughput implies utilizing as much link bandwidth as
possible, which may increase the queue length and, thus, cause delays.

• Throughput: it is the maximum number of data packets received in a given period.
The better the link performance, the higher the throughput.

Throughput =
N
T

(12)
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where N denotes the number of packets received by all destination nodes over a
period of time, and T denotes the time period.

• Fairness index: Fairness between data streams implies that data streams passing
through the bottleneck link can share bandwidth resources equally. The fairness index
is used to reflect the fairness between the data streams in this case. The range of the
fairness index is [0, 1], as shown in Equation (13); the higher the fairness index, the
better the fairness [35].

FairnessIndex =
(∑ thi)

2

n ∑ th2
i

(13)

where thi represents the throughput of each flow.
• Packet drop: active and passive packet drops are two types of packet drops. Active

packet drop is the process of identifying and dropping packets before network conges-
tion occurs, using the AQM algorithm. The buffer overflows and must be dropped in
the case of passive packet drop. The more active packets that are dropped, the better
the performance in predicting network congestion.

4.2. Analysis of Simulation Results

(1) Average queue length and RTT
Maintaining a short average queue length helps to reduce the queuing time of
packets forwarded to the route waiting time, which can effectively alleviate the
“bufferbloat” problem.

Figure 4a,b show the average queue lengths of the four algorithms for Scenario 1 and
Scenario 2, respectively. From the figures, it can be seen that S-PIE is able to maintain a
shorter average queue length than the classical algorithms RED, CoDel, and PIE under
the same network environment. During the 20-s simulation period in Scenario 1, the
average queue lengths for RED, CoDel, PIE, and S-PIE were measured approximately at
15.08, 53.78, 51.52, and 9.94 packets, respectively. In contrast to the RED, CoDel, and PIE
algorithms, the S-PIE algorithm demonstrated significant reductions in average queue
length, achieving approximately 34.12%, 81.51%, and 62.23% reductions, respectively. In
Scenario 2, throughout the simulation duration, the average queue lengths for RED, CoDel,
PIE, and S-PIE were observed to be 14.01, 43.81, 27.97, and 10.66 packets, respectively.
In comparison to the RED, CoDel, and PIE algorithms, the S-PIE algorithm exhibited
substantial reductions in average queue length, achieving approximately 23.91%, 75.67%,
and 61.89% reductions, respectively. Moreover, the average queue length of PIE and CoDel
showed a surge when the simulation experiment was carried out for 2 s, during which a
large number of data streams came in on the link, and the processing of such burst data
streams by PIE and CoDel was flawed, resulting in a possible surge of the queue. The
average queue length of the RED and S-PIE algorithms always maintained a more stable
state. The core idea of the RED algorithm is to calculate the packet drop rate using the
average queue length, which is able to maintain a shorter average queue length than CoDel
and PIE. As the experiment proceeds, the S-PIE algorithm starts to gradually decrease and
is lower than the average captain of the RED algorithm, indicating that the differentiated
packet drop strategy used by the S-PIE algorithm can quickly relieve network congestion,
maintain a lower average queue length, and effectively reduce delay.

The average queue length represents the backlog level of the queue, which directly
affects the packet queuing waiting time in the buffer, that is, it directly affects queue delay.
Figure 5a,b show the RTT of the monitored packets in the two scenarios, respectively.
As can be seen from the figure, although S-PIE adds the Sketch-based traffic statistics
module and the specific operation adds the insertion operation of Sketch after the packet is
queued and the query operation of Sketch before queuing, S-PIE still shows a better RTT
performance. In Scenario 1, during the simulation of RED, CoDel, PIE, and S-PIE, the RTT
values achieved were 81.34, 85.97, 85.51, and 80.68 ms, respectively. It is noteworthy that
S-PIE demonstrated a reduction of 0.08%, 6.15%, and 5.65% in average RTT compared to
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RED, CoDel, and PIE, respectively. Moving on to Scenario 2, the average RTT values for
these four algorithms were measured at 81.84, 85.53, 87.05, and 80.95 ms. Impressively,
S-PIE exhibited a decrease of 1.09%, 5.36%, and 7.01% in average RTT compared to RED,
CoDel, and PIE, respectively. Moreover, in networks 0–2 s, when packets arrive in large
numbers, the packet RTTs of RED, CoDel, and PIE have large peaks and fluctuations,
whereas S-PIE is more stable.

