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Abstract: The study of microbial mats in extreme environments is of high scientific interest from
geological, ecological, and geomicrobiological aspects. These mats represent multilayer bio-structures
where each taxonomic group dominates a specific vertical layering distribution resulting from its
growth and metabolic activity. In the present study, microbial mats in a hot spring environment from
Aedipsos (Euboea Island, Greece) resulting in the creation of thermogenic travertine, were studied
through an interdisciplinary approach. The mineralogical composition was determined by optical
microscopy, XRD, and SEM-EDS microanalysis, and the identification of Cyanobacteria was made
primarily on morphological characteristics. The main mineral phase in the studied samples is calcite
and, to a less extent, aragonite, with several trace elements in the mineral-chemistry composition,
i.e., up to 1.93 wt. % MgO, up to 0.52 wt. % SrO, up to 0.44 wt. % Na2O, up to 0.17 wt. % K2O, and
up to 3.99 wt. % SO3. The dominant facies are lamination and shrubs, which are the most common
among the facies of thermogenic travertines of the area. Several layers were identified, (i) a top
mainly abiotic layer consisting of calcium carbonate micritic crystals, (ii) a second biotic layer–the
Cyanobacteria layer, dominated by the species Leptolyngbya perforans, (iii) a third biotic layer where
Leptolyngbya perforans, Chloroflexus and other bacteria occur, and (iv) a deeper abiotic part with several
layers where no photosynthetic microorganisms occur. In the upper layers, nineteen (19) species
of Cyanobacteria were identified, classified in the orders Chroococcales (37%), Synechococcales
(31%), Oscillatoriales (16%), and Spirulinales (6%). Among the identified Cyanobacteria, there are
typical thermophilic and limestone substrate species. These Cyanobacteria are found to participate in
the biomineralization and biologically-influenced processes, i.e., (i) filamentous Cyanobacteria are
trapping calcium carbonate crystals, and diatoms, (ii) extracellular polymeric substances (EPS) create
crystal retention lattice contributing to the biomineralization process, and (iii) filamentous sheaths of
Cyanobacteria are calcified, resulting in the creation of calcium carbonate tubes.

Keywords: microbial mats; biomineralization; Cyanobacteria; travertine; hot springs; Aedipsos
(Edipsos); Euboea (Evia); Greece

1. Introduction

One of the most interesting structures of microorganisms (i.e., bacteria, fungi, and
archaea) occurring in the environment of hot springs is that of microbial mats of several
layers, whose thickness counts up to a few centimeters [1]. Microbial mats are generally
significant parts of earth ecosystems; they were found as fossils 3500 Ma old [2–5], and they
commonly occur in extreme environments such as hot springs, alkaline, and hypersaline
environments [6–9]; they are also related to biomineralization processes, such as calcite,
aragonite, iron-oxides, i.e., the typical mineral compounds of thermal springs depositions.
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Microbial mats differ from microbial biofilms, which are much thinner, i.e., tens to hundreds
of µm, and display different architecture [10]. Geomicrobiological studies in extreme
environments offer a unique view of the biodiversity structure in conjunction with the
geological environment e.g., [11–17].

Even if every microbial mat comprises several layers, the composition of each mat
differs depending on the environmental conditions. Although different microorganisms
dominate in each layer, relationships among them exist based on competition and coop-
eration [1,18,19]. In environments with sunlight and water access, aerobic photosynthetic
microorganisms, such as Cyanobacteria, normally dominate the top layer. The deeper
layers are usually dominated by anaerobic non-photosynthetic microorganisms, such as
sulfate-reducing bacteria and archaea. The extracellular polymeric substances (EPSs) play
an essential role in microbial mats since they keep the whole structure together [20,21].
Filamentous microorganisms also contribute to structure-binding, especially if they are
equipped with sheaths [1].

