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Abstract: It is difficult to describe the hesitation and uncertainty of experts by single-valued informa-
tion, and the differences in the importance of attributes are often ignored during the decision-making
process. This paper introduces the probability and interval values into Fermatean hesitant fuzzy
set (FHFS) and creatively proposes the probabilistic interval-valued Fermatean hesitant fuzzy set
(PIVFHFS) to deal with information loss. This new fuzzy set allows decision makers to use interval-
valued information with probability to express their quantitative evaluation, which broadens the
range of information expression, effectively reflects the important degree of different membership
degrees, and can describe uncertain information more completely and accurately. Under the proba-
bilistic interval-valued Fermatean hesitant fuzzy environment, several new aggregation operators
based on Hamacher operation are proposed, including the probabilistic interval-valued Fermatean
hesitant fuzzy Hamacher weighted averaging (PIVFHFHWA) operator and geometric (PIVFHFHWG)
operator, and their basic properties and particular forms are studied. Then, considering the general
correlation between different attributes, this paper defines the probabilistic interval-valued Fer-
matean hesitant fuzzy Hamacher Choquet integral averaging (PIVFHFHCIA) operator and geometric
(PIVFHFHCIG) operator and discusses related properties. Finally, a multi-attribute decision-making
(MADM) method is presented and applied to the decision-making problem of reducing carbon
emissions of manufacturers in the supply chain. The stability and feasibility of this method are
demonstrated by sensitivity analysis and comparative analysis. The proposed new operators can
not only consider the correlation between various factors but also express the preference informa-
tion of decision makers more effectively by using probability, thus avoiding information loss in
decision-making progress to some extent.

Keywords: probabilistic interval-valued Fermatean hesitant fuzzy set; Fermatean fuzzy set; Hamacher
operation; Choquet integral; multi-attribute decision-making

MSC: 03B52; 03E72; 94D05

1. Introduction

In our daily life, there are many fuzzy concepts in human thinking. The characteristics
of the objects described by these fuzzy concepts need to be more precise, and the subordi-
nation relationship between objects and sets sometimes needs to be clarified. Examples
include terms like “Big”, “Warm”, and “Comfortable”. Consequently, the properties of
these objects cannot be described simply as “Yes” or “No”. With the rapid development of
society and economy, as well as the complexity and uncertainty of evaluation factors, it is
difficult for evaluators to give evaluation attitudes for all indicators accurately in reality.
Fuzzy sets (FSs) [1] theory can effectively deal with this change, allowing the member-
ship of an object to a set to be in the interval [0, 1] instead of always 0 or 1. Compared
with traditional mathematical models, FSs are more effective in solving decision problems
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with missing or inaccurate information. In some cases, however, it is difficult to describe
the evaluation information and experts’ opposition and hesitation only by the degree of
membership. Therefore, Atanassov [2] proposed the intuitionistic fuzzy set (IFS) as a gener-
alization of FSs. IFS can use the membership and non-membership functions to express the
support and opposition attitude of decision makers to the scheme, respectively, and their
complement to 1 is the so-called degree of hesitancy. Thus, IFS can more effectively capture
the vagueness of uncertain information and has been widely used in decision-making [3]
and expanded into numerous forms, such as intuitionistic fuzzy rough set [4], intuitionistic
hesitant fuzzy set [5], linguistic IFS [6], and so on. Then, considering the subjective pref-
erence and hesitant attitude of decision makers, Torra [7] introduced the idea of hesitant
fuzzy set (HFS), allowing the membership degree set to contain several possible values.
HFS can describe the hesitant preferences of evaluators more effectively, thus forming a
more reasonable and practical decision-making process. With the increasing ambiguity
of problems and information uncertainty, it is challenging for IFS to meet the expanding
complicated decision requirements. Then, Yager [8] developed Pythagorean fuzzy set
(PFS), which extends the condition of IFS to the sum of squares of the membership and
non-membership degrees less than or equal to 1. With the extensive application of PFS in
many fields, great achievements have been made in the aggregation operators, information
measures, and decision-making models of PFS.

In 2017, Yager [9] proposed the concept of q-rung orthopair fuzzy set (q-ROFS) based
on IFS and PFS, where the sum of qth powers of the membership and non-membership
degrees is required to be less than or equal to 1, that is, 0 ≤ µq + νq ≤ 1. Obviously, the
acceptable geometric area increases with the value of q, so q-ROFS can better indicate
(which better indicates) the preferences and ideas of decision makers. Compared with IFS
and PFS, q-ROFS is more flexible and general in handling uncertain information. Senapati
and Yager [10] then set q = 3 and investigated the Fermatean fuzzy set (FFS), where the
cubic sum of the membership and non-membership degrees of each element is less than
or equal to 1. FFS is a new generalization of q-ROFS through definition, requiring the
sum of the third power to be defined in [0, 1]. It is clear that FFS has larger decision
space, more unrestricted expression of evaluation information, and a more robust ability
to process information than IFS and PFS, making it increasingly popular across various
fields. Although q-ROFS can describe more generalized uncertainties than FFS, it is not
conducive to studying specific cases where q takes different values. FFS has attracted
much attention since its appearance because of its stronger ability to describe fuzziness.
Senapati and Yager [11] defined some basic operations on FFS and introduced four new
weighted aggregated operators under the Fermatean fuzzy environment. Aydemir and
Gunduz [12] defined several Fermatean fuzzy aggregation operators using the Dombi
operation. Liu et al. [13] proposed Fermatean fuzzy linguistic term sets (FFLTSs) and
developed some weighted aggregation operators and distance measures for FFLTSs. Hadi
et al. [14] proposed some Fermatean fuzzy Hamacher arithmetic and geometric aggregation
operators. Deng and Wang [15] investigated a novel Fermatean fuzzy entropy measure to
describe the fuzziness degree of FFS, which considered the uncertainty information and
uncertainty degree in FFS. Zeb et al. [16] described the application of new aggregation
operators in the Fermatean fuzzy soft sets (FFSSs) environment. Ganie [17] introduced some
novel distance measures for FFSs using t-conorms and developed new knowledge measures
of FFS with the help of the suggested distance measures. Kirisci [18] presented an extended
version of the ELimination Et Choix Traduisant la REalité (ELECTRE) I method under the
Fermatean fuzzy environment for solving multi-criteria group decision-making (MCGDM)
problems. To solve the problem of multiple membership degrees under Fermatean fuzzy
environment, Ruan et al. [19] introduced the concept of Fermatean hesitant fuzzy set (FHFS)
and proposed a prioritized Heronian mean operator for FHFSs. Mishra [20] defined several
distance measures of FHFSs and developed the remoteness index-based Fermatean hesitant
fuzzy-VIKOR MADM method. Wang et al. [21] proposed some hesitant Fermatean fuzzy
Bonferroni mean operators for multi-attribute decision-making problems. In conclusion,
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FFS has made some achievements in aggregation operators, information measures, decision
methods, and so on.

However, in cases where the evaluators need more expertise or the objective decision
condition is not ideal, decision makers cannot express their agreement or disagreement with
one or more specific numbers. It is more appropriate for decision makers to use interval
numbers instead of concrete values to describe evaluation information. Therefore, some
scholars began to combine fuzzy set theory with interval numbers to develop new fuzzy sets,
including interval-valued IFS (IVIFS), interval-valued PFS (IVPFS), and interval-valued HFS
(IVHFS). These new fuzzy sets can express the evaluation information better and deal with
the missing information more effectively. Atanassov and Gargov [22] introduced the idea
of IVIFS. Then, Atanassov [23] defined different operators of IVIFS and studied their basic
properties. Nayagam and Sivaraman [24] introduced a new method for ranking IVIFS. Chen
et al. [25] extended the HFS to an interval-valued environment, where the membership of an
element to a given set is represented by several possible interval values, and established the
interval-valued hesitant preference relation. Peng and Yang [26] defined several aggregation
operators under the interval-valued Pythagorean fuzzy environment. Zhang et al. [27]
investigated the interval-valued Pythagorean hesitant fuzzy set (IVPHFS), which can
preserve the interval-valued fuzzy information as much as possible, and proposed its score
function and accuracy function. Since interval-valued Fermatean fuzzy sets (IVFFSs) are
more flexible and reliable tools for dealing with uncertain and incomplete information,
scholars have extended interval numbers to the Fermatean fuzzy environment and achieved
some results in recent years. Jeevaraj [28] introduced the idea of IVFFSs as an extension of
IFS and developed various score functions in the class of IVFFSs. Akram [29] demonstrated
an interval-valued Fermatean fuzzy fractional transportation problem. Mishra et al. [30]
introduced interval-valued FHFSs (IVFHFSs) and discussed a decision analysis process
on IVFHFSs environment based on the COPRAS method. Qin et al. [31] proposed a novel
score function for IVFFSs and constructed a new multi-attribute decision-making (MADM)
method using the hybrid weighted score measure. Sergi et al. [32] proposed a new fuzzy
extension of the most-used capital budgeting techniques with IVFFSs information. Rani and
Mishra [33] developed the doctrine of IVFFSs and their fundamental operations. Demir [34]
developed four different types of correlation coefficients for FHFSs and extended them to
the correlation coefficients and weighted correlation coefficients for IVFHFSs.

Individual uncertainty and limited knowledge can negatively impact decision-making
processes and ultimately affect the rationality of results due to potential information loss.
When evaluation information is insufficient, IVHFS is limited in accurately describing
the probability of evaluating information, so some scholars introduced the probability
into different FSs. Zhang et al. [35] proposed the probabilistic hesitant fuzzy set (PHFS),
which can retain more information than HFS. Jiang and Ma [36] introduced some new
basic operations on probabilistic hesitant fuzzy elements (PHFEs) and developed proba-
bilistic hesitant fuzzy weighted arithmetic and geometric aggregation operators. Li and
Wang [37] defined the probabilistic hesitant fuzzy preference relation (PHFPR) based on
expected multiplicative consistency transitivity. Later, scholars continued to extend FSs
theory by combining probability and interval values. De et al. [38] developed an interac-
tive method for solving decision-making problems with incomplete weight information
using probabilistic interval-valued intuitionistic hesitant fuzzy set (PIVIHFS). Garg [39]
proposed some probabilistic aggregation operators with Pythagorean fuzzy information
and extended them to the IVPFS environment to develop corresponding operators. Ali
et al. [40] constructed a probabilistic interval-valued hesitant fuzzy set (PIVHFS)-Technique
for Order Preference by Similarity to an Ideal Solution (TOPSIS) model and improved some
preliminary aggregation operators based on PIVHFS.

As an important part of FSs theory, aggregation operator is regarded as a valuable
tool for solving fuzzy decision-making problems, and it has yielded fruitful results in
various fuzzy environments. Many existing operators are improved on the operation
of Archimedean t-norm and t-conorm, such as Bonferroni mean (BM) operator [41], Ein-
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stein aggregation operators [42], ordered weighted averaging (OWA) operator [43], and
Hamacher operators [44]. Among them, Hamacher operator, as a generalization of alge-
braic and Einstein t-norms and t-conorms, has been widely used in various FSs. Since it can
choose different parameters according to the personal preferences of evaluators to deal with
decision problems, it is more universal and practical in real life. Many scholars have studied
the applications of Hamacher operator in different interval-valued fuzzy environments. Li
and Peng [44] proposed some new Hamacher operations for IVHFS. Liu [45] developed
several weighted averaging Hamacher operators for IVIFS. Xiao [46] defined an induced
interval-valued intuitionistic fuzzy Hamacher ordered weighted geometric (I-IVIFHOWG)
operator and applied it to evaluate the security of a wireless sensor network. Senapati
and Chen [47] formulated several aggregation operators based on Hamacher triangular
norms of IVPFS. Shahzadi [48] introduced several Hamacher initiative weighted averaging
aggregation operators for IVFFSs.

With the development of research, scholars found a general correlation between dif-
ferent attributes. Attributes are often not independent of each other but complement or
duplicate. Murofushi and Sugeno [49] introduced the fuzzy measure to simulate the inter-
action between different decision-making criteria. The Choquet integral operator proposed
by Choquet [50] fully considered the importance and interaction between attributes and
provided an effective solution to this issue. Since its appearance, the Choquet integral oper-
ator has been extended to different fuzzy environments. Zhang and Yu [51] defined some
geometric Choquet aggregation operators using Einstein operations under the intuitionistic
fuzzy environment. Khan et al. [52] proposed several Choquet integral averaging and
geometric operators with Pythagorean hesitant fuzzy information. Qu et al. [53] developed
some Choquet ordered operators for interval-valued dual hesitant fuzzy sets (IVDHFSs).
Khan et al. [54] investigated an interval-valued Pythagorean fuzzy Choquet integral geo-
metric (IVPFCIG) operator based on fuzzy measures for solving MCGDM problems. Luo
and Liu [55] used the Hamacher operation and Choquet interval to develop the probabilistic
interval-valued hesitant Pythagorean fuzzy Hamacher Choquet integral geometric (PIVH-
PFHCIG) operator. Shao et al. [56] proposed the probabilistic neutrosophic hesitant fuzzy
Choquet averaging and geometric operators to select the third-party logistics providers.