(a) Scenario 1 (b) Scenario 2

Figure 4. Comparison of average queue length in different scenarios.

(a) Scenario 1 (b) Scenario 2

Figure 5. Comparison of RTT in different scenarios.

(2) Throughput
Throughput refers to the number of packets received at the receiving end per unit
time, and a higher throughput represents the actual transmission capability of the
link. In the throughput comparison experiment, we first considered Scenario 1, where
there is a significant difference in traffic distribution, and whether the link can allocate
reasonable resources for small traffic. Then, by comparing the performance of the
average queue length, we found that S-PIE can maintain a shorter average queue
length, so we want to test whether S-PIE will cause excessive throughput performance
drop in this case.
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Figure 6 shows a comparison of the four algorithms in Scenario 1 in terms of through-
put at different time periods. Scenario 1 makes a clear distinction between traffic, with
50 nodes simulating sending large flows and 50 nodes simulating sending small flows.
As can be seen from the figure, at the 5-s mark, the cumulative bandwidth allocation for
large and small flows stands approximately at 40.35, 41.78, 41.33, and 41.18 Mbps for the
RED, CoDel, PIE, and S-PIE algorithms, respectively. After the simulation time reaches 5 s,
the link utilization reached approximately 80%. Combined with the average queue-length
situation in Figure 4a, the network reaches a congested state, and the RED, CoDel, and PIE
algorithms have a clear difference in throughput between large and small traffic in this
scenario; that is, large flows take up more bandwidth. S-PIE gradually approached the
throughput of small flows to the throughput of large flows after 5 s, i.e., a more equitable
bandwidth utilization was achieved between large and small flows.

Figure 7 shows a comparison of the throughput of the four algorithms under Scenario 2
for different time periods. In the beginning 0–5 s, the link utilization was still low, and
the throughput grew and stabilized as the simulation time was normal, and the sender
continued to send packets. Figure 8 shows the average throughput comparison of the four
algorithms for multiple experiments. As can be seen from the figure, the S-PIE algorithm
maintains a throughput performance similar to the other three AQM algorithms under the
same network environment. Combined with the average queue-length implementation in
Figure 4b, it is shown that S-PIE can maintain a shorter average buffer queue length with
essentially no reduction in algorithm throughput; that is, it can achieve a lower queue delay.

Figure 6. Comparison of throughput by time period (Scenario 1).

Figure 7. Comparison of throughput by time period (Scenario 2).
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Figure 8. Comparison of throughput of multiple experiments (Scenario 2).

(3) Fairness
Fairness refers to the fairness of the different flows in a network. The AQM algorithm
should guarantee fairness between different flows to avoid some flows taking up too
many network resources and affecting other flows.

Figure 9a shows a comparison of the fairness of the four algorithms under Scenario 1.
As can be seen from the figure, the fairness of each algorithm gradually improves as the
network stabilizes. When there is a significant difference in the size of the data streams,
the original classical algorithms RED, CoDel, and PIE all show poor fairness performance.
Among these, PIE has the worst fairness in this scenario, and RED can achieve relatively
better fairness. The S-PIE algorithm can achieve a higher fairness. In Scenario 1, at the
5-s mark, which represents the period of maximal network instability and diminished
fairness across all algorithms, the fairness indices for RED, CoDel, PIE, and S-PIE are
recorded approximately as 0.67, 0.64, 0.52, and 0.86, respectively. Amidst this context of
comparatively reduced fairness indices, the S-PIE algorithm achieves enhancements of
approximately 28.90%, 33.74%, and 63.68% relative to the RED, CoDel, and PIE algorithms,
respectively. As illustrated in Figure 9a, within Scenario 1, the RED, CoDel, PIE, and
S-PIE algorithms demonstrate network stability by the 20-s mark, concurrently showcasing
optimized fairness indices of approximately 0.97, 0.94, 0.92, and 0.99, respectively. In
comparison to the RED, CoDel, and PIE algorithms, the fairness index of the S-PIE algorithm
was elevated by approximately 2.07%, 4.78%, and 7.17%, respectively. Combined with the
comparison of the throughput performance, it can be seen that under Scenario 1, large
flows occupy most of the bandwidth, and small flows are bandwidth-constrained. In the
case of congestion, the original active queue management algorithms RED, CoDel, and PIE
choose to adopt the same packet-drop policy for small and large flows, that is, small flows
are dropped with the same drop probability as large flows, so small flows are more affected,
making the bandwidth occupation less bandwidth consumption and lower throughput.
On the other hand, the S-PIE algorithm drops large flows punitively when the network
becomes congested, thus, effectively alleviating the bandwidth resource-sharing problem
on bottleneck links and ensuring fairness among data flows.