Additionally, it should be noted that thermal springs, balneotherapy (i.e., treatment
of disease by bathing in thermal mineral waters), and pelotherapy (i.e., mud therapy),
have been of particular interest even from ancient times, and still today there is a firm
belief in their curative powers. Pelotherapy is the therapeutic use of heated peloids,
i.e., common depositions of thermal springs, whose effect is attributed to the properties
and action of water, minerals, and their biological fraction, which may be made up of
Cyanobacteria, and other microalgae (Bacillariophyta and Chlorophyta) present in water
and clays e.g., [22]. Research is demonstrating that natural peloids can be considered
a therapeutic mud and a dynamic “living system” [23] due to their curative properties
dependent on the diversity and survival properties of the microorganisms inhabiting and
shaping the peloids [17,24], thus permitting potential biotechnological exploitation. It is in
the last decade that microalgae became the focus of extensive research efforts, aiming at
novel compounds that might lead to therapeutically useful agents of great interest in the
pharmaceutical industry [25–27].

Previous studies have been conducted in the study of the thermogenic travertine of
Northern Euboea (Greece) [28–34]. The present study is the first attempt to examine the
stratification of microbial mats in the hot springs of the Aedipsos area (i.e., biodiversity,
mineralogical composition, and biomineralization processes of calcium carbonate minerals
taking place at the top layers).

2. Materials and Methods
2.1. Sample Collection and Microbial Identification

Physicochemical parameters of the water, i.e., temperature, pH, salinity, total dissolved
solids (T.D.S.), and electrical conductivity (E.C.), were measured for each sampling site
in situ during the fieldwork using portable devices. The pH-meter was calibrated with
standard buffer solutions of pH 4.0 and 7.0 before any measurements were taken. The pH
measurement error, including accuracy and reproducibility, was less than ±0.05 pH units.
The temperature was measured with a probe connected to the pH-meter, and the error was
estimated to be less than ±0.3 ◦C.

During the sampling process, sterile metal tweezers and chisels were used. The
physicochemical water parameters, i.e., temperature, salinity, and pH, were measured in
situ using portable apparatus (WTW 315i, Xylem Inc., Washington, DC, USA).

From each sampling site, two sub-samples were collected and investigated. The first
sub-sample was incubated in sterile transparent vials in the field. The second sub-sample
was stored in a formaldehyde solution (2.5%). Enriched cultures were obtained in flasks
and Petri dishes with BG11 and BG110 culture media [35]. Cultures were maintained in an
incubator (Sanyo, Gallenkamp) under stable conditions, i.e., temperature and humidity,
and a natural diurnal cycle (north-facing window) at room temperature.

The samples were studied under an optical microscope and a stereo-microscope. For
species identification, morphological determination was made based on classical and recent
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literature [36–39] and references within. Although the morphological determination of
Cyanobacteria presents some limitations, in some cases it is the most appropriate approach,
such as in the case of microbial mats, where the dominating species of each layer ought to
be identified.

The ArcGIS software was used to modify the geological map presented by
Kanellopoulos et al. [40].

2.2. Mineralogical Study

The mineralogical study was conducted on polished sections under an optical micro-
scope and powders using X-ray diffraction (Bruker D8 Advanced Diffractometer, using
Ni filtered Cu-Kα radiation, operating at 40 kV and 40 mA and employing a Bruker Lynx
Eye fast detector). The XRD results were evaluated using the DIFFRACplus EVA software
(Bruker) and the ICDD Powder Diffraction File (2006 version). In addition, selected de-
hydrated samples in an alcohol series (30%–100%), critical point dried, gold-coated, and
studied under SEM (Jeol JSM 5600; Jeol USA, Inc.: Peabody, MA, USA), with operation
contusions: accelerating voltage 20 kV and beam current 0.5 nA. SEM-EDS analyses were
carried out in carbon-coated thin sections using a Jeol JSM-IT500 (Jeol JSM 5600; Jeol USA,
Inc.: Peabody, MA, USA) instrument equipped with an Oxford 100 Ultramax microan-
alytical analytical device, with beam diameter 1–2 mm and with operation contusions:
accelerating voltage 20 kV, beam current 1.5 nA, time of measurement 50 s.