Due to the limitation of their knowledge and experience, it is difficult for experts to
evaluate complex decision-making problems accurately, and they often use fuzzy numbers
to express their preferences. To make evaluating information more comprehensive and
effective, scholars continued expanding their research on FSs and proposed IFS, HFS, PFS,
FFS, FHFS, and so on. Significantly, FHFS broadens the restriction of membership and
non-membership degrees and effectively considers the hesitant state of experts in decision-
making. However, when evaluators need more expertise or objective decision conditions
are not ideal, decision makers cannot express their agreement or disagreement with single
values. Interval-valued information is more conducive to reflecting the uncertain appli-
cation of information, and its fusion with FSs further enhances the ability to deal with
uncertain information. Compared with traditional single-valued fuzzy sets mentioned
above, interval-valued fuzzy sets can preserve more evaluation information and avoid
information loss. To solve the problem of multiple membership degrees with different
importance degrees in practice, scholars introduced probabilistic information into various
fuzzy environments and proposed many new FSs, such as PIFS, PIVIFS, and PIVHFS.

Although the research of FFS has made some achievements, the research content
mainly focuses on the information aggregation method, and it is necessary to explore new
extension forms. From the existing research, few scholars have researched information
aggregation under the probabilistic interval-valued Fermatean hesitant fuzzy environ-
ment. Compared with traditional single-valued fuzzy sets, probabilistic interval-valued
Fermatean hesitant fuzzy sets (PIVFHFSs) proposed in this paper can broadly express infor-
mation and retain more evaluation information. Compared with ordinary interval-valued
fuzzy sets, PIFHFSs add the corresponding probability information to each membership
degree and overcome the shortcoming that different membership degree has different
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importance. Thus, they can reflect the difference in evaluation information more accurately.
Therefore, it is necessary to explore the PIVFHFSs and relevant information aggregation
methods, which can further enrich the theoretical research of FFS.

As an indispensable part of decision-making, information aggregation has received
attention from numerous scholars. Despite the extensive study of information aggregation
and the proposal of several effective aggregation methods, information loss and incomplete
information remain unavoidable in the decision-making process. Additionally, aggrega-
tion operators are widely used in many fuzzy environments as fundamental elements
of information aggregation. However, many aggregation operators and their extended
forms assume that attributes are independent and fail to analyze the interaction between
attributes. At present, some achievements have been made in the study of aggregation
operators of FFS. Still, most of them are based on algebraic sums and products, leading to
rational constraints on decision makers. Although many scholars have devised multiple
information aggregation approaches for FFSs, the combination of probability and interval
has not been employed to describe uncertain information and handle fuzzy issues under a
Fermatean hesitant fuzzy setting. Therefore, the contributions of this paper are given as:

(1) This paper adds corresponding probability information for each membership degree
and innovatively proposes the concept of PIVFHFSs.

(2) This paper defines two new operators for PIVFHFSs combined with the Hamacher op-
eration, including the probabilistic interval-valued Fermatean hesitant fuzzy Hamacher
weighted averaging (PIVFHFHWA) operator and geometric (PIVFHFHWG) operator.

(3) Considering the correlation between different attributes, this paper further proposes
the probabilistic interval-valued Fermatean hesitant fuzzy Hamacher Choquet integral
averaging (PIVFHFHCIA) operator and geometric (PIVFHFHCIG) operator based on
Choquet integral.

(4) Based on the PIVFHFHCIG operator, a MADM model is constructed to solve the
carbon emission reduction decision-making problem of manufacturers in the sup-
ply chain.

The paper is organized as follows. Section 2 provides a brief review of basic concepts
and theories. PIVFHFSs and related Hamacher operations are defined in Section 3. In
Section 4, two Hamacher weighted aggregation operators of PIVFHFSs are developed.
Combining with Choquet integral, the PIVFHFHCIG operator is developed in Section 5.
Then, Section 6 presents a MADM method utilizing the PIVFHFHCIG operator and applies
it to carbon emission reduction of manufacturers. Section 7 concludes the paper with
some remarks.

2. Preliminaries
2.1. Fermatean Fuzzy Sets

This section provides a concise overview of FFS, FHFS, IVFFS, IVFHFS, as well as
theories surrounding Hamacher operation and Choquet integral.

Definition 1 [10]. Let X be a non-empty set. A Fermatean fuzzy set (FFS) on X is an object of the
following structure:

F = {〈x, µF(x), νF(x)〉 : x ∈ X} (1)

where µF(x) : x → [0, 1] and νF(x) : x → [0, 1] are the membership degree and non-membership
degree of x in F with 0 < (µF(x))3 + (νF(x))3 ≤ 1. For each element x to F, πF(x) =
3
√

1− (µF(x))3 − (νF(x))3 is the degree of indeterminacy.

Definition 2 [19]. Let X be a non-empty set, then a Fermatean hesitant fuzzy set (FHFS) H defined
on X is given as:

H = {〈x, µH(xi), νH(xi)〉 : x ∈ X} (2)
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where µH(xi)→ [0, 1] and νH(xi)→ [0, 1] satisfy the condition 0 < (µH(xi))
3 + (νH(xi))

3 ≤ 1,
representing the possible membership and non-membership degrees of an element xi to H, respectively.

Definition 3 [28]. Let Q[0, 1] be the set of all closed sub-intervals of the interval [0, 1]. An
interval-valued Fermatean fuzzy set (IVFFS) is defined as follows:

P̃ =
{〈

x, µP̃(x), νP̃(x)
〉

: x ∈ X
}

(3)

where µP̃(x)→ Q[0, 1] and νP̃(x)→ Q[0, 1] denote, respectively, the interval-valued membership
degree and interval-valued non-membership degree of x with the condition 0 < supx(µP̃(x))3 +

supx(νP̃(x))3 ≤ 1.
∀x ∈ X, µP̃(x), and νP̃(x) are closed intervals, and their lower and upper bounds are,

respectively, represented as µL
P̃
(x), µU

P̃
(x) and νL

P̃
(x), νU

P̃
(x). Thus, P̃ is an object of another form

as follows:
P̃ =

{〈
x, [µL

P̃(x), µU
P̃
(x)], [νL

P̃(x), νU
P̃
(x)]

〉
: x ∈ X

}
(4)

For each element x ∈ X, the hesitancy degree of πP̃(x) on P̃ is πP̃(x) = [πL
P̃
(x), πU

P̃
(x)] =

[ 3
√

1− (µL
P̃
(x))3 − (νL

P̃
(x))3, 3

√
1− (µU

P̃
(x))3 − (νU

P̃
(x))3

]. For convenience, this paper denotes

an interval-valued Fermatean fuzzy number (IVFFN) as P̃ = ([µL
P̃
(x), µU

P̃
(x)], [νL

P̃
(x), νU

P̃
(x)])

with 0 <
(

µL
P̃
(x)
)3

+
(

νL
P̃
(x)
)3
≤ 1 and 0 <

(
µU

P̃
(x)
)3

+
(

νU
P̃
(x)
)3
≤ 1.

Definition 4 [34]. Let Q[0, 1] be the set of all closed sub-intervals of the interval [0, 1]. Then, an
interval-valued Fermatean hesitant fuzzy set (IVFHFS)

..
E is defined by

..
E =

{〈
x, h ..

E
(X)

〉
: x ∈ X

}
(5)

where h ..
E
(x) =

{〈
x, µ ..

E
(x), ν ..

E
(x)
〉

: x ∈ X
}

is an interval-valued Fermatean hesitant fuzzy
number (IVFHFN) denoting some possible interval membership and non- membership values of an
element X to

..
E.

For each element x ∈ X, µ ..
E
(x)→ Q[0, 1] and ν ..

E
(x)→ [0, 1] represent the possible mem-

bership intervals non-membership intervals of
..
E, respectively, and their lower and upper bounds

are denoted as µL..
E
(x), µU..

E
(x) and νL..

E
(x), νU..

E
(x) with 0 <

(
µL..

E
(x)
)3

+
(

νL..
E
(x)
)3
≤ 1 and

0 <
(

µU..
E
(x)
)3

+
(

νU..
E
(x)
)3
≤ 1.

2.2. Hamacher t-Norm and t-Conorm

Hamacher operator is a wider range of t-norm and t-conorm, which can make the
operation more flexible through its own parameter.

Definition 5 [54]. Hamacher t-norm (⊗) and t-conorm (⊕) have the following definitions:

T(x, y) = x⊗ y =
xy

δ + (1− δ)(x + y− xy)
(6)

T(x, y) = x⊕ y =
x + y− xy− (1− δ)xy

1− (1− δ)xy
(7)

where δ > 0. Especially, when δ = 1, the Hamacher t-norm and t-conorm are simplified to algebraic
t-norm and t-conorm, respectively. That is,

T(x, y) = x⊗ y = xy (8)
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T(x, y) = x⊕ y = x + y− xy (9)

When δ = 2, the Hamacher t-norm and t-conorm are simplified to Einstein t-norm and
t-conorm, respectively.

T(x, y) = x⊗ y =
xy

1 + (1− x)(1− y)
(10)

T(x, y) = x⊕ y =
x + y

1 + xy
(11)

2.3. Choquet Integral and Fuzzy Measure

Fuzzy measure can represent not only the weight of attribute and attribute set, but
also the relation between different attributes in solving MADM problems.

Definition 6 [49]. Let X be a finite set, then fuzzy measure of X is a function κ : P(X)→ [0, 1] ,
which satisfies the conditions as follows:

(1) κ(X) = 1, κ() = 0;
(2) ∀α, β ⊆ P(X), if α ⊆ β, then κ(α) ≤ κ(β), where P(X) is a power set of X;
(3) κ(α ∩ β) = κ(α) + κ(β) + γκ(α)κ(β) for all α, β ∈ X and α ∩ β = , where γ denotes the

interaction of indicators with γ > −1.

Let Λ be a finite set with
n
∪

i=1
Λi = α, then the fuzzy measure of κ under γ is defined as:

κ(Λ) =


1
γ

(
1

∏
i=1

(1 + γκ(Λi))− 1
)

, γ 6= 0
n
∑

i=1
κ(Λi), γ = 0

(12)

where Λi ∩ Λj = (i 6= j) for the sub-set with only one element Λi. κ(Λi) is called the fuzzy
measure and κi = κ(Λi). When κ(Λ) = 1, then

γ =
n

∏
i=1

(1 + γκ(Λi))− 1 (13)

Definition 7 [50]. Let κ be a fuzzy measure and f be a non-negative real number function defined
on a finite set X, then the discrete Choquet integral for f with respect to κ is given as:

Λκ

(
f (Λ(1)), f (Λ(2)), . . . , f (Λ(n))

)
= ∑n

i=1 f (Λ(i))
[
κ(ρ(i))− κ(ρ(i+1))

]
(14)

where (i) is a permutation of f (Λ(i)), which satisfies the condition f (Λ(1)) ≤ f (Λ(2)) ≤ . . . ≤
f (Λ(n)), ρ(i) =

{
Λ(i), Λ(i+1), . . . , Λ(n)

}
, and ρ(n+1) = 0.