Figure 9b shows a comparison of the fairness of the algorithms under Scenario 2.
As can be seen from the figure, similar to Scenario 1, the fairness indices of all four algo-
rithms exhibit an increasing trend as the simulation time increases. However, compared to
Scenario 1, which clearly distinguishes between large and small flows, each algorithm in
Scenario 2 exhibits a higher fairness performance than in Scenario 1. Similarly, as depicted
in Figure 9b, under the conditions of Scenario 2, the average fairness indices for the entire
simulation period are measured approximately at 0.91, 0.89, 0.87, and 0.94 for the RED,
CoDel, PIE, and S-PIE algorithms, respectively. Relative to the RED, CoDel, and PIE algo-
rithms, the fairness of the S-PIE algorithm was elevated by approximately 2.51%, 5.16%,
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and 8.20%. By comparing the fairness indices of active queue-management algorithms
in different network congestion environments, it was demonstrated that the packet drop
strategy of S-PIE can effectively alleviate network congestion and ensure higher fairness
among data flows.

(a) Scenario 1 (b) Scenario 2

Figure 9. Comparison of the fairness index in different scenarios.

(4) Packet drop
Figure 10a,b show the passive and active packet drops for each of the four active
queuing algorithms, respectively. A proactive packet drop means that when the
number of packets in the network exceeds the processing capacity of the network
and, thus, causes network congestion, packets are dropped proactively to relieve
congestion. On the other hand, passive packet drop is a reactive strategy. When a
passive packet drop occurs, the buffer of the network node is full, and the network is in
a state of extreme congestion. Excessive passive packet drops can lead to unstable data
transmission and degradation of the network performance; therefore, it is important
to reduce passive packet drops.

(a) passive packet drop (b) active packet drop

Figure 10. Comparison of packet drops (Scenario 2).

From Figure 10a, it can be observed that S-PIE reduces the passive packet drop
significantly compared to PIE by approximately 83.41%. There is no passive packet drop
in RED because RED actively drops packets based on judging the average queue length
with respect to the threshold value, and packets are dropped when the average captain
exceeds the set maximum threshold value. Therefore, in this experimental scenario, RED’s
captain basically does not exceed the maximum number of packets allowed in the buffer
and, thus, does not generate passive packet loss. Figure 10b shows the active packet drop of
each algorithm, which illustrates that each AQM algorithm identifies the extent of network
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congestion leading to an autonomous packet drop. As can be seen from the figure, in the
presence of network congestion, combined with the previous comparison of throughput
and average queue-length performance, S-PIE can better predict congestion for active
packet drops and penalize packet drops for large flows to maintain fairness among data
flows and effectively mitigate congestion.

5. Conclusions

In this study, we propose a fine-grained proportional integral queue management
method, S-PIE, based on Sketch. S-PIE can count the frequency of the corresponding flow
of packets through the Sketch module and determine whether the flow is a large flow
according to the frequency statistics, so as to perform differential packet drop to ensure
fairness, and the memory cleaning module can prevent Sketch memory overflow. The
experimental results show that the S-PIE algorithm achieves a lower average queue length,
RTT, and higher fairness while maintaining a similar throughput performance compared
to the original algorithms RED, CoDel, and PIE. The S-PIE framework implements a
differential packet drop policy to ensure the fairness of data flows, maintain network
availability and stability, and improve network quality of service by maintaining shorter
queue lengths. In the future, we will continue to study the S-PIE algorithm in more complex
real network environments (rather than simulated experimental environments) to increase
its generality, and new developments related to Sketch can help us further improve the
performance of the S-PIE algorithm.
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