3. Geological Setting

Euboea Island is located in the western part of the Aegean Sea, near the Greek main-
land, and Aedipsos is located in the northwestern part of the Island, near the seaside.

The geological formations in the greater Aedipsos area belong to the Pelagonian geotectonic
unit of the Hellenides [41–44] (Figure 1), and consist of: a metamorphic crystalline basement
(pre-middle to middle Carboniferous age), a basic volcanoclastic complex series (Permian–
Triassic age), shallow marine carbonate and clastic rocks (middle Triassic age) with volcanic
rocks intercalations [45,46], alluvial deposits and thermogenic travertine depositions.
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As Kanellopoulos et al. [28,40,47] described, all the hot springs of NW Euboea (i.e.,
located at Aedipsos, Ilia, and Gialtra) are a combined result of active tectonics and the recent
volcanism of the Lichades volcanic center. This volcanic center consists of trachyandesite
lava, of 0.5 Ma age (dated by the K-Ar method; [48]). The main hot spring manifesta-
tions occur in the Aedipsos area, with temperatures up to 84 ◦C. The fluids are of Na-Cl
geochemical type, near-neutral pH, and they present chemical similarities [29,41].

In Aedipsos, the hot springs have been known since ancient times, depositing ther-
mogenic travertine [28–31]. The travertines present a large variety of facies [28,30,31,49]
with strong indications of biomineralization processes [28,29]. Recent studies prove the
contribution of Cyanobacteria to the formation of travertines [32], even in the very early
stages of Cyanobacteria settlement [33].

4. Results and Discussion
4.1. Sample Description and In-Situ Analysis

Samples were extracted from one of the Aedipsos thermal springs, i.e., in the Casino
area (Figure 1). The study site is a vertical wall near the coast, a few meters above sea
level. It is built with travertine blocks, and hot water flows through them (Figure 2A–C).
The water temperature in all sampling sites was 55.8 ◦C, the pH was 6.3, and the salinity
was 14‰.

At the study sites, successive layers of different microorganisms, i.e., microbial mats a
few centimeters thick, occurred (Figure 2D–F). The microbial mats consisted of microor-
ganisms that belonged to different taxonomic groups. These organisms follow a specific
vertical layering distribution resulting from their growth and metabolic activity (cf. [50]). In
the vertical stratification of the microbial mats, Cyanobacteria occupy the upper layer since
they are photosynthetic organisms and need access to sunlight. The lower layer consists of
other photosynthetic bacteria, such as green non-sulfur bacteria, e.g., Chloroflexus. Finally,
in the even lower layers, where the necessary sunlight is insufficient, non-photosynthetic
bacteria are thriving, usually sulfur bacteria (cf. [51]).

In the studied samples, a top layer was observed just above the Cyanobacteria layer
(Figure 2E,G,H). This top layer represents an abiotic area since it contains no microorgan-
isms. Furthermore, this layer is composed of micritic calcium carbonate crystals, which are
bound with the help of EPS produced by the cyanobacterial layer, which occurs just below
(cf. [51,52]).

In the Cyanobacteria layer, further vertical micro-stratification was recognized which
might be attributed to the different light requirements of the various Cyanobacteria species.
For example, Leptolyngbya perforans is a species characteristic of calcareous substrates,
appearing in the upper layers of the vertical stratification (cf. [38]). Ward et al. [53] suggested
that there are differences in the optimal amount of sunlight energy even in species belonging
to the same genus. In the Cyanobacteria layer, diurnal micro-stratification also occurs due
to the daily movement of Cyanobacteria upwards depending on the light availability.
Takashima and Kano [54] suggested that, in the morning, Cyanobacteria remain under
the carbonate layer (top abiotic layer), while in the afternoon, when the light is limited,
Cyanobacteria enter the carbonate layer to absorb as much sunlight as possible.