3. Probabilistic Interval-Valued Fermatean Hesitant Fuzzy Set

This section creatively develops the concept of PIVFHFSs and introduces the scoring
function and accuracy function and related comparison rules of PIVFHFSs. In addition, this
section presents some Hamacher operations of PIVFHFSs, providing a significant theoretical
basis for the following aggregation operators based on Hamacher t-norm and t-conorm.
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3.1. The Probabilistic Interval-Valued Fermatean Hesitant Fuzzy Set

Definition 8. Let X be a finite set. Then, the probabilistic interval-valued Fermatean hesitant fuzzy
set (PIVFHFS) on X is given as:

A =
{(

x,
[(

[µL
A(x), µU

A(x)], [νL
A(x), νU

A (x)]
)

, p
])

: x ∈ X
}

(15)

where PIVFHFS comprises a group of probabilistic interval-valued Fermatean hesitant fuzzy elements
(PIVFHFEs) represented by [([µL

A(x), µU
A(x)], [νL

A(x), νU
A (x)]), p]. Every PIVFHFE is a set of pairs

composed by a collection of IVFFNs and the probability p, in which the probability is used to indicate
the possible degree of its corresponding PIVFHFS. When [([µL

A(x), µU
A(x)], [νL

A(x), νU
A (x)]), p] is an

infinite PIVFHFE, its probabilities should be a continuous probability distribution with 0 ≤ p(x) ≤ 1
and

∫
p⊆PIVFHFE

p(x)dx = 1. When [([µL
A(x), µU

A(x)], [νL
A(x), νU

A (x)]), p] is a finite set, it is

represented as [([µL
Ail

(x), µU
Ail

(x)], [νL
Ail

(x), νU
Ail

(x)]), pil ], where i = 1, 2, . . . , L(PIVFHFE),
L(PIVFHFE) is a positive integer that describes the quantity of elements contained in PIVFHFE,

0 ≤ pil ≤ 1 and
L(PIVFHFE)

∑
i=1

pil = 1. The indeterminacy degree of interval [πL
Ail

(x), πU
Ail

(x)] is

πL
Ail

(x) = 3

√
1−

(
µL

Ail
(x)
)3
−
(

νL
Ail

(x)
)3

and πU
Ail

(x) = 3

√
1−

(
µU

Ail
(x)
)3
−
(

νU
Ail

(x)
)3

.

Example 1. If a city aims to select a location for constructing a waste incinerator to achieve
the goal of becoming a waste-free city, it must conduct thorough field visits to various re-
gions. Following these visits, the government has preliminarily chosen Region Z and plans
to conduct further evaluations of the relevant supporting facilities in the area. Let 10 points
be full marks; here, we consider the government is 70% sure about related supporting facili-
ties, which could be from 7 to 8.5 but not less than 5 to 6. Therefore, after data normalization,
the opinion can be represented as ([0.7, 0.85], [0.5, 0.6], 0.7). Here [µL

A(x), µU
A(x)] = [0.7, 0.85]

and [νL
A(x), νU

A (x)] = [0.5, 0.6] where [πL
A(x), πU

A(x)] = [0.554, 0.810] and the probability of
surety of the supporting facilities is pA = 0.7.

Let L1(PIVFHFE) and L2(PIVFHFE) be the amounts of elements in PIVFHFE1 and
PIVFHFE2, respectively. For convenience, let L1(PIVFHFE) = L2(PIVFHFE). To compare
the sizes of different PIVFHFEs, the following scoring function and accuracy function
are defined.

Definition 9. Let X be a finite set and Mi =
[([

µL
Mil

(x), µU
Mil

(x),
]
,
[
νL

Mil
(x), νU

Mil
(x)
])

, pil

]
be

a collection of PIVFHFEs, where i = 1, 2, . . . , n, l = 1, 2, . . . , L(PIVFHFE). The scoring function
S(Mi) and accuracy function E(Mi) can be computed as:

S(Mi) = ∑L(PIVFHFE)
l=1 pil ×

((
µL

Mil
(x)
)3
−
(

νU
Mil

(x)
)3
)
+

((
µU

Mil
(x)
)3
−
(

νL
Mil

(x)
)3
)

2
(16)

E(Mi) = ∑L(PIVFHFE)
l=1 pil ×

2−
(

πL
Mil

(x)
)3
−
(

πU
Mil

(x)
)3

2
(17)

Definition 10. Let X be a finite set. For any two PIVFHFEs M1 =
[([

µL
M1l

(x), µU
M1l

(x),
]
,[

νL
M1l

(x), νU
M1l

(x)
])

, p1l

]
and M2 =

[([
µL

M2k
(x), µU

M2k
(x),

]
,
[
νL

M2k
(x), νU

M2k
(x)
])

, p2k

]
on X,

where i = 1, 2, . . . , n, l = 1, 2, . . . , L(PIVFHFE1), k = 1, 2, . . . , L(PIVFHFE2), then rules for
comparison between them are as follows:

(1) If S(M1) > S(M2), then M1 � M2;
(2) If S(M1) < S(M2), then M1 ≺ M2;
(3) If S(M1) = S(M2), then
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(i) If E(M1) > E(M2), then M1 � M2;
(ii) If E(M1) = E(M2), then M1 ∼ M2;
(iii) If E(M1) < E(M2), then M1 ≺ M2.

3.2. Hamacher Operations on PIVFHFEs

This section establishes several basic Hamacher operations of PIVFHFEs.

Definition 11. Let M1 =
[([

µL
M1l

(x), µU
M1l

(x),
]
,
[
νL

M1l
(x), νU

M1l
(x)
])

, p1l

]
and M2 =[([

µL
M2k

(x), µU
M2k

(x),
]
,
[
νL

M2k
(x), νU

M2k
(x)
])

, p2k

]
be two PIVFHFEs on a finite set X, where

l = 1, 2, . . . , L(PIVFHFE1), k = 1, 2, . . . , L(PIVFHFE2), δ ∈ (0,+∞) and λ > 0. Then, some
Hamacher operations between different PIVFHFEs are defined as follows:

M1 ⊗M2 = <


µL
M1l

µL
M2k

3
√

δ + (1− δ)
(
(µL

M1l
)

3
+ (µL

M2k
)

3 − (µL
M1l

)
3
)(µL

M2k
)

3
) ,

µU
M1l

µU
M2k

3
√

δ + (1− δ)
(
(µU

M1l
)

3
+ (µU

M2k
)

3 − (µU
M1l

)
3
)(µU

M2k
)

3
)


,


3

√√√√√ (νL
M1l

)
3
+ (νL

M2k
)

3 − (νL
M1l

)
3
(νL

M2k
)

3 − (1− δ)(νL
M1l

)
3
(νL

M2k
)

3

δ + (1− δ)
(

1− (νL
M1l

)
3
(νL

M2k
)

3
) ,

3

√√√√√ (νU
M1l

)
3
+ (νU

M2k
)

3 − (νU
M1l

)
3
(νU

M2k
)

3 − (1− δ)(νU
M1l

)
3
(νU

M2k
)

3

δ + (1− δ)
(

1− (νU
M1l

)
3
(νU

M2k
)

3
)


,
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 (26) 

where 1 2( , ,..., )ω ω ω ω= T
n  is the weighting vector with 0 1ω≤ ≤i  and 

1
1ω

=

=
n

i
i

, 

and 
( )

1 1 1 1
l l l

L PIVFHFEn n n

i i i
i i l i
p p p

= = = =

=   


. 

The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 

5. Hamacher Choquet Integral Aggregation Operators of PIVFHFSs 
In reality, the attributes involved in the decision-making process are not always in-

dependent of each other and often have certain correlations. Therefore, considering the 

p1l + p2k>
M1 ⊕M2 = <


3

√√√√√ (µL
M1l

)
3
+ (µL

M2k
)

3 − (µL
M1l

)
3
(µL

M2k
)

3 − (1− δ)(µL
M1l

)
3
(µL

M2k
)

3

δ + (1− δ)
(

1− (µL
M1l

)
3
(µL

M2k
)

3
) ,

3

√√√√√ (µU
M1l

)
3
+ (µU

M2k
)

3 − (µU
M1l

)
3
(µU

M2k
)

3 − (1− δ)(µU
M1l

)
3
(µU

M2k
)

3

δ + (1− δ)
(

1− (µU
M1l

)
3
(µU

M2k
)

3
)


,



νL
M1l

νL
M2k

3
√

δ + (1− δ)
(
(νL

M1l
)

3
+ (νL

M2k
)

3 − (νL
M1l

)
3
(νL

M2k
)

3
) ,

νU
M1l

νU
M2k

3
√

δ + (1− δ)
(
(νU

M1l
)

3
+ (νU

M2k
)

3 − (νU
M1l

)
3
(νU

M2k
)

3
)


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where 1 2( , ,..., )ω ω ω ω= T
n  is the weighting vector with 0 1ω≤ ≤i  and 
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rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
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where 1 2( , ,..., )ω ω ω ω= T
n  is the weighting vector with 0 1ω≤ ≤i  and 

1
1ω

=

=
n

i
i

, 

and 
( )

1 1 1 1
l l l

L PIVFHFEn n n

i i i
i i l i
p p p

= = = =

=   


. 

The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 

5. Hamacher Choquet Integral Aggregation Operators of PIVFHFSs 
In reality, the attributes involved in the decision-making process are not always in-

dependent of each other and often have certain correlations. Therefore, considering the 

p1l + p2k = (p1l + p2k )/(∑
L(PIVFHFE1)
l=1 p1l + ∑

L(PIVFHFE2)
k=1 p2k ), l = 1, 2, . . . ,

L(PIVFHFE1), k = 1, 2, . . . , L(PIVFHFE2).
Obviously, when δ = 1, the probabilistic interval-valued Fermatean hesitant fuzzy Hamacher

operation is reduced to an algebraic operation of PIVFHFSs. When δ = 2, the probabilistic interval-
valued Fermatean hesitant fuzzy Hamacher operation degenerates into an Einstein operation.

Theorem 1. Let M, M1, and M2 be three PIVFHFEs, then

(1) M1 ⊗M2 = M2 ⊗M1;
(2) M1 ⊕M2 = M2 ⊕M1;
(3) λ(M1 ⊕M2) = λM1 ⊕ λM2, λ > 0;
(4) (M1 ⊗M2)

λ = M2
λ ⊗M1

λ, λ > 0;
(5) (λ1 + λ2)M = λ1M⊕ λ2M, ∀λ1, λ2 > 0;
(6) Mλ1 ⊗Mλ2 = Mλ1+λ2 , ∀λ1, λ2 > 0.

It is easy to prove that the proposed PIVFHFS operation meets the requirements of Theorem 1.
The operating rules provided by Theorem 1 hold significance in presenting aggregation operators
detailed in subsequent sections, and they constitute a crucial foundation for this paper.
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4. Probabilistic Interval-Valued Fermatean Hesitant Fuzzy Hamacher
Aggregation Operators

Many operators are formulated based on the operations of Archimedes t-norm and
t-conorm. The Hamacher operator, which is a special form of this, is introduced in this
section. Two Hamacher weighted aggregation operators of PIVFHFSs are defined: the
probabilistic interval-valued Fermatean hesitant fuzzy Hamacher weighted averaging
(PIVFHFHWA) operator and geometric (PIVFHFHWG) operator. Their basic properties
and special forms are discussed as well.

Definition 12. Let Mi =
[([

µL
Mil

(x), µU
Mil

(x),
]
,
[
νL

Mil
(x), νU

Mil
(x)
])

, pil

]
be a set of PIVFH-

FES, i = 1, 2, . . . n, l = 1, 2, . . . , L(PIVFHFE). A probabilistic interval-valued Fermatean hesi-
tant fuzzy Hamacher weighted averaging (PIVFHFHWA) operator is a function PIVFHFHWA :
PIVFHFEn → PIVFHFE such that

PIVFHFHWA(M1, M2, . . . , Mn) =
n
⊕

i=1
(ωi Mi) (18)

where ω = (ω1, ω2, . . . , ωn)
T is the weighting vector of Mi(i = 1, 2, . . . , n) with 0 ≤ ωi ≤ 1 and

n
∑

i=1
ωi = 1.

Theorem 2. Let Mi =
[([

µL
Mil

(x), µU
Mil

(x),
]
,
[
νL

Mil
(x), νU

Mil
(x)
])

, pil

]
be a collection of PIVFH-

FES, i = 1, 2, . . . n, l = 1, 2, . . . , L(PIVFHFE). The aggregated result utilizing the PIVFHFHWA
operator is still a PIVFHFE, and

PIVFHFHWA(M1, M2, . . . , Mn) =

<


3

√√√√√ n
∏

i=1

(
1+(δ−1)(µL

Mil
)

3
)ωi−

n
∏

i=1
(1−(µL

Mil
)

3
)

ωi

n
∏

i=1

(
1+(δ−1)(µL

Mil
)

3
)ωi

+(δ−1)
n
∏

i=1
(1−(µL

Mil
)

3
)

ωi
,

3

√√√√√ n
∏

i=1

(
1+(δ−1)(µU

Mil
)

3
)ωi−

n
∏

i=1
(1−(µU

Mil
)

3
)

ωi

n
∏

i=1

(
1+(δ−1)(µU

Mil
)

3
)ωi

+(δ−1)
n
∏

i=1
(1−(µU

Mil
)

3
)

ωi


,



3√δ
n
∏

i=1
(νL

Mil
)

ωi

3

√
n
∏

i=1

(
1+(δ−1)(1−(νL

Mil
)

3
)
)ωi

+(δ−1)
n
∏

i=1
(νL

Mil
)

3ωi
,

3√δ
n
∏

i=1
(νU

Mil
)

ωi

3

√
n
∏

i=1

(
1+(δ−1)(1−(νU

Mil
)

3
)
)ωi

+(δ−1)
n
∏

i=1
(νU

Mil
)

3ωi


,
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where 1 2( , ,..., )ω ω ω ω= T
n  is the weighting vector with 0 1ω≤ ≤i  and 

1
1ω

=

=
n

i
i

, 

and 
( )

1 1 1 1
l l l

L PIVFHFEn n n

i i i
i i l i
p p p

= = = =

=   


. 

