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Abstract: Machine learning (ML) has shown its effectiveness in handling multi-geoinformation. Yet,
the black-box nature of ML algorithms has restricted their widespread adoption in the domain of
mineral prospectivity mapping (MPM). In this paper, methods for interpreting ML model predictions
are introduced to aid ML-based MPM, with the goal of extracting richer insights from the ML model-
ing of an exploration geochemical dataset. The partial dependence plot (PDP) and accumulated local
effect (ALE) plot, along with the SHAP value analysis, were utilized to demonstrate the application
of random forest (RF) modeling within both regression and classification frameworks. Initially, the
random forest regression (RFR) model established the relationship between the concentrations of
Au and those of elements such as As, Sb, and Hg in the study area, and from this model, the most
important geochemical elements and their quantitative relationships with Au were revealed by
their contributions in the modeling through PDP and ALE analyses. Secondly, the RF classification
modeling established the relationships of mineralization occurrences (i.e., known mineral deposits)
with geochemical elements (i.e., Au, As, Sb, Hg, Cu, Pb, Zn, and Ag), as did RFR modeling. The most
important geochemical elements for indicating regional Au mineralization and the trajectories of
PDP and ALE reached a consensus that As and Sb contributed the most, both in the regression and
classification modeling, with regard to Au mineralization. Finally, the SHAP values illustrated the
behavior of the training samples (i.e., known mineral deposits) in RF modeling, and the resulting
prospectivity map was evaluated using receiver operating characteristics.

Keywords: geochemical anomaly recognition; Shapley values; interpretability technique; gold
deposits; west Qinling

1. Introduction

The verification of anomalous metal concentrations is the foundation of geochemical
exploration for mineral deposits [1], and geochemical anomalies generally result from
the formation of mineral deposits or the decomposition of mineral deposits in the form
of primary or secondary dispersion haloes. For the assessment of metal concentrations
in a given study area through geochemical exploration, there are four general criteria
proposed by [2]: (1) the magnitude of geochemical values and background; (2) the size
and shape of anomalous areas; (3) geological setting; and (4) the extent to which the local
environment may have influenced the metal content and the pattern of anomalies. Another
criterion according to [3] is the zonality of elements in anomalies. To explore these criteria,
various methods have been developed and applied, ranging from the traditional standard
statistical methods to the ongoing popular machine learning (ML) methods. For exam-
ple, mean ± 2 × standard deviation, probability plots [4], and histograms of frequency
distributions are routine for discriminating anomalously high as well as anomalously low
levels of metal concentration at early stage. Statistical analyses conducted on geochemical
data often unveil linear correlations [5]. Considering the spatial structure of geochemical
data, moving average [6], spatial factor analysis [7], and kriging [8] are among the popular
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spatial statistical methods for modeling geochemical data distribution. With regard to
geochemical background, local spatial variations are common in the data, which may lead
to the misclassification of weak geochemical anomalies as background. To deal with the
problem of weak geochemical anomalies that are of only slightly higher concentration
values compared to that of background but might be associated with mineral deposits [9],
the family of fractal/multifractal models has been used widely for modeling geochemi-
cal background variation [10–12]. Other popular methods for dealing with geochemical
background variation include trend surface analysis [13] and geographically weighted
regression [14]. While these techniques have proven effective in identifying weak geo-
chemical anomalies, their assumptions about data distribution (e.g., regularly and densely
distributed sampling points) make them unable to depict the complexity of geochemical
background variation perfectly.

Machine learning algorithms are well suited for quantifying intricate and nonlin-
ear geochemical data, enabling the circumvention of traditional multivariate statistical
methods that rely on data conforming to a predetermined multivariate probability distribu-
tion hypothesis [15]. When labeled samples are limited, unsupervised machine learning,
particularly the autoencoder network and its variations, has demonstrated effectiveness
in detecting geochemical anomalies [16]. The availability of sufficient labeled samples
representing geochemical anomaly classes (i.e., associated with known mineral deposits)
and geochemical background classes empowers exploration geochemists to establish a
supervised machine learning pattern recognition framework for detecting geochemical
anomalies [17]. The state-of-the-art supervised ML algorithms have the potential for the
detection of geochemical anomalies. For example, the support vector machine (SVM) and
its natural extension one-class support vector machine (OCSVM) have been introduced to
explore geochemical anomalies in complex geological settings [17,18].