No Cyanobacteria were found in the deeper layers as not enough sunlight is reaching
there to enable photosynthesis. However, other bacteria (e.g., Chloroflexus sp.) were detected.

Based on the findings mentioned above, it is suggested that the collected samples
present the following vertical micro-stratification (Figure 2D–F):

(i) Top (first) layer-White-colored surface layer. It is abiotic since no microorganisms
occur. It consists of micritic calcium carbonate crystals, which are bound with the help of
EPS produced by the below layer, i.e., the cyanobacterial layer.

(ii) Second layer-Blue-green-colored Cyanobacteria layer. It is dominated by the
species Leptolyngbya perforans.

(iii) Third layer-Oil-green-colored layer, where Leptolyngbya perforans, Chloroflexus, and
other bacteria occur.
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(iv) Deeper layers, where no photosynthetic microorganisms occur.
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Figure 2. Field photos and sample photos. (A,B) Paired views of the study site. Normal image
(A) and corresponding thermal image (B). On the right side of the thermal picture, a column shows
the temperature scale (◦C). (C) Detailed image of the hot water flow and the microbial mats. (D) A
vertical cut of the microbial mats, displaying the different vertical layering. (E) A complete piece
of microbial mats displaying the vertical stratification: (1) top layer-the abiotic layer of travertine
(white color), (2) intense blue-green layer of Cyanobacteria, and (3) olive-green layer where there is a
reduction of Cyanobacteria and presence of other bacteria. (F) Detailed image of the hot water flow
and the microbial mats. (G) Parts of the top abiotic layer where dense white parts can be observed
(arrows). (H) The top abiotic layer of micritic calcium carbonate minerals under a stereoscope.

4.2. Mineralogical Characterization and Facies

Based on the XRD analyses, the studied samples consist mainly of calcite and some
aragonite (Figure 3). According to SEM-EDS microanalyses, the calcium carbonate mineral
phases, except for CaCO3, contain additional trace elements (Table 1), such as Mg (up to
1.93 wt. % MgO), Sr (up to 0.52 wt. % SrO), Na (up to 0.44 wt. % Na2O), and K (up to
0.17 wt. % K2O). The substitution of Ca by these elements is not something new e.g., [55,56];
still, it ought to be mentioned that Mg-calcites and Na-calcite/aragonite have been related
to biogenic origin in marine organisms [57,58]. In addition to the elements mentioned above,
in several cases in the studied carbonate mineral phases, S was identified (up to 3.99 wt. %
SO3, Table 1IV–VI). The S-containing calcites were recently verified. Okumura et al. [59]
proved the presence of sulfate-containing calcites in the hot spring LaDuke Yellowstone,
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USA. Applying several analytical techniques, such as XPS, XRD, and TEM analysis, it
was proved that the mean atomic ratio of S/Ca was ca. 5% and sulfur was present in the
form of sulfate (SO2

−4). Sulfate could be incorporated at the carbonate site of the calcite
structure (structural substitute [60,61]). Besides the calcium carbonate mineral phases,
fluorite was also found inside calcite crystals (Figure 4A). Kanellopoulos et al. [29,35] have
also identified the presence of fluorite in the thermogenic travertines of Northern Euboea.

Aragonite crystals present hexagonal prisms, usually creating characteristic radial
spheres (Figure 4B,C), while calcite usually creates rhombohedral crystals (Figure 4D).
Similar shapes of the aragonite crystals have been described in the thermogenic travertine
depositions of the area [30,31].