The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 

5. Hamacher Choquet Integral Aggregation Operators of PIVFHFSs 
In reality, the attributes involved in the decision-making process are not always in-

dependent of each other and often have certain correlations. Therefore, considering the 

n
∑

i=1
pil > (19)

where ω = (ω1, ω2, . . . , ωn)
T is the weighting vector of Mi with 0 ≤ ωi ≤ 1 and

n
∑

i=1
ωi = 1, and
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where 1 2( , ,..., )ω ω ω ω= T
n  is the weighting vector with 0 1ω≤ ≤i  and 

1
1ω

=

=
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i
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, 
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. 

The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 

5. Hamacher Choquet Integral Aggregation Operators of PIVFHFSs 
In reality, the attributes involved in the decision-making process are not always in-

dependent of each other and often have certain correlations. Therefore, considering the 

n
∑

i=1
pil =

n
∑

i=1
pil /

L(PIVFHFE)
∑

l=1

n
∑

i=1
pil .

Proof of Theorem 2.

When n = 2,
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PIVFHFHWA(M1, M2) =

<

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√√√√ (
1+(δ−1)(µL
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The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 

5. Hamacher Choquet Integral Aggregation Operators of PIVFHFSs 
In reality, the attributes involved in the decision-making process are not always in-

dependent of each other and often have certain correlations. Therefore, considering the 
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The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 
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The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 
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where 1 2( , ,..., )ω ω ω ω= T
n  is the weighting vector with 0 1ω≤ ≤i  and 

1
1ω

=

=
n

i
i

, 

and 
( )

1 1 1 1
l l l

L PIVFHFEn n n

i i i
i i l i
p p p

= = = =

=   


. 

The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 

5. Hamacher Choquet Integral Aggregation Operators of PIVFHFSs 
In reality, the attributes involved in the decision-making process are not always in-

dependent of each other and often have certain correlations. Therefore, considering the 

s+1
∑

i=1
pil >
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So, when n = s + 1, Equation (19) is true. �

Example 2. Let M1 =
〈
([0.7, 0.9], [0.4, 0.5], 0.6), ([0.5, 0.5], [0.3, 0.7], 0.4)

〉
and M1 =〈

([0.3, 0.4], [0.2, 0.5], 0.5), ([0.6, 0.8], [0.5, 0.7], 0.5)
〉

be two PIVFHFEs and ω = (0.7, 0.3)T

be the weighting vector of Mi(i = 1, 2). Assume that δ = 1.5 , then calculate PIVFHFHWA
(M1, M2) by Equation (19).

M1 = <


3

√ (
(1+(1.5−1)×0.73)

0.7
)
×
(
(1+(1.5−1)×0.33)

0.3
)
−
(
(1−0.73)

0.7
)
×
(
(1−0.33)

0.3
)

(
(1+(1.5−1)×0.73)

0.7
)
×
(
(1+(1.5−1)×0.33)

0.3
)
+(1.5−1)(1−0.73)

0.7
(1−0.33)

0.3 ,

3

√ (
(1+(1.5−1)×0.93)

0.7
)
×
(
(1+(1.5−1)×0.23)

0.3
)
−
(
(1−0.93)

0.7
)
×
(
(1−0.23)

0.3
)

(
(1+(1.5−1)×0.93)

0.7
)
×
(
(1+(1.5−1)×0.23)

0.3
)
+(1.5−1)(1−0.93)

0.7
(1−0.23)

0.3

,


3√1.5×0.40.7×0.20.3

3
√
(1+(1.5−1)(1−0.43))

0.7×(1+(1.5−1)(1−0.23))
0.7

+(1.5−1)×0.43×0.7×0.23×0.3
,

3√1.5×0.50.7×0.50.3

3
√
(1+(1.5−1)(1−0.53))

0.7×(1+(1.5−1)(1−0.53))
0.7

+(1.5−1)×0.53×0.7×0.53×0.3

, p1>
= 〈([0.6354, 0.8405], [0.3254, 0.5000]), 0.550〉

where p1 = 0.6+0.5
0.6+0.4+0.5+0.5 = 1.1

2 = 0.550.

M2 = <


3

√ (
(1+(1.5−1)×0.53)

0.7
)
×
(
(1+(1.5−1)×0.63)

0.3
)
−
(
(1−0.53)

0.7
)
×
(
(1−0.63)

0.3
)

(
(1+(1.5−1)×0.53)

0.7
)
×
(
(1+(1.5−1)×0.63)

0.3
)
+(1.5−1)(1−0.53)

0.7
(1−0.63)

0.3 ,

3

√ (
(1+(1.5−1)×0.53)

0.7
)
×
(
(1+(1.5−1)×0.83)

0.3
)
−
(
(1−0.53)

0.7
)
×
(
(1−0.83)

0.3
)

(
(1+(1.5−1)×0.53)

0.7
)
×
(
(1+(1.5−1)×0.83)

0.3
)
+(1.5−1)(1−0.53)

0.7
(1−0.83)

0.3

,


3√1.5×0.30.7×0.50.3

3
√
(1+(1.5−1)(1−0.33))

0.7×(1+(1.5−1)(1−0.53))
0.7

+(1.5−1)×0.33×0.7×0.53×0.3
,

3√1.5×0.70.7×0.70.3

3
√
(1+(1.5−1)(1−0.73))

0.7×(1+(1.5−1)(1−0.73))
0.7

+(1.5−1)×0.73×0.7×0.73×0.3

, p2>
= 〈([0.5348, 0.6395], [0.3502, 0.7000]), 0.450〉

where p2 = 0.5+0.4
0.6+0.4+0.5+0.5 = 0.9

2 = 0.450. Therefore, we have

PIVFHFHWA(M1, M2) =

〈
([0.6534, 0.8405], [0.3254, 0.5000], 0.550),
([0.5348, 0.6365], [0.3502, 0.7000], 0.450)

〉

Theorem 3. (Boundness) Let M+ and M− be two PIVFHFEs, and M+ =
[([

(µL
Mil

)
+, (µU

Mil
)
+
]
,[

(νL
Mil

)
−, (νU

Mil
)
−]), pil

]
, M− =

[([
(µL

Mil
)
−, (µU

Mil
)
−], [(νL

Mil
)
+, (νU

Mil
)
+
])

, pil

]
where

i = 1, 2, . . . n, l = 1, 2, . . . , L(PIVFHFE). If (µL
Mil

)
+
= max

{
µL

Mil

}
, (µU

Mil
)
+
= max

{
µU

Mil

}
,

(νL
Mil

)
+
= max

{
νL

Mil

}
, (νU

Mil
)
+
= max

{
νU

Mil

}
, (µL

Mil
)
−
= min

{
µL

Mil

}
, (µU

Mil
)
−
= min

{
µU

Mil

}
,

(νL
Mil

)
−
= min

{
νL

Mil

}
and (νU

Mil
)
−
= min

{
νU

Mil

}
, then

M− ≤ PIVFHFHWA(M1, M2, . . . , Mn) ≤ M+ (20)

Theorem 4. (Monotonicity) Let Mi =
[([

µL
Mil

, µU
M̃il

]
,
[
νL

Mil
, νU

Mil

])
, pil

]
and M̃i =[([

µL
M̃il

, µU
M̃il

]
,
[
νL

M̃il
, νU

M̃il

])
, pil

]
be two set of PIVFHFEs, where i = 1, 2, . . . , n, l = 1, 2, . . . ,

L(PIVFHFE). If µL
Mil
≤ µL

M̃il
, µU

Mil
≤ µU

M̃il
, νL

Mil
≥ νL

M̃il
and νU

Mil
≥ νU

M̃il
, then

PIVFHFHWA(M1, M2, . . . , Mn) ≤ PIVFHFHWA(M̃1, M̃2, . . . , M̃n) (21)
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Theorem 5. (Idempotency) Let Mi =
[([

µL
Mil

, µU
M̃il

]
,
[
νL

Mil
, νU

Mil

])
, pil

]
be a set of PIVFHFEs, where

i = 1, 2, . . . , n, l = 1, 2, . . . , L(PIVFHFE). If Mi = M = [([µL
Mil

, µU
Mil

], [νL
Mil

, νU
Mil

], pil ], then

PIVFHFHWA(M1, M2, . . . , Mn) = M (22)

Some special forms of the PIVFHFHWA operator regarding different parameter δ are given
as follows.

When δ = 1, Equation (19) follows that

PIVFHFWA(M1, M2, . . . , Mn) =

<[ 3

√
1−

n
∏
i=1

(
1−

(
µL

Mil

)3
)ωi

, 3

√
1−

n
∏
i=1

(
1−

(
µU

Mil

)3
)ωi

]
,
[

n
∏
i=1

(
νL

Mil

)3ωi
,

n
∏
i=1

(
νU

Mil

)3ωi
]

,
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l l

i i

l l
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l l

n n
L L
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n n
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n n
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n n
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i i

1
,

=

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l

n

i
i
p

 (26) 

where 1 2( , ,..., )ω ω ω ω= T
n  is the weighting vector with 0 1ω≤ ≤i  and 

1
1ω

=

=
n

i
i

, 

and 
( )

1 1 1 1
l l l

L PIVFHFEn n n

i i i
i i l i
p p p

= = = =

=   


. 

The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 

5. Hamacher Choquet Integral Aggregation Operators of PIVFHFSs 
In reality, the attributes involved in the decision-making process are not always in-

dependent of each other and often have certain correlations. Therefore, considering the 

n
∑

i=1
pil > (23)

The PIVFHFHWA operator reduces to probabilistic interval-valued Fermatean hesitant fuzzy
weighted averaging (PIVFHFWA) operator.

When δ = 2, it follows that

PIVFHFEWA(M1, M2, . . . , Mn) =

<


3

√√√√√ n
∏

i=1

(
1+
(

µL
Mil

)3
)ωi
−

n
∏

i=1

(
1−
(

µL
Mil

)3
)ωi

n
∏

i=1

(
1+
(

µL
Mil

)3
)ωi

+
n
∏

i=1

(
1−
(

µL
Mil

)3
)ωi ,

3

√√√√√ n
∏

i=1

(
1+
(

µU
Mil

)3
)ωi
−

n
∏

i=1

(
1−
(

µU
Mil

)3
)ωi

n
∏

i=1

(
1+
(

µU
Mil

)3
)ωi

+
n
∏

i=1

(
1−
(

µU
Mil

)3
)ωi


,



3√2
n
∏

i=1

(
νL

Mil

)ωi

3

√
n
∏

i=1

(
1+
(

1−
(

νL
Mil

)3
))ωi

+
n
∏

i=1

(
νL

Mil

)3ωi
,

3√2
n
∏

i=1

(
νU

Mil

)ωi

3

√
n
∏

i=1

(
1+
(

1−
(

νU
Mil

)3
))ωi

+
n
∏

i=1

(
νL

Mil

)3ωi


,
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where 1 2( , ,..., )ω ω ω ω= T
n  is the weighting vector with 0 1ω≤ ≤i  and 

1
1ω

=

=
n

i
i

, 

and 
( )

1 1 1 1
l l l

L PIVFHFEn n n

i i i
i i l i
p p p

= = = =

=   
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. 

The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 

5. Hamacher Choquet Integral Aggregation Operators of PIVFHFSs 
In reality, the attributes involved in the decision-making process are not always in-

dependent of each other and often have certain correlations. Therefore, considering the 

n
∑

i=1
pil > (24)

The PIVFHFHWA operator reduces to a probabilistic interval-valued Fermatean hesitant fuzzy
Einstein weighted averaging (PIVFHFEWA) operator.

Definition 13. Let Mi =
[([

µL
Mil

(x), µU
Mil

(x),
]
,
[
νL

Mil
(x), νU

Mil
(x)
])

, pil

]
be a set of PIVFH-

FES, i = 1, 2, . . . n, l = 1, 2, . . . , L(PIVFHFE). A probabilistic interval-valued Fermatean fuzzy
Hamacher weighted geometric (PIVFHFHWG) operator is a function PIVFHFHWG : PIVFHFEn

→ PIVFHFE such that

PIVFHFHWG(M1, M2, . . . , Mn) =
n
⊗

i=1
Mi

ωi (25)

where ω = (ω1, ω2, . . . , ωn)
T is the weighting vector of Mi(i = 1, 2, . . . , n) with 0 ≤ ωi ≤ 1 and

n
∑

i=1
ωi = 1.

Theorem 6. Let Mi =
[([

µL
Mil

(x), µU
Mil

(x),
]
,
[
νL

Mil
(x), νU

Mil
(x)
])

, pil

]
be a set of PIVFHFES,

i = 1, 2, . . . n, l = 1, 2, . . . , L(PIVFHFE). The aggregated result obtained by using PIVFHFHWG
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where 1 2( , ,..., )ω ω ω ω= T
n  is the weighting vector with 0 1ω≤ ≤i  and 
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i i i
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. 

The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 

5. Hamacher Choquet Integral Aggregation Operators of PIVFHFSs 
In reality, the attributes involved in the decision-making process are not always in-

dependent of each other and often have certain correlations. Therefore, considering the 

n
∑

i=1
pil > (26)
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where ω = (ω1, ω2, . . . , ωn)
T is the weighting vector with 0 ≤ ωi ≤ 1 and

n
∑

i=1
ωi = 1, and
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The PIVFHFHWG operator also has some excellent properties. Please refer to Theorems 3–5.
When δ = 1, Equation (26) reduces to a probabilistic interval-valued Fermatean hesitant fuzzy
weighted geometric (PIVFHFWG) operator; when δ = 2, it reduces to a probabilistic interval-valued
Fermatean hesitant fuzzy Einstein weighted geometric (PIVFHFEWG) operator.

5. Hamacher Choquet Integral Aggregation Operators of PIVFHFSs

In reality, the attributes involved in the decision-making process are not always
independent of each other and often have certain correlations. Therefore, considering
the correlations between different attributes and the individual preferences of decision
makers, the PIVFHFHCIA and PIVFHFHCIG operators are introduced and their excellent
properties are discussed.

Definition 14. Let X be a fixed set. Mi =
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(x), µU
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(x),
]
,
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(x)
])

, pil

]
is a set of PIVFHFEs on X with i = 1, 2, . . . , n and l = 1, 2, . . . , L(PIVFHFE). Then, the
PIVFHFHCIA operator is given as:
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on a finite set X with i = 1, 2, . . . , n and l = 1, 2, . . . , L(PIVFHFE). κ represents the fuzzy
measure, then the aggregation result utilizing PIVFHFHCIG operator is still a PIVFHFN.
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The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 

5. Hamacher Choquet Integral Aggregation Operators of PIVFHFSs 
In reality, the attributes involved in the decision-making process are not always in-

dependent of each other and often have certain correlations. Therefore, considering the 
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The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 

5. Hamacher Choquet Integral Aggregation Operators of PIVFHFSs 
In reality, the attributes involved in the decision-making process are not always in-

dependent of each other and often have certain correlations. Therefore, considering the 
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Proof of Theorem 7. When n = 2, we have
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The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 

5. Hamacher Choquet Integral Aggregation Operators of PIVFHFSs 
In reality, the attributes involved in the decision-making process are not always in-

dependent of each other and often have certain correlations. Therefore, considering the 

2
∑

i=1
pil >

where i = 1, 2, . . . , l, l = 1, 2, . . . , L(PIVFHFE1), k = 1, 2, . . . , L(PIVFHFHE2).
Assume that when n = s, the theorem is true.

PIVFHFHCIA(M1, M2, . . . , Mn)

= <


3

√√√√√ s
∏
i=1

(
1+(δ−1)

(
µL

Mil

)3
)κi,i+1

−
s

∏
i=1

(
1−
(

µL
Mil

)3
)κi,i+1

s
∏
i=1

(
1+(δ−1)

(
µL

Mil

)3
)κi,i+1

+(δ−1)
s

∏
i=1

(
1−
(

µL
Mil

)3
)κi,i+1 ,

3

√√√√√ s
∏
i=1

(
1+(δ−1)

(
µU

Mil

)3
)κi,i+1

−
s

∏
i=1

(
1−
(

µU
Mil

)3
)κi,i+1

s
∏
i=1

(
1+(δ−1)

(
µU

Mil

)3
)κi,i+1

+(δ−1)
s

∏
i=1

(
1−
(

µU
Mil

)3
)κi,i+1


,



3√δ
s

∏
i=1

(
νL

Mil

)κi,i+1

3

√
s

∏
i=1

(
1+(δ−1)

(
1−
(

νL
Mil

)3
))κi,i+1

+(δ−1)
s

∏
i=1

(
νL

Mil

)3κi,i+1
,

3√δ
s

∏
i=1

(
νU

Mil

)κi,i+1

3

√
s

∏
i=1

(
1+(δ−1)

(
1−
(

νUL
Mil

)3
))κi,i+1

+(δ−1)
s

∏
i=1

(
νU

Mil

)3κi,i+1


,

Axioms 2023, 12, x FOR PEER REVIEW 17 of 34 
 

The PIVFHFHWA operator reduces to a probabilistic interval-valued Fermatean hes-
itant fuzzy Einstein weighted averaging (PIVFHFEWA) operator. 

Definition 13. Let ( )( ), ( ), , ( ), ( ) ,
l l l l l

L U L U
i Mi Mi Mi Mi iM x x x x pμ μ ν ν    =       be a set of 

PIVFHFES, 1, 2,...=i n , 1, 2,..., ( )=l L PIVFHFE . A probabilistic interval-valued Ferma-
tean fuzzy Hamacher weighted geometric (PIVFHFHWG) operator is a function 

: →nPIVFHFHWG PIVFHFE PIVFHFE  such that 

1 2 1
( , ,..., ) ω

=
= ⊗ i

n

n ii
PIVFHFHWG M M M M  (25) 

where 1 2( , ,..., )ω ω ω ω= T
n  is the weighting vector of ( 1, 2,..., )=iM i n  with 

0 1ω≤ ≤i  and 
1

1ω
=

=
n

i
i

. 

Theorem 6. Let ( )( ), ( ), , ( ), ( ) ,
l l l l l

L U L U
i Mi Mi Mi Mi iM x x x x pμ μ ν ν    =       be a set of 

PIVFHFES, 1, 2,...=i n , 1, 2,..., ( )=l L PIVFHFE . The aggregated result obtained by using 
PIVFHFHWG operator integration is still a PIVFHFE, and 

( )( )

( )( )

1 1 2
1 2 1 1 21

3

1

333

1 1

3

1

333

1 1

( , ,..., ...

( )
,

1 ( 1) 1 ( ) ( 1)( )

( )

1 ( 1) 1 ( ) ( 1)( )

)= ωω ω ω

ω

ω ω

ω

ω ω

δ μ

δ μ δ μ

δ μ

δ μ δ μ

=

=

= =

=

= =

⊗ = ⊗ ⊗ ⊗ =

 
 
 
 

+ − − + − 
 
 
 
 


+ − − + −
 

∏

∏ ∏

∏

∏ ∏

n

i

l

i
i

l l

i

l

i
i

l l

n

n ni

n
L
Mi

i
n n

L L
Mi Mi

i i

n
U
Mi

i
n n

U U
Mi Mi

i i

PIVFHFHWG M M M M M M M

( ) ( )

( ) ( )

( ) ( )

( ) ( )

3 3

1 1
3

3 3

1 1

3 3

1 1
3

3 3

1 1

1 ( 1)( ) 1 ( )
,

1 ( 1)( ) ( 1) 1 ( )
,

1 ( 1)( ) 1 ( )

1 ( 1)( ) ( 1) 1 ( )

ω ω

ω ω

ω ω

ω ω

δ ν ν

δ ν δ ν

δ ν ν

δ ν δ ν

= =

= =

= =

= =

 
+ − − − 

 
 

+ − + − − 
 
 
 + − − −
 

  
+ − + − −  

 

∏ ∏

∏ ∏

∏ ∏

∏ ∏

i i

l l

i i

l l

i i

l l

i i

l l

n n
L L
Mi Mi

i i
n n

L L
Mi Mi

i i

n n
U U
Mi Mi

i i
n n

U U
Mi Mi

i i

1
,

=



l

n

i
i
p

 (26) 

where 1 2( , ,..., )ω ω ω ω= T
n  is the weighting vector with 0 1ω≤ ≤i  and 

1
1ω

=

=
n

i
i

, 

and 
( )

1 1 1 1
l l l

L PIVFHFEn n n

i i i
i i l i
p p p

= = = =

=   


. 

The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 
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where 1 2( , ,..., )ω ω ω ω= T
n  is the weighting vector with 0 1ω≤ ≤i  and 

1
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i
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i i i
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The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
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probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 
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In reality, the attributes involved in the decision-making process are not always in-
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The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 
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In reality, the attributes involved in the decision-making process are not always in-
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Therefore, when n = s + 1, Theorem 7 is true. �

Example 3. Let M1 = [([0.2, 0.4], [0.3, 0.6], 0.4), ([0.5, 0.8], [0.4, 0.7], 0.6)], M2 = [([0.3, 0.6],
[0.1, 0.2], 0.2), ([0.4, 0.5], [0.3, 0.6], 0.8)],and M3 = [([0.5, 0.7], [0.2, 0.4], 0.5), ([0.4, 0.6], [0.7, 0.9],
0.4)] be three PIVFHFEs. If the fuzzy measure is: κ(m1) = 0.35, κ(m2) = 0.25, κ(m3) = 0.30,

then we have γ =
3

∏
i=1

(1 + γκ(mi))− 1 = (1 + 0.35γ)(1 + 0.25γ)(1 + 0.30γ)− 1. Solve this

equation, γ = 0.36. Using Equation (12), we can obtain:

κ(m1, m2) =
1

0.36
[(1 + 0.36× 0.35)(1 + 0.36× 0.25)− 1] = 0.63

κ(m1, m3) =
1

0.36
[(1 + 0.36× 0.35)(1 + 0.36× 0.30)− 1] = 0.69

κ(m2, m3) =
1

0.36
[(1 + 0.36× 0.25)(1 + 0.36× 0.30)− 1] = 0.58

κ(m1, m2, m3) =
1

0.36
[(1 + 0.36× 0.35)(1 + 0.36× 0.25)(1 + 0.36× 0.30)− 1] = 1

Using Equation (26) to solve the Choquet integral, then

κ(M1, M2) = κ(m1, m2, m3)− κ(m2, m3) = 1− 0.58 = 0.42

κ(M2, M3) = κ(m2, m3)− κ(m3) = 0.58− 0.30 = 0.28

κ(M3, M4) = κ(m3, m4)− κ(m4) = κ(m3) = 0.30

Suppose δ = 1.5, we can obtain the following results based on the PIVFHFHCIA operator:

M̃1 = <


3

√
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+(1.5−1)(1−0.23)
0.42

(1−0.33)
0.28

(1−0.53)
0.30 ,

3

√
(1+(1.5−1)×0.43)

0.42×(1+(1.5−3)×0.63)
0.28×(1+(1.5−3)×0.73)

0.30−(1−0.43)
0.42

(1−0.63)
0.28

(1−0.73)
0.30

(1+(1.5−1)×0.43)
0.42×(1+(1.5−3)×0.63)

0.28×(1+(1.5−3)×0.73)
0.30

+(1.5−1)(1−0.43)
0.42

(1−0.63)
0.28

(1−0.73)
0.30

,


3√1.5×0.30.42×0.10.28×0.20.30

3
√
(1+(1.5−1)(1−0.33))

0.42
(1+(1.5−1)(1−0.13))

0.28
(1+(1.5−1)(1−0.23))

0.30
+(1.5−1)×0.33×0.42×0.13×0.28×0.23×0.30

,

3√1.5×0.60.42×0.20.28×0.40.30

3
√
(1+(1.5−1)(1−0.63))

0.42
(1+(1.5−1)(1−0.23))

0.28
(1+(1.5−1)(1−0.43))

0.30
+(1.5−1)×0.63×0.42×0.23×0.28×0.43×0.30

, p̃1>
= ([0.3664, 0.5807], [0.1954, 0.3930], 0.3793)

where p̃1 = 0.4+0.2+0.5
0.4+0.6+0.2+0.8+0.5+0.4 = 1.1

2.9 = 0.3793.

M̃2 = <
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0.28
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0.30
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,
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(1+(1.5−1)(1−0.33))
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, p̃2>
= ([0.4480, 0.6918], [0.4393, 0.7273], 0.6209)

where p̃2 = 0.6+0.8+0.4
0.4+0.6+0.2+0.8+0.5+0.4 = 1.8

2.9 = 0.6207. Then,
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PIVFHFHWCIA(M1, M2, M3) =

〈
([0.3664, 0.5807], [0.1954, 0.3930], 0.3793),
([0.4480, 0.6918], [0.4393, 0.7273], 0.6207)

〉
.

Theorem 8. (Boundness) Let M+ and M− be two PIVFHFEs, and M+ =
[([

(µL
Mil

)
+, (µU

Mil
)
+
]
,[

(νL
Mil

)
−, (νU

Mil
)
−]), pil

]
, M− =

[([
(µL

Mil
)
−, (µU

Mil
)
−], [(νL

Mil
)
+, (νU

Mil
)
+
])

, pil

]
with i =

1, 2, . . . n and l = 1, 2, . . . , L(PIVFHFE). If (µL
Mil

)
+
= max

{
µL

Mil

}
, (µU

Mil
)
+
= max

{
µU

Mil

}
,

(νL
Mil

)
+
= max

{
νL

Mil

}
, (νU

Mil
)
+
= max

{
νU

Mil

}
, (µL

Mil
)
−
= min

{
µL

Mil

}
, (µU

Mil
)
−
= min

{
µU

Mil

}
,

(νL
Mil

)
−
= min

{
νL

Mil

}
and (νU

Mil
)
−
= min

{
νU

Mil

}
, then

M− ≤ PIVFHFHCIA(M1, M2, . . . , Mn) ≤ M+ (29)

Theorem 9. (Monotonicity) Let Mi =
[([

µL
Mil

, µU
Mil

]
,
[

νL
Mil

, νU
Mil

])
, pil

]
and M̃i =[([

µL
M̃il

, µU
M̃il

]
,
[

νL
M̃il

, νU
M̃il

])
, pil

]
be two set of PIVFHFEs with i = 1, 2, . . . n and

l = 1, 2, . . . , L(PIV FHFE). If µL
Mil
≤ µL

M̃il
, µU

Mil
≤ µU

M̃il
, νL

Mil
≥ νL

M̃il
and νU

Mil
≥ νU

M̃il
, then

PIVFHFHCIA(M1, M2, . . . , Mn) ≤ PIVFHFCIA(M̃1, M̃2, . . . , M̃n) (30)

Theorem 10. (Permutation invariance) Let
..

Mi = (
..

M1,
..

M2, . . . ,
..

Mn) be any permutation of
Mi = (M1, M2, . . . , Mn), then

PIVFHFHCIA(
..

M1,
..

M2, . . . ,
..

Mn) = PIVFHFHCIA(M1, M2, . . . , Mn) (31)

Theorem 11. (Idempotency) Let Mi =
[([

µL
Mil

, µU
Mil

]
,
[
νL

Mil
, νU

Mil

])
, pil

]
be a PIVFHFS with

i = 1, 2, . . . , n and l = 1, 2, . . . , L(PIVFHFE). If Mi = M =
[([

µL
Mil

, µU
Mil

]
,
[
νL

Mil
, νU

Mil

])
, pil

]
,

then

PIVFHFHCIA(M1, M2, . . . , Mn) = M (32)

Definition 15. Let X be a fixed set. Mi =
[([

µL
Mil

, µU
Mil

]
,
[
νL

Mil
, νU

Mil

])
, pil

]
is a set of PIVFH-

FEs on X with i = 1, 2, . . . , n and l = 1, 2, . . . , L(PIVFHFE). Then, the PIVFHFHCIG operator
is an object of the following form:

PIVFHFHCIG(M1, M2, . . . , Mn)

=
n
⊗

i=1
Mi

κ(ρ(i))−κ(ρ(i+1))

= M1
κ(ρ(1))−κ(ρ(2)) ⊗M2

κ(ρ(2))−κ(ρ(3)) ⊗ . . .⊗Mn
κ(ρ(n))−κ(ρ(n+1))

(33)

where (i) is a permutation of Mi, which satisfies the condition M(1) ≤ M(2) ≤ . . . ≤ M(n). κ is
the fuzzy measure, ρ(i) = {Λ(i), Λ(i + 1), . . . , Λ(n)} and ρ(n+1) = 0.
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Theorem 12. Let Mi =
[([

µL
Mil

(x), µU
Mil

(x),
]
,
[
νL

Mil
(x), νU

Mil
(x)
])

, pil

]
be a set of PIVFHFEs

on a finite set X with i = 1, 2, . . . , n and l = 1, 2, . . . , L(PIVFHFE). κ represents the fuzzy
measure, then the aggregation result utilizing PIVFHFHCIG operator is still a PIVFHFN.

PIVFHFHCIG(M1, M2, . . . , Mn) =

<


3√δ
n
∏

i=1
(µL

Mil
)

κ(ρ(i))−κ(ρ(i+1))

3

√
n
∏

i=1

(
1+(δ−1)

(
1−(µL

Mil
)

3
))κ(ρ(i))−κ(ρ(i+1)))+(δ−1)

n
∏

i=1
(µL

Mil
)

3κ(ρ(i))−κ(ρ(i+1))
,

3√δ
n
∏

i=1
(µU

Mil
)

κ(ρ(i))−κ(ρ(i+1))

3

√
n
∏

i=1

(
1+(δ−1)

(
1−(µU

Mil
)

3
))κ(ρ(i))−κ(ρ(i+1)))+(δ−1)

n
∏

i=1
(µU

Mil
)

κ(ρ(i))−κ(ρ(i+1))


,


3

√√√√√ n
∏

i=1

(
1+(δ−1)(νL

Mil
)

3
)κ(ρ(i))−κ(ρ(i+1)))−

n
∏

i=1

(
1−(νL

Mil
)

3
)κ(ρ(i))−κ(ρ(i+1))

n
∏

i=1

(
1+(δ−1)(νL

Mil
)

3
)κ(ρ(i))−κ(ρ(i+1)))+(δ−1)

n
∏

i=1

(
1−(νL

Mil
)

3
)κ(ρ(i))−κ(ρ(i+1))

,

3

√√√√√ n
∏

i=1

(
1+(δ−1)(νU

Mil
)

3
)κ(ρ(i))−κ(ρ(i+1)))−

n
∏

i=1

(
1−(νU

Mil
)

3
)κ(ρ(i))−κ(ρ(i+1))

n
∏

i=1

(
1+(δ−1)(νU

Mil
)

3
)κ(ρ(i))−κ(ρ(i+1)))+(δ−1)

n
∏

i=1

(
1−(νU

Mil
)

3
)κ(ρ(i))−κ(ρ(i+1))


,

Axioms 2023, 12, x FOR PEER REVIEW 17 of 34 
 

The PIVFHFHWA operator reduces to a probabilistic interval-valued Fermatean hes-
itant fuzzy Einstein weighted averaging (PIVFHFEWA) operator. 

Definition 13. Let ( )( ), ( ), , ( ), ( ) ,
l l l l l

L U L U
i Mi Mi Mi Mi iM x x x x pμ μ ν ν    =       be a set of 

PIVFHFES, 1, 2,...=i n , 1, 2,..., ( )=l L PIVFHFE . A probabilistic interval-valued Ferma-
tean fuzzy Hamacher weighted geometric (PIVFHFHWG) operator is a function 

: →nPIVFHFHWG PIVFHFE PIVFHFE  such that 

1 2 1
( , ,..., ) ω

=
= ⊗ i

n

n ii
PIVFHFHWG M M M M  (25) 

where 1 2( , ,..., )ω ω ω ω= T
n  is the weighting vector of ( 1, 2,..., )=iM i n  with 

0 1ω≤ ≤i  and 
1

1ω
=

=
n

i
i

. 

Theorem 6. Let ( )( ), ( ), , ( ), ( ) ,
l l l l l

L U L U
i Mi Mi Mi Mi iM x x x x pμ μ ν ν    =       be a set of 

PIVFHFES, 1, 2,...=i n , 1, 2,..., ( )=l L PIVFHFE . The aggregated result obtained by using 
PIVFHFHWG operator integration is still a PIVFHFE, and 

( )( )

( )( )

1 1 2
1 2 1 1 21

3

1

333

1 1

3

1

333

1 1

( , ,..., ...

( )
,

1 ( 1) 1 ( ) ( 1)( )

( )

1 ( 1) 1 ( ) ( 1)( )

)= ωω ω ω

ω

ω ω

ω

ω ω

δ μ

δ μ δ μ

δ μ

δ μ δ μ

=

=

= =

=

= =

⊗ = ⊗ ⊗ ⊗ =

 
 
 
 

+ − − + − 
 
 
 
 


+ − − + −
 

∏

∏ ∏

∏

∏ ∏

n

i

l

i
i

l l

i

l

i
i

l l

n

n ni

n
L
Mi

i
n n

L L
Mi Mi

i i

n
U
Mi

i
n n

U U
Mi Mi

i i

PIVFHFHWG M M M M M M M

( ) ( )

( ) ( )

( ) ( )

( ) ( )

3 3

1 1
3

3 3

1 1

3 3

1 1
3

3 3

1 1

1 ( 1)( ) 1 ( )
,

1 ( 1)( ) ( 1) 1 ( )
,

1 ( 1)( ) 1 ( )

1 ( 1)( ) ( 1) 1 ( )

ω ω

ω ω

ω ω

ω ω

δ ν ν

δ ν δ ν

δ ν ν

δ ν δ ν

= =

= =

= =

= =

 
+ − − − 

 
 

+ − + − − 
 
 
 + − − −
 

  
+ − + − −  

 

∏ ∏

∏ ∏

∏ ∏

∏ ∏

i i

l l

i i

l l

i i

l l

i i

l l

n n
L L
Mi Mi

i i
n n

L L
Mi Mi

i i

n n
U U
Mi Mi

i i
n n

U U
Mi Mi

i i

1
,

=



l

n

i
i
p

 (26) 

where 1 2( , ,..., )ω ω ω ω= T
n  is the weighting vector with 0 1ω≤ ≤i  and 

1
1ω

=

=
n

i
i

, 

and 
( )

1 1 1 1
l l l

L PIVFHFEn n n

i i i
i i l i
p p p

= = = =

=   


. 

The PIVFHFHWG operator also has some excellent properties. Please refer to Theo-
rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 

5. Hamacher Choquet Integral Aggregation Operators of PIVFHFSs 
In reality, the attributes involved in the decision-making process are not always in-

dependent of each other and often have certain correlations. Therefore, considering the 

n
∑

i=1
pil > (34)

where
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rem 3–5. When 1δ = , Equation (26) reduces to a probabilistic interval-valued Fermatean 
hesitant fuzzy weighted geometric (PIVFHFWG) operator; when 2δ = , it reduces to a 
probabilistic interval-valued Fermatean hesitant fuzzy Einstein weighted geometric 
(PIVFHFEWG) operator. 
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n
∑

i=1
pil =
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pil /

L(PIVFHFE)
∑
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n
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pil .

Similarly, PIVFHFHCIG operator has some of the same excellent properties as the PIVFHFH-
CIA operator. Please refer to Theorem 8–11 above.

6. MADM Method Based on PIVFHFHCIG Operator

A MADM method for solving problems with PIVFHFSs information is proposed, and
the effectiveness and rationality of the proposed method are verified through a numerical
example of carbon emission reduction of manufacturers in the supply chain, which provides
a significant reference for the development of FFSs.

6.1. Decision-Making Method

For a MADM problem, let Yi = {Y1, Y2, . . . , Yn} be a collection of alternatives and
Ci = {C1, C2, . . . , Cn} be a collection of attributes. Assume that the alternative Yi with
respect to the attribute Ci is expressed by a PIVFHFE Mij(i = 1, 2, . . . , m, j = 1, 2, . . . , n). To
fully depict the differences between evaluating opinions, a probabilistic interval-valued
Fermatean hesitant fuzzy decision matrix D = (Mij)m×n using PIVFHFEs is constructed to
express the opinions of experts regarding different alternative Yi with respect to attribute
Ci. Then, the decision matrix is formed by using the opinion from decision makers. It is
assumed that all attribute information is known here, so the involved fuzzy measures are
directly given by experts according to their knowledge and experience. A new decision
method based on PIVFHFHCIG operator for solving MADM problems is proposed in this
section and illustrated by the following steps:

Step 1. Establish the decision matrix of PIVFHFNs D = (Mij)m×n according to the
evaluation information provided by the experts.

Step 2. Normalize the decision matrix D = (Mij)m×n. Then,

M̃ij =

{
Mij, when Cj is a bene f it− type attribute
Mij, when Cj is a cost− type attribute

where Mij = [([µL
ij, µU

ij ], [ν
L
ij , νU

ij ]), pij] and Mij = [([νL
ij , νU

ij ], [µ
L
ij, µU

ij ]), pij].
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Step 3. The fuzzy measure κi of each attribute is directly given by the experts according
to the practical significance and decision requirements. After that, calculate the value of
parameter γ and Choquet integrals by Definition 6 and 7.

κ(Λ) =


1
γ

(
1

∏
i=1

(1 + γκ(Λi))− 1
)

, γ 6= 0
n
∑

i=1
κ(Λi), γ = 0

(35)

γ =
n

∏
i=1

(1 + γκ(Λi))− 1 (36)

Λκ

(
f (Λ(1)), f (Λ(2)), . . . , f (Λ(n))

)
= ∑n

i=1 f (Λ(i))
[
κ(ρ(i))− κ(ρ(i+1))

]
(37)

Step 4. Use the PIVFHFHCIG operator in Equation (34) to calculate the comprehensive
values of each alternative.

Step 5. Use the following scoring function and accuracy function to obtain the final
scores of alternatives.

S(Mi) = ∑L(PIVFHFE)
l=1 pil ×

((
µL

Mil
(x)
)3
−
(

νU
Mil

(x)
)3
)
+

((
µU

Mil
(x)
)3
−
(

νL
Mil

(x)
)3
)

2
(38)

E(Mi) = ∑L(PIVFHFE)
l=1 pil ×

2−
(

πL
Mil

(x)
)3
−
(

πU
Mil

(x)
)3

2
(39)

Step 6. The alternatives are ranked by the comparison rules of PIVHPFEs in Definition
10, and then the best scheme can be selected.

6.2. Numerical Example

As global climate warming and energy security issues become increasingly serious,
green and low-carbon development has become a consensus of the international commu-
nity. To address the global climate crisis that threatens human survival and reduce carbon
dioxide emissions, many countries have established targets for reducing carbon emissions,
developed and enforced carbon trading standards to combat climate change, and encour-
aged the transition of their economic models to a low-carbon, green approach. Under the
background of energy conservation and emission reduction, supply chain enterprises need
to develop green and low-carbon development strategies to cope with regulatory pressure
and satisfy growing consumer demands for eco-friendly options. By doing so, they will
enhance their own profits, optimize resource utilization, and effectively reduce carbon
emissions. For manufacturers in the supply chain, there is pressure to develop low-carbon
technologies and implement green and clean production actively.

Under the background of low-carbon economy, assume that Enterprise W needs to
evaluate the low-carbon development of the four manufacturers and select a suitable
enterprise from them for cooperation to further promote carbon emission reduction and
enhance the green level of the supply chain. W has now organized four experts to conduct
a preliminary evaluation of the indicators of the four manufacturers, which are: C1: Green
technology innovation; C2: Green product development; C3: Resource utilization rate;
C4: Pollutant discharge. The alternatives are assessed by an evaluation panel composed
of several experts, and the information during the process is expressed as PIVFHFEs.
For example, when the panel hesitates between several possible interval values when
evaluating the first manufacturer regarding attribute C1. They are 50% sure that the green
technology innovation of Y1 is likely to be from 4 to 5 but not less than 6 to 8 and 50%
sure that the green technology innovation of Y1 could be from 4 to 5 but not less than
5 to 6 (10 points are full marks). After data normalization, the opinion can be stated
as 〈([0.4, 0.5], [0.6, 0.8], 0.5), ([0.4, 0.5], [0.5, 0.6], 0.5)〉. Therefore, the probabilistic interval-
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valued Fermatean hesitant fuzzy decision matrix D = (Mij)4×4 is constructed through the
discussion of experts.

Step 1. Establish the decision matrix D = (Mij)m×n based on the evaluation informa-
tion provided by experts, as shown in Table 1.

Table 1. The decision matrix of PIVFHFNs.

C1 C2 C3 C4

Y1
<([0.4,0.5],[0.6,0.8],0.5),
([0.4,0.5],[0.5,0.6],0.5)>

<([0.1,0.3],[0.4,0.6],0.3),
([0.2,0.4],[0.3,0.5],0.7)>

<([0.3,0.5],[0.7,0.9],0.6),
([0.2,0.4],[0.4,0.6],0.3)>

<([0.3,0.5],[0.4,0.5],0.4),
([0.3,0.4],[0.2,0.4],0.6)>

Y2
<([0.2,0.4],[0.3,0.5],0.3),
([0.3,0.5],[0.4,0.6],0.7)>

<([0.3,0.5],[0.6,0.8],0.5),
([0.3,0.5],[0.5,0.6],0.4)>

<([0.5,0.7],[0.6,0.8],0.3),
([0.2,0.4],[0.3,0.5],0.6)>

<([0.1,0.4],[0.3,0.6],0.8),
([0.2,0.5],[0.1,0.4],0.2)>

Y3
<([0.5,0.7],[0.4,0.8],0.4),
([0.4,0.6],[0.4,0.5],0.6)>

<([0.2,0.5],[0.4,0.7],0.5),
([0.3,0.4],[0.4,0.5],0.5)>

<([0.7,0.9],[0.3,0.6],0.3),
([0.2,0.3],[0.3,0.5],0.7)>

<([0.4,0.6],[0.2,0.3],0.45),
([0.3,0.4],[0.5,0.6],0.5)>

Y4
<([0.3,0.5],[0.1,0.4],0.4),
([0.4,0.5],[0.3,0.6],0.6)>

<([0.4,0.7],[0.6,0.8],0.2),
([0.3,0.4],[0.2,0.5],0.8)>

<([0.2,0.4],[0.4,0.5],0.4),
([0.3,0.5],[0.5,0.6],0.6)>

<([0.5,0.6],[0.3,0.4],0.7),
([0.2,0.4],[0.5,0.7],0.3)>

Step 2. The decision matrix does not to be standardized since {Y1, Y2, . . . , Y4} are all
benefit-type attributes.

Step 3. When identifying fuzzy measures, decision makers can directly give the values
of κi according to the practical meaning of each attribute and decision requirements. In this
paper, the fuzzy measures are obtained according to the opinions of experts: κ(c1) = 0.4,
κ(c2) = 0.3, κ(c3) = 0.1, κ(c4) = 0.4. Then, we can obtain an equation about the parameter
γ by Equation (36):

γ =
n

∏
i=1

(1 + γκ(ci)) = (1 + 0.4γ)(1 + 0.3γ)(1 + 0.1γ)(1 + 0.4γ)− 1

The value of γ is obtained using MATLAB: γ = −0.4222. Then, we have

κ(c1, c2) =
1
γ

(
n
∏
i=1

(1 + γκ(ci))− 1
)

= 1
−0.4222 [(1− 0.4222× 0.4)(1− 0.4222× 0.3)− 1] = 0.649

Similarly, we can obtain κ(c1, c3) = 0.483, κ(c1, c4) = 0.732, κ(c2, c3) = 0.387, κ(c2, c4) =
0.649, κ(c3, c4) = 0.483, κ(c1, c2, c3) = 0.722, κ(c1, c2, c4) = 0.940, κ(c1, c3, c4) = 0.802,
κ(c2, c3, c4) = 0.722, κ(c1, c2, c3, c4) = 1.000.

Then, the Choquet integral is calculated by Definition 7.

κ(Y1 −Y2) = κ(c1, c2, c3, c4)− κ(c2, c3, c4) = 1− 0.722 = 0.278

κ(Y2 −Y3) = κ(c2, c3, c4)− κ(c3, c4) = 0.722− 0.483 = 0.239

κ(Y3 −Y4) = κ(c3, c4)− κ(c4) = 0.483− 0.4 = 0.083

κ(Y4 −Y5) = κ(c4)− κ(c5) = κ(c4) = 0.4

Step 4. Use the PIVFHFHCIG operator in Equation (34) to calculate the comprehensive
scores of each alternative (when δ = 0.8).

M1 =

〈
([0.2496, 0.4420], [0.5139, 0.7211], 0.4615)
([0.2850, 0.4255], [0.3715, 0.5149], 0.5385)

〉

M2 =

〈
([0.1780, 0.4414], [0.4534, 0.6762], 0.5000)
([0.2466, 0.4908], [0.3729, 0.5328], 0.5000)

〉
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M3 =

〈
([0.3766, 0.6185], [0.3390, 0.6590], 0.4177)
([0.3141, 0.4365], [0.4415, 0.5460], 0.5823)

〉

M4 =

〈
([0.3806, 0.5712], [0.4178, 0.5925], 0.4250)
([0.2761, 0.4334], [0.4153, 0.6307], 0.5750)

〉
Step 5. Calculate final scores of each alternative Yi by the following scoring function:

S(Mi) = ∑L(PIVFHFE)
l=1 pil ×

((
µL

Mil
(x)
)3
−
(

νU
Mil

(x)
)3
)
+

((
µU

Mil
(x)
)3
−
(

νL
Mil

(x)
)3
)

2

we can have

S(Y1) = −0.1179, S(Y2) = −0.0951, S(Y3) = −0.0466, S(Y4) = −0.0717.

Step 6. According to the calculation result above and relevant comparison rules in
Definition 10, the enterprises are ranked as Y3 � Y4 � Y2 � Y1. That is, Y3 is the best
scheme, and Enterprise W should select Y3 after considering all factors.

6.3. Sensitivity Analysis

To further validate the scientificity of the operators proposed in this paper, the effects
of different parameter values on the aggregation results of PIVFHFHCIG operators are
discussed further. When parameter δ selects values of 0.5, 1, 2, 3, 5, 6.5, 8, 10, 15, and 20, the
final scores and rankings are displayed in Table 2.

Table 2. The scores and ranking of the alternatives when parameter δ selects different values.

δ S(Y1) S(Y2) S(Y3) S(Y4) Ranking

0.5 −0.1208 −0.0974 −0.0497 −0.0750 Y3 � Y4 � Y2 � Y1
0.8 −0.1179 −0.0951 −0.0466 −0.0771 Y3 � Y4 � Y2 � Y1
1 −0.1164 −0.0938 −0.0449 −0.0699 Y3 � Y4 � Y2 � Y1
2 −0.1114 −0.0892 −0.0394 −0.0637 Y3 � Y4 � Y2 � Y1
3 −0.1084 −0.0861 −0.0359 −0.0597 Y3 � Y4 � Y2 � Y1
5 −0.1045 −0.0820 −0.0313 −0.0545 Y3 � Y4 � Y2 � Y1

6.5 −0.1027 −0.0798 −0.0290 −0.0519 Y3 � Y4 � Y2 � Y1
8 −0.1013 −0.0782 −0.0272 −0.0499 Y3 � Y4 � Y2 � Y1
10 −0.0998 −0.0764 −0.0252 −0.0478 Y3 � Y4 � Y2 � Y1
15 −0.0974 −0.0734 −0.0220 −0.0443 Y3 � Y4 � Y2 � Y1
20 −0.0959 −0.0714 −0.0198 −0.0420 Y3 � Y4 � Y2 � Y1

From Table 2, regardless of the value of the parameter δ, the priority of alternatives is
always the same and the best option remains Y3, indicating that the parameter δ has little
influence on the rankings of the alternatives. This proves the robustness of the proposed
method from one aspect. To make the comprehensive evaluation more intuitive, the changes
in the scoring results of each alternative manufacturer are shown in Figure 1.
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As can be seen from Figure 1, with the increase of parameter δ, the scoring of each
scheme change accordingly and show an increasing trend as a whole, indicating that
parameter has an obvious impact on the scoring results. However, the ranking of each
scheme remains relatively stable, and it is always Y3 � Y4 � Y2 � Y1, showing that
PIVFHFHCIG operator has certain stability.

The analysis results show that the aggregation results obtained by PIVFHFHCIG
operator are stable and reasonable. Decision makers can choose different parameter values
to sort the schemes by their own judgment or subjective attitude, which reflects certain
flexibility. Meanwhile, they can also observe the dynamic change trend of the ranking by
selecting a series of different parameter values. Thus, the PIVFHFHCIG operator is flexible
and dynamic.

6.4. Comparative Analysis

In this section, a comparative analysis of the proposed Hamacher aggregation op-
erators for PIVFHFSs is presented to further demonstrate the rationality of the MADM
method, including the PIVFHFHWA, PIVFHFHWG, and PIVFHFHCIA operators.

When the PIVFHFHCIA operator is used for information aggregation, the comprehen-
sive scores of alternatives are given as (when δ = 0.8):

M1 =

〈
([0.3155, 0.4680], [0.1030, 0.6703], 0.4615)
([0.3157, 0.3006], [0.0273, 0.4878], 0.5385)

〉

M2 =

〈
([0.2722, 0.3740], [0.0526, 0.6237], 0.5000)
([0.2615, 0.2359], [0.0132, 0.5017], 0.5000)

〉

M3 =

〈
([0.4585, 0.2957], [0.0259, 0.5063], 0.4177)
([0.3299, 0.4268], [0.0778, 0.5376], 0.5823)

〉

M4 =

〈
([0.4213, 0.2686], [0.0190, 0.4785], 0.4250)
([0.3108, 0.3477], [0.0422, 0.6101], 0.5750)

〉
Then, the final scores of each alternative are: S(Y1) = −0.0674, S(Y2) = −0.0425,

S(Y3) = 0.0245, S(Y4) = −0.0097. Thus, the manufacturers are ranked as Y3 � Y4 � Y2 � Y1.
Assume that the weighting vector given by experts is ω= (0 .3, 0.25, 0.35, 0 .1)T, then

the scores using the PIVFHFHWA operator and PIVFHFHWG operator are (when δ = 0.8):

S(Y1) = −0.1337, S(Y2) = −0.0561, S(Y3) = 0.0629, S(Y4) = −0.0148

S(Y1) = −0.1921, S(Y2) = −0.1249, S(Y3) = −0.0246, S(Y4) = −0.0748

Obviously, the ranking of enterprises is Y3 � Y4 � Y2 � Y1 when PIVFHFHWA and
PIVFHFHWG operators are used to calculate the scores. Furthermore, this section analyzes
and compares the scores and rankings of the four proposed operators at varying parameter
values, as displayed in Table 3.

It can be seen from Table 3 that although the scores of each alternative obtained by
PIVFHFHWA, PIVFHFHWG, PIVFHFHCIA, and PIVFHFHCIG operators are different, the
rankings of alternatives are the same, that is, Y3 � Y4 � Y2 � Y1. Moreover, the aggregate
values of PIVFHFHWA and PIVFHFHCIA operators are consistently higher than those of
PIVFHFHWG and PIVFHFHCIG operators. The comprehensive evaluation values obtained
by PIVFHFHWA and PIVFHFHCIA operators are decreasing with the increase of parameter,
which means that the smaller the parameter value, the higher the optimism level of decision
makers. However, the comprehensive scores of each alternative obtained by PIVFHFHWG
and PIVFHFHCIG operators are increasing with the increase of parameter, which means
that the smaller the parameter value, the higher the optimism level of decision makers. The
reason may be that the Hamacher operator, as a fuzzy synthesis operator with parameters,
has multiple monotone properties. The Hamacher t-norm is monotonically decreasing with
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respect to parameter δ, while Hamacher t-conorm is monotonically increasing with respect
to δ. Therefore, the former is more appropriate for optimistic decision makers and the
latter for pessimistic decision makers. The Hamacher aggregation operators proposed in
this paper are more widely used than the existing Fermatean fuzzy aggregation operators
because they have considered the probability during the decision-making process and use
interval numbers to represent the evaluation information, which can avoid information
loss and reflect the interaction of each attribute.

Table 3. The scores and rankings obtained by different operators with respect to different δ.

PIVFHFHWG PIVFHFHWA PIVFHFHCIA PIVFHFHCIG

0.8

S1 = −0.1921
Y3 � Y4 � Y2 �

Y1

S1 = −0.1337
Y3 � Y4 � Y2 �

Y1

S1 = −0.0704
Y3 � Y4 � Y2 �

Y1

S1 = −0.1179
Y3 � Y4 � Y2 �

Y1

S2 = −0.1249 S2 = −0.0501 S2 = −0.0425 S2 = −0.0951
S3 = −0.0246 S3 = 0.0629 S3 = 0.0245 S3 = −0.0466
S4 = −0.0748 S4 = −0.0148 S4 = −0.0097 S4 = −0.0717

1

S1 = −0.1904
Y3 � Y4 � Y2 �

Y1

S1 = −0.1355
Y3 � Y4 � Y2 �

Y1

S1 = −0.0714
Y3 � Y4 � Y2 �

Y1

S1 = −0.1164
Y3 � Y4 � Y2 �

Y1

S2 = −0.1234 S2 = −0.0581 S2 = −0.0436 S2 = −0.0938
S3 = −0.0223 S3 = 0.0599 S3 = 0.0224 S3 = −0.0449
S4 = −0.0732 S4 = −0.0158 S4 = −0.0107 S4 = −0.0699

2

S1 = −0.1848
Y3 � Y4 � Y2 �

Y1

S1 = −0.1409
Y3 � Y4 � Y2 �

Y1

S1 = −0.0855
Y3 � Y4 � Y2 �

Y1

S1 = −0.1114
Y3 � Y4 � Y2 �

Y1

S2 = −0.1182 S2 = −0.0639 S2 = −0.0466 S2 = −0.0892
S3 = −0.0154 S3 = 0.0504 S3 = 0.01604 S3 = −0.0394
S4 = −0.0678 S4 = −0.0189 S4 = −0.0136 S4 = −0.0637

5

S1 = −0.1772
Y3 � Y4 � Y2 �

Y1

S1 = −0.1465
Y3 � Y4 � Y2 �

Y1

S1 = −0.1077
Y3 � Y4 � Y2 �

Y1

S1 = −0.1045
Y3 � Y4 � Y2 �

Y1

S2 = −0.1104 S2 = −0.0706 S2 = −0.0500 S2 = −0.0820
S3 = −0.0076 S3 = 0.0383 S3 = 0.0086 S3 = −0.0313
S4 = −0.0598 S4 = −0.0227 S4 = −0.0172 S4 = −0.0545

8

S1 = −0.1736
Y3 � Y4 � Y2 �

Y1

S1 = −0.1488
Y3 � Y4 � Y2 �

Y1

S1 = −0.1204
Y3 � Y4 � Y2 �

Y1

S1 = −0.1013
Y3 � Y4 � Y2 �

Y1

S2 = −0.1063 S2 = −0.0737 S2 = −0.0514 S2 = −0.0782
S3 = −0.0043 S3 = 0.0326 S3 = 0.0054 S3 = −0.0272
S4 = −0.0557 S4 = −0.0246 S4 = −0.0188 S4 = −0.0499

15

S1 = −0.1696
Y3 � Y4 � Y2 �

Y1

S1 = −0.1514
Y3 � Y4 � Y2 �

Y1

S1 = −0.1381
Y3 � Y4 � Y2 �

Y1

S1 = −0.0974
Y3 � Y4 � Y2 �

Y1

S2 = −0.1014 S2 = −0.0772 S2 = −0.0530 S2 = −0.0734
S3 = −0.0007 S3 = 0.0260 S3 = 0.0017 S3 = −0.0220
S4 = −0.0506 S4 = −0.0269 S4 = −0.0209 S4 = −0.0443

7. Conclusions

This paper discusses several new Hamacher aggregation operators for PIVFHFSs and
relevant applications. Firstly, this paper introduces probability into the interval-valued
Fermatean hesitant fuzzy environment and develops the concept of PIVFHFSs. Based
on the Hamacher operation, two probabilistic interval-valued Fermatean hesitant fuzzy
Hamacher aggregation operators are defined: the PIVFHFHWA operator and PIVFHFHWG
operator, and their characteristics and special forms are described. Then, the PIVFHFHCIA
and PIVFHFHCIG operators are proposed based on the Choquet integral. These new
operators have some excellent properties, such as boundedness, permutation invariance,
and monotonicity. They consider the interaction between different attributes and the
personal preferences of decision makers, effectively improving the rationality of decision
results and avoiding information loss. Finally, a method with PIVFHFSs information
for solving MADM problems is developed and illustrated through a numerical example
of reducing carbon emissions of manufacturers in the supply chain. The stability and
feasibility of this method are verified by sensitivity analysis and comparative analysis. The
presented MADM method not only expands the Hamacher operator and its applications
but also combines probabilistic interval-valued information with FHFS to enrich the theory
and practice of FFS.

However, the fuzzy measure in this paper is directly given by experts according to the
practical significance of each attribute and decision requirement, which may contain some
subjective evaluations. Meanwhile, the collected evaluation information in the decision
matrix of this paper is not fully combined with actual enterprises, so it is necessary to
improve the practical application of the presented method and explore some new data
collection methods under the background of big data. Therefore, evaluation attributes’
importance degree and weighting information should be further studied. In fuzzy decision
making, it is a new attempt to combine probability interval-valued information with FHFS.
A new concept of PIVFHFSs is proposed, and some Hamacher aggregation operators of
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PIVFHFSs are developed in this paper. In future research, it is necessary to explore more
studies and construct a relatively complete theoretical system of PIVFHFSs, including new
aggregation operators, distance measures, correlation coefficients, entropy measures, and
so on. Then, PIVFHFSs can be combined with some classical decision-making methods and
further applied to more fields to improve their applicability, such as cluster analysis, pattern
recognition, and medical diagnosis. Furthermore, we can combine the probabilistic interval-
valued information with other fuzzy sets to develop new concepts, such as neutrosophic
sets [57], fuzzy rough sets [58], complex fuzzy sets [59], and dual hesitant sets [60].
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Abbreviations

FSs fuzzy sets
IFS intuitionistic fuzzy set
HFSs hesitant fuzzy sets
PFSs Pythagorean fuzzy sets
q-ROFS q-rung orthopair fuzzy set
FFSs Fermatean fuzzy sets
FFLTSs Fermatean fuzzy linguistic term sets
FFSSs Fermatean fuzzy soft sets
ELECTRE ELimination Et Choix Traduisant la REalité
MCGDM multi-criteria group decision-making
FHFS Fermatean hesitant fuzzy set
VIKOR vlsekriterijumska optimizacija i kompromisno resenje
IVIFS interval-valued intuitionistic fuzzy set
IVPFS interval-valued Pythagrean fuzzy set
IVHFS interval-valued hesitant fuzzy set
IVPHFS interval-valued Pythagorean hesitant fuzzy set
IVFFSs interval-valued Fermatean fuzzy sets
IVFHFSs interval-valued Fermatean hesitant fuzzy sets
MADM multi-attribute decision-making
PHFSs probabilistic hesitant fuzzy sets
PHFEs probabilistic hesitant fuzzy elements
PHFPR probabilistic hesitant fuzzy preference relation
PIVIHFSs probabilistic interval-valued intuitionistic hesitant fuzzy sets
PIVHFS probabilistic interval-valued hesitant fuzzy set
TOPSIS Technique for Order Preference by Similarity to an Ideal Solution
BM Bonferroni mean operator
OWA ordered weighted averaging operator

I-IVIFHOWG
induced interval-valued intuitionistic fuzzy Hamacher ordered weighted
geometric

IVDHFSs interval-valued dual hesitant fuzzy sets
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IVPFCIG interval-valued Pythagorean fuzzy Choquet integral geometric

PIVHPFHCIG
probabilistic interval-valued hesitant Pythagorean fuzzy Hamacher Choquet
integral geometric operator

PIVFHFSs probabilistic interval-valued Fermatean hesitant fuzzy sets

PIVFHFHWA
probabilistic interval-valued Fermatean hesitant fuzzy Hamacher weighted
averaging operator

PIVFHFHWG
probabilistic interval-valued Fermatean fuzzy Hamacher weighted geometric
operator

PIVFHFHCIA
probabilistic interval-valued Fermatean hesitant fuzzy Hamacher Choquet
integral averaging operator

PIVFHFHCIG
probabilistic interval-valued Fermatean hesitant fuzzy Hamacher Choquet
integral geometric operator

IVFFN interval-valued Fermatean fuzzy number
IVFHFN interval-valued Fermatean hesitant fuzzy number
CoCoSo combined compromise solution
PIVFHFEs probabilistic interval-valued Fermatean hesitant fuzzy elements
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