Despite machine learning, particularly its subset deep learning (e.g., convolutional
neural networks), showcasing remarkable performance in specific research fields, the
increasing model complexity and the utility of black-box models make it a challenge to
understand data processing in certain ML algorithms [19]. This paper focuses on methods
that address the interpretability of machine learning predictions regarding geochemical
anomalies, aiding exploration geochemists in comprehending them for mineral exploration
purposes. To this end, the partial dependence plot (PDP) and the accumulated local effect
(ALE) plot were applied to assist exploration through geochemical data analysis in the
framework of regression and classification by ML modeling. Moreover, the SHAP value
analysis was adopted to help understand the contribution of known mineral deposits as
training samples in the random forest (RF) classification modeling of geochemical data.

2. Material and Methods
2.1. Study Area

The study area of Yuanbo Nang District is in Xiahe County, Gansu Province, China. It
belongs to the western sector of Qinling Orogen, which is endowed with huge potential for
different mineral deposits [20]. The primary rock types in the study area are represented
by the Daheba Formation and Jiangligou Formation, and the primary distinctions among
the constituents of these two formations are found in the composition of the rocks, their
cyclical arrangements, and variations in grain size. For instance, the 1st member of the
Jiangligou Formation predominantly comprises medium-to-fine-grained plagioclase-quartz
sandstone, fine-grained plagioclase sandstone, fine-grained plagioclase lithic sandstone,
medium-to-fine-grained plagioclase quartz lithic sandstone, and siltstone. In contrast,
the 1st member of the Daheba Formation is mainly characterized by medium-to-coarse-
grained plagioclase quartz sandstone, medium-to-fine-grained plagioclase lithic sandstone,
and coarse-grained quartz arenite, exhibiting rhythmic cyclic superposition. Additionally,
within the same formation, there are differences in color and grain size. In the southeast
sector of the study area, Neogene Formation occurs with mainly sandy conglomerate. The
Quaternary sediments distributed across the study area comprise sand, gravel, clay, and
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humus. The predominant structures in the study area consist of NE-trending faults, with
a limited number of inferred faults oriented in the SE direction. Among the 12 mineral
deposits in the study area, 10 of them exhibit Au mineralization while the remaining 2
display Sb mineralization. All of these deposits belong to the medium-to-low-temperature
type of magmatic-hydrothermal deposits [21] (Figure 1).
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The geochemical dataset utilized in this study includes 1859 stream sediment samples,
which were collected at a scale of 1:50,000 by the Third Institute of Geology and Mineral Ex-
ploration, Gansu Provincial Bureau of Geology and Mineral Exploration and Development.
Inductively coupled plasma–mass spectrometry was employed to analyze the samples for
16 elements (i.e., Au, As, Sb, Hg, Co, Cr, Cu, Ni, Pb, Zn, Sn, Ag, Mo, Cd, W, and Bi). Among
these samples, eight elements (i.e., Au, As, Sb, Hg, Cu, Pb, Zn, and Ag) were identified as
potentially linked to gold (Au) and antimony (Sb) mineralization within the region. These
elements were chosen for the purpose of detecting geochemical anomalies.

2.2. Random Forest

RF has raised much interest in the field of mineral prospectivity mapping (MPM)
because its results are easy to understand, it needs a few parameters to be set, and its
processing speed during training is satisfactory [22]. As an ensemble learning method, RF
comprises a collection of decision trees [23]. CART (classification and regression trees),
proposed by [24], forms the basis of the RF method. With a training dataset, an ensemble
of decision trees can be built, and prediction results can be obtained using the mode of
predictions (in a classification framework) or the mean of predictions (in a regression
framework) by individual trees [25]. In the process of constructing an RF model, inde-
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pendent trees are built by the unique bootstrap sampling of the training dataset, whereby
the bootstrap sampling function randomly divides the training dataset into homogenous
subsets. Then, the random subsets of samples are utilized for growing and training every
tree, and the remaining subset (i.e., out-of-bag (OOB) samples) are used for validation
and assessment of model accuracy [25,26]. An important feature of RF is its capacity to
assess the relative importance of the input variables by building alternating decision trees
including and excluding every variable in the calculation of mean-square error (MSE)
and node purity. The estimation of the relative importance of a variable is performed
by assessing the increment of the prediction error when OOB data for that variable are
permutated, while all the other variables are left unchanged [23]. In this study, RF modeling
for the delineation of geochemical anomalies was performed in both the regression and
classification frameworks.