The studied samples present lamination consisting of micritic crystals, visible to the
naked eye (millimeters) to a few micrometers thick (Figure 4B,D,E). In most cases, the
laminas consist of micritic calcite crystals and alternate with other laminas, which could be
similar in terms of mineralogical composition but could differ in terms of crystal size and
density (Figure 4D). In other cases, calcite laminae alter with aragonite laminae (Figure 4B).
The presence of shrubs (Figure 4B) is common to the studied samples. Their thicknesses
could reach up ca. over 100 µm (Figure 4G). They are mainly dense and stubby crys-
talline masses, which consist of calcite crystals that expand upward by irregular branching.
These faces have also been identified as the most common among the thermogenic traver-
tine deposition of Northern Euboea [24,27,35], and in several cases have been related to
biomineralization processes [37,38].
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Table 1. Representative microanalyses of calcium carbonate mineral phases.

I II III IV V VI VII VIII

Na2O - 0.16 - 0.41 0.23 0.19 - -
MgO 0.56 0.59 0.11 0.87 0.52 0.45 0.7 0.96
SO3 - - - 3.26 3.76 3.99 - -
K2O - - - - - - - 0.14
CaO 53.58 51.43 54.71 52.32 51.62 53.81 52.51 51.69
SrO - - - - - - 0.28 0.25
Total 54.13 52.37 54.82 56.86 56.13 58.44 53.49 53.64
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Figure 4. Back-scattered electron images (BSEI). (A) False color BSEI results of the mapping, dis-
playing the distribution of Ca (yellow) and F (purple) demonstrating the presence of fluorite in
calcite. (B,C) Lamination with calcite crystals creating shrubs and aragonite crystals usually creating
characteristic radial spheres. (D,E) Laminas are created by micritic crystals of calcium carbonate
mineral phases. (F) Laminas of a loosely connected line of single calcite crystals, which in some cases
are presenting a characteristic condensed form. (G) In some cases, over previously presented loosely
connected laminae, shrubs have developed. (H,I) False color BSEI results of the mapping, displaying
the distribution of S (red) and Sr (green). In (H) it is shown that the loosely connected base laminae
present S depletion and Sr enrichment, in contrast to the shrubs that have developed over it and
present Sr depletion and S enrichment. In (I) it is shown that the aragonite-dominated (aggregates of
radial spheres) laminas present S depletion and Sr enrichment, in contrast to the calcite-dominated
laminas, which present Sr depletion and S enrichment.

In a few cases, in the upper parts of the samples, laminas of a loosely connected line
of single calcite crystals were identified. In the cases when the samples were not critical
point dried, and the samples were condensed as the biological material was dehydrated,
these structures present a characteristic condensed form, implying their close connection
with biological material, such as EPS (Figure 4F), i.e., biologically-influenced processes.
It is known that the EPS play the role of a template favoring mineral precipitation for
crystal nucleation [62–64] and a low-energy substrate for crystal nucleation (EPS-mediated
mineralization [64]). In hot springs, where carbonate precipitation usually occurs, organic
mucilaginous substances could usually play a significant role in the biomineralization
processes leading to the creation of several facies, i.e., mats consisting of various microbial
communities are embedded within a 3D network of EPS secreted by the microorganisms,
even if the EPS could be acting as passive substrates [65]. In some other cases, over that
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loosely connected laminae, shrubs have developed (Figure 4G). It is interesting that the
calcite crystals of that loosely connected laminae, as well as the aragonitic radial spheres,
are enriched in Sr and present depletion to S (Table 1VII–VIII), in contrast with the other
laminas (Table 1IV–VI; Figure 4H,I).

4.3. Cyanobacteria Diversity and Possible Applications

In order to assess the Cyanobacteria biodiversity, pie diagrams of the orders were made
(Figure 5), and the latest classification system [66] was used. Based on the studied samples,
Chroococcales (37%) and Synechococcales (31%) are the dominant orders, followed by
Oscillatoriales (16%) and Spirulinales (16%). Previous studies [31] demonstrated that the
most commonly dominating Cyanobacteria orders in the hot springs of Aedipsos were
Oscillatoriales (35.7%) and Synechococcales (31.4%), followed by Chroococcales (15.9%),
Spirulinales (10.1%), Nostocales (6.6%), and Chroococcidiopsidales (0.3%).