2.3. Partial Dependence Plot (PDP)

The PDP depicts changes in average predicted values as specified feature(s) vary over
their marginal distribution [27]. It has made a great contribution to the understanding of
various supervised ML applications across a variety of disciplines. A PDP can demonstrate
the relationship (e.g., linear, monotonic, or complex) between a target variable and predictor
variables. Let S ∈ {1, . . . , p} and let C be the complement set of S. Then, the PDP for
regression is defined as follows:

f̂xS(xS) = ExC

[
f̂ (xS, xC)

]
=

∫
f̂ (xSxC)dP(xC) (1)

where S and C are subsets of predictors; xS denotes the features for which PDPs are made;
and xC represents the complement features used in the ML model f̂ ; xS and xC comprise
the total feature space. The PDP marginalizes the outcome of ML modeling over the
distribution of a feature in a set of C. Thus, the function depicts the relationship between
the features in S and the predictions.

In practice, the estimation of f̂xS is performed by calculating averages in the training
data via the Monte Carlo method; thus,

f̂xS(xS) =
1
n

n

∑
i=0

f̂
(

xS, x(i)C

)
(2)

where
{

x(1)C , . . . , x(n)C

}
represents the different values of xC observed in the training data,

and n denotes the number of instances in the dataset. This equation yields the average
marginal effect on the prediction for a given value of xS. However, the PDP assumes that the
features in C are not correlated with the features in S. The violation of this assumption may
lead to very unlikely or impossible data points in the PDP. In the context of classification,
where the ML model outputs probabilities, the PDP shows the probability for a certain
class given different values for a feature in S [27].

2.4. Accumulated Local Effect (ALE) Plot

An ALE plot, like PDP, describes the average influence of features on the prediction
by an ML model. However, it is deemed to be a faster and more unbiased approach than
the PDP. Using either a PDP or an ALE plot, a complex prediction function can be reduced
to a function that depends only on one (or two) features by averaging the influence of the
other features. However, the PDP averages the prediction over the marginal distribution.
In contrast, rather than averaging the prediction directly, the ALE plot calculates the
differences in prediction conditioned on a feature in S, and it integrates the derivative over
the feature in S for estimating the effect; thus,

f̂xS ALE(xS) =
∫ xS

z0,1

EXc |XS

[
f̂ s(XS, Xc)|XS = zS

]
dzS − constant=

∫ xS

z0,1

∫
xC f̂ S(zs, xc)P(xC | zS)dxCdzS − constant (3)
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The formula for ALE indicates that it averages the differences in predictions, not the
prediction itself, so it is a gradient. In practice, the differences in predictions are replaced
by the differences in prediction over an interval (Figure 2).
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Figure 2. Schematic example of ALE calculation for feature X1 (correlated with X2). First, X1 is
divided into intervals (dotted vertical lines). For the data points within an interval, the differences in
the prediction when X1 is replaced with the upper and lower limits of the interval (solid horizontal
lines) are calculated, accumulated, and centered, yielding the ALE curve (modified from [23]).

2.5. SHAP Analysis

The SHAP analysis, proposed by [28] is a popular method for characterizing the
performance of an ML model based on the game theory [29] and local explanations [30]. It
was originally proposed as an axiomatic description of a fair distribution of a total surplus
for all players, which can be used in predictive models in which every variable resembles
a player.

Let us take a coalition game as a tuple ⟨N, v⟩ where N = {1, 2, . . . , n} represents a
finite set of n players and v : 2N → IR serves as a characteristic function with v(Φ) = 0,
defined over S (i.e., subsets of N) that characterizes the payoff of each subset of N. The
purpose of these definitions in such a coalition game is to obtain a solution for allocating
the total amount of payoff to players, i.e., v(N) to every player. Here, Φi(v) denotes the
allotted payoff to player i in terms of characteristic function v. Thus, a Shapley value
represents a distribution solution Φ with unique properties [31].

For a game ⟨N, v⟩, the Shapley value of a player i is defined as follows:

Φi(v) = ∑
S⊆N−{i}

(|N| − |S| − 1)!|S|!
|N|!

[
v
(

S
⋃
{i}

)
− v(S)

]
(4)

Thus, the Shapley value of player i is the weighted sum of the contribution of i in each
subset of N. The contribution of i to a subset S is defined by v(S

⋃
{i})− v(S).

Although the Shapley value has been originally formulated in the context of the
game theory with straightforward mathematical definition, it has been recently utilized for
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explaining complex models generated by ML algorithms, but the connotation of taking it
as a tool for model interpretation has not been illustrated yet [31].