Based on the microscopic study of fresh and cultured material, a total number of 19
Cyanobacteria species, plus diatoms, were observed (Table 2; Figure 6). Among them,
typical thermophilic species were identified, such as Spirulina subtilissima (Figure 6J) and
Chroococcus thermalis, and typical limestone substrate Cyanobacteria species such as Lep-
tolyngbya perforans (Figure 6F). The species Spirulina subtilissima (Figure 6J), according to
Kanellopoulos et al. [32], is the most common Cyanobacteria species in the Aedipsos hot
springs. Most of the identified Cyanobacteria species are filamentous.

As mentioned above, the peloids biological fraction is highly important for applied
uses. A characteristic example is pelotherapy. During peloid maturation, organic sub-
stances are provided by the developing microalgae. Therefore, studying microalgal and
bacterial community composition in peloids along the maturation process is of paramount
importance since products of their metabolism may transfuse a healing effect. Furthermore,
an important recent issue regarding the dominant mechanism that shapes the medicinal
properties has to do with the diversity of the microorganisms inhabiting and shaping
the peloids [67,68]. Microalgae communities in thermal springs have long attracted the
attention of microbial ecologists because of their unique capacity to adapt to high tempera-
tures [69]. Moreover, their long phylogenetic history may justify properties for survival in
harsh conditions and, therefore, unique properties for potential biotechnological exploita-
tion. In addition, new therapeutically active compounds could be formed during peloid
maturation by the metabolic activity of living organisms such as diatoms, Cyanobacteria
(and protozoa). It is in the last decade that microalgae became the focus of extensive
research efforts, aiming at compounds that previously have not been considered acting
agents in the pharmaceutical industry [22,25–27].

Minerals 2022, 12, x FOR PEER REVIEW 9 of 15 
 

 

Table 2. Identified Cyanobacteria species. 

Aphanothece cf. minutissima (West) J.Komárková-Legnerová and G.Cronberg 1994 
Aphanothece sp.A 
Chondrocystis dermochroa (Nägeli) Komárek and Anagnostidis, 1995 
Chroococcus minutus (Kützing) Nägeli 1849 
Chroococcus minutus var. thermalis J.J.Copeland 
Chroococcus thermalis (Meneghini) Nägeli 1849 
Chroococcus turgidus (Kützing) Nägeli 1849 
Leptolyngbya cf. angusta (Skuja) Anagnostidis 2001 
Johannesbaptistia pellucida (Dickie) W.R.Taylor and Drouet in Drouet 1938 
Kamptonema chlorinum (Kützing ex Gomont) Strunecký, Komárek and J.Smarda 2014 
Kamptonema formosum (Bory ex Gomont) Strunecký, Komárek and J.Smarda 2014 
Leptolyngbya perforans (Geitler) Anagnostidis and Komárek 1988 
Limnothrix redekei (Goor) Meffert 1988 
Oscillatoria crassa (C.B.Rao) Anagnostidis 2001 
Pseudanabaena minima (G.S.An) Anagnostidis 2001 
Spirulina cf. labyrinthiformis Gomont 1892 
Spirulina subtilissima Kützing ex Gomont 1892 
Spirulina tenuior (Lagerheim) Kirchner 1900 
Synechocystis salina Wislouch 1924 
Diatoms 

 

Figure 5. Pie diagrams presenting the percentage of each Cyanobacteria order. 

 

Figure 5. Pie diagrams presenting the percentage of each Cyanobacteria order.



Minerals 2022, 12, 1408 9 of 14
Minerals 2022, 12, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 6. Cyanobacterial microflora under an optical microscope. (A) Chroococcus minutus (Scale bar: 
10 μm), (B) Chroococcus turgidus (Scale bar: 20 μm), (C) Johannesbaptistia pellucida (Scale bar: 50 μm), 
(D) Kamptonema chlorinum (Scale bar: 20 μm), (E) Kamptonema formosum (Scale bar: 20 μm), (F) Lep-
tolyngbya perforans (Scale bar: 10 μm), (G) Oscillatoria crassa (Scale bar: 20 μm), (H) Pseudanabaena 
minima (Scale bar: 20 μm), (I) Spirulina cf. labyrinthiformis (Scale bar: 10 μm), (J) Spirulina subtilissima 
(Scale bar: 10 μm), (K) Spirulina tenuior (Scale bar: 10 μm), (L) Synechocystis salina (Scale bar: 10 μm). 

4.4. Biomineralisation 
Based mainly on the SEM study, biomineralization processes were identified (Figure 

7). The upper abiotic layer consists of micritic calcium carbonate crystals without any trace 
of microorganisms (Figure 7A). In that layer, only some filamentous Cyanobacteria that 
develop upwards, originating from the lower layer (Cyanobacteria layer) were found, and 
also EPS. This development model could be explained due to the daily movement of 
Cyanobacteria to reach sunlight, as Takashima and Kano [54] suggested, and at the same 
time, the EPS could be acting as passive substrates [65] leading to biologically-influenced 
processes. 

Figure 6. Cyanobacterial microflora under an optical microscope. (A) Chroococcus minutus (Scale
bar: 10 µm), (B) Chroococcus turgidus (Scale bar: 20 µm), (C) Johannesbaptistia pellucida (Scale
bar: 50 µm), (D) Kamptonema chlorinum (Scale bar: 20 µm), (E) Kamptonema formosum (Scale bar:
20 µm), (F) Leptolyngbya perforans (Scale bar: 10 µm), (G) Oscillatoria crassa (Scale bar: 20 µm),
(H) Pseudanabaena minima (Scale bar: 20 µm), (I) Spirulina cf. labyrinthiformis (Scale bar: 10 µm),
(J) Spirulina subtilissima (Scale bar: 10 µm), (K) Spirulina tenuior (Scale bar: 10 µm), (L) Synechocystis
salina (Scale bar: 10 µm).

4.4. Biomineralisation

Based mainly on the SEM study, biomineralization processes were identified (Figure 7).
The upper abiotic layer consists of micritic calcium carbonate crystals without any trace of
microorganisms (Figure 7A). In that layer, only some filamentous Cyanobacteria that de-
velop upwards, originating from the lower layer (Cyanobacteria layer) were found, and also
EPS. This development model could be explained due to the daily movement of Cyanobac-
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teria to reach sunlight, as Takashima and Kano [54] suggested, and at the same time, the
EPS could be acting as passive substrates [65] leading to biologically-influenced processes.

Table 2. Identified Cyanobacteria species.

Aphanothece cf. minutissima (West) J.Komárková-Legnerová and G.Cronberg 1994
Aphanothece sp.A
Chondrocystis dermochroa (Nägeli) Komárek and Anagnostidis, 1995
Chroococcus minutus (Kützing) Nägeli 1849
Chroococcus minutus var. thermalis J.J.Copeland
Chroococcus thermalis (Meneghini) Nägeli 1849
Chroococcus turgidus (Kützing) Nägeli 1849
Leptolyngbya cf. angusta (Skuja) Anagnostidis 2001
Johannesbaptistia pellucida (Dickie) W.R.Taylor and Drouet in Drouet 1938
Kamptonema chlorinum (Kützing ex Gomont) Strunecký, Komárek and J.Smarda 2014
Kamptonema formosum (Bory ex Gomont) Strunecký, Komárek and J.Smarda 2014
Leptolyngbya perforans (Geitler) Anagnostidis and Komárek 1988
Limnothrix