3. Results and Discussion

Since eight elements (Au, As, Sb, Hg, Cu, Pb, Zn, and Ag) were analyzed in this
study (Figure 3), the parameters for the number of trees (k) and the number of features (m)
randomly sampled at each split were set as k = 1000 and m = 3 after a trial-and-error process.
Both k and m settings were utilized for regression and classification in RF modeling.
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3.1. Regression by RF Modeling

The regression analysis in this study aims to find associations between known miner-
alization and potentially relevant geochemical elements. As the study area is dominated
by Au mineralization, Au served as the dependent variable, and the other seven elements
served as independent variables, forming the inputs to random forest regression (RFR)
modeling. Based on the ranks of variable importance, As and Sb were found to be the most
significant contributors to the RFR in terms of MES increments and node purity (measured
by the Gini index). This suggests that As and Sb are closely linked to the distribution of
Au (Table 1). Further information can be provided by the ALE plot and PDP, as these
plots can assist in describing the effects of features on the prediction by an ML model. The
most important geochemical elements, As and Sb, had positive relationships with Au, and
they exhibited similar trajectories (Figures 4 and 5). For the PDP, the greatest issue is the
assumption of independence, namely, that the features for calculating the PDP should
not be correlated with other features. However, the ALE plot calculates the differences in
predictions, and it isolates the effects of the features of interest, thereby blocking the effect
of other features. Thus, overall, the trajectories of all geochemical elements in the PDP were
consistent with those in the ALE plot, proving the robustness of the PDP and ALE plot in
this case study.
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Table 1. Variable importance for RFR regression.

Variables As Sb Hg Cu Pb Zn Ag

%IncMSE 5.13 3.61 0.94 1.54 0.37 1.91 0.02

IncNodePurity 2914 1590 1381 1269 1206 1124 1134
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Moreover, the ALE plots were centered with the average effect over the prediction
equal to 0 by subtracting a constant. The value of the ALE can be interpreted as the main
effect of the feature at a certain value compared to the average prediction of data. An ALE
estimate of positive value (e.g., 0.3) means the prediction of Au is higher by 0.3 than the
average prediction. Therefore, they provide potential thresholds for delineating geochem-
ical anomalies (e.g., variable values in an ALE plot when Au = 0). As the geochemical
variables As and Sb were found to be the most important variables in the RFR modeling, the
thresholds of 42 for As and 9 for Sb (i.e., thresholds of ALE of Au = 0) were selected from the
respective ALE plots (Figure 5) and used for geochemical anomaly delineation (Figure 6).
The geochemical anomalies of As delineated 12 of the 13 known mineralized locations in the
study area, and they showed a northwest trend. In contrast, the geochemical anomalies of
Sb delineated fewer of the 13 known mineralized locations, but their consistent northwest
trend implies 3 similar prospective areas for further exploration (Figure 6). Moreover, in
the scenario of MPM using supervised learning, the selection of negative samples (e.g.,
non-deposits) for supervised MPM remains a challenge [32,33]. Here, areas excluding As
and Sb anomalies provide preferred locations for creating negative samples. Thus, in this
study, the 13 known mineralized locations were utilized as positive samples, and areas
excluding As and Sb anomalies (i.e., areas with Sb values of >9 and As values of >42) were
outlined and used as areas for the selection of randomly negative samples (13 non-deposits)
for the subsequent RF classification modeling (Figure 6).
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3.2. Classification by RF Modeling

The RFR modeling provided insights into the relationships of As, Sb, Hg, Cu, Pb, Zn,
and Ag with the target Au mineralization in the study area. However, there are scenarios
where mineralization is absent in the case of false anomalies with high magnitude [34].
For example, areas with high values of Au may not mean favorability of an area for
Au mineralization. It is necessary to discover the correlation of geochemical elements
with known mineralized locations. RF classification was applied to correlate the known
mineralization areas and the concentrations of the studied geochemical elements (i.e., Au,
As, Sb, Hg, Cu, Pb, Zn, and Ag).

In the RF modeling, the importance of evidential maps was evaluated by the mean
decrease in accuracy and the mean decrease in Gini indices. The former is calculated
from OOB data and indicates the reduction in accuracy across the entire RF modeling,
while the latter measures the average increase in purity achieved by utilizing splits of a
particular variable.

The results of RF modeling indicate that As and Sb are the most important geochemical
elements, which is consistent with the results of RFR modeling (Figure 7). Au ranked fourth
behind As, Sb, and Ag. In contrast to the PDP and the ALE plot, in RFR modeling, Au,
As, Ag, and Sb not only demonstrated similar trajectories in the PDP and the ALE plot
(Figures 8 and 9) but also showed significant differences to the other geochemical variables
(i.e., Hg, Cu, Pb, and Zn). Geological/geochemical processes can be recognized by a
continuous range of variable responses and the corresponding relative increase or decrease
in element concentration, and high-density surveys are capable of detecting local scale
processes [5]. The behaviors of the geochemical variables in RF modeling and the spatial
distributions of their concentrations (Figure 3) imply that Au, As, Ag, and Sb had a positive
influence on the formation of known mineralization. The coincidence of the locations of
known mineralization with smaller and less intense anomalies may be more indicative of
the occurrence of mineral deposits [1]. This prompts the introduction of interpretable ML
for geochemical anomaly detection.
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Besides the PDP and the ALE plot, which shed light on the relationships between the
geochemical elements of interest and known mineralization (i.e., Au element concentration
in RFR modeling and Au deposits in RF modeling), the Shapley values were adopted to
illustrate the behavior of the training samples in ML-based prediction. In the context of
RF modeling for MPM and given the current set of geochemical variables, the Shapley
value serves as an approximation of how much a particular value of a geochemical variable
contributes to the disparity between the actual prediction and the average prediction.

Figure 10 shows the contributions of each feature of an instance (i.e., training sample)
in RF modeling toward known mineralization. Figure 10a,b depict two of the negative
training samples (i.e., non-deposits), whereas Figure 10c,d depict the training samples
taken from locations of known mineralization. Both the negative and positive training
samples imply that As, Sb, and Ag contributed the most. This aligns with the importance of
the variable in terms of accuracy and the Gini index (Figure 7). Moreover, the geochemical
variables of negative training samples showed a negative contribution, in contrast to that of
the positive training samples, and the Shapley values of the positive samples varied, with
As (labeled 5), Sb (labeled 12) and Ag (labeled 4, 5, 6, and 8) having negative contributions
(Figures 11 and 12). These findings suggest that the Shapley value holds promise as a tool for
evaluating the efficacy of a training dataset in machine learning-based mineral prospectivity
mapping (MPM), particularly in the context of identifying non-deposit locations for use as
negative training samples.
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The final prospectivity map shows that areas of high potential delineated most of the
known mineral deposits (Figure 12). The performance of random forest (RF) modeling
was assessed using the receiver operating characteristic (ROC) curve, which illustrates
the true-positive rate versus the false-positive rate, with the area under the curve (AUC)
indicating the overall performance of the RF modeling [35]. By utilizing the probability of
mineralization occurrence to compute the AUC, we obtained a value of 0.917 for deposits
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(i.e., positive training samples) and 0.182 for non-deposits. These results suggest that
RF modeling effectively distinguished between known mineral deposit locations and
the selected non-deposit locations (Figure 13). The relationship between the distribution
of prospectivity values obtained and the known mineral deposits was evaluated using
prediction–area (P-A) plots and concentration–area (C-A) fractal analysis. The P-A plot
illustrates the ratio of the area covered by prospectivity classes (relative to the total study
area) against the ratio of known mineral occurrences (relative to the total number of known
occurrences) predicted by those respective prospectivity classes [36]. The results indicate
that RF modeling identified 9.7% of the study area, accurately capturing 84.6% of the
known mineral deposits. In contrast, the C-A fractal analysis identified three probability
categories: high potential (probability > 0.80), moderate potential (0.22 < probability < 0.80),
and low potential (probability < 0.22) (Figure 14).
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4. Conclusions

Machine learning algorithms have demonstrated their effectiveness in mineral prospec-
tivity mapping (MPM). Nonetheless, the black-box nature of the majority of ML algorithms
results in limited insights into the relationship between input variables (i.e., evidence
maps) and the target variable (i.e., mineral deposits). In this study, PDP and ALE plot
analyses were utilized to visualize the impacts of geochemical variables on documented
mineralization within the context of regression and classification models. Additionally,
SHAP analysis was employed to elucidate the performance of individual training samples
in machine learning modeling. The utilization of these interpretive tools effectively yielded
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quantitative insights from the concentrations of geochemical elements for delineating geo-
chemical anomalies. These tools enhanced the credibility of derived geochemical anomaly
information, suggesting that research on interpretable machine learning-based predictions
can further advance the practice of mineral prospectivity mapping (MPM).

The work discussed here involved a combination of mathematical concepts with
the identification of geochemical anomalies, that is, the transformation of mathematical
parameters into geochemical parameters to improve the recognition and assessment of
geochemical anomalies. Nevertheless, in the study area, the interpretation of geochemical
anomalies using the proposed methodology can probably be enriched by additional analy-
ses, e.g., combined petrographic and ore microscopic analyses of known mineralization, as
these would provide a more holistic understanding of the geological processes at play and
reveal further insights into the mineralogical composition and microstructural features of
the studied area. However, this is a recommendation for further study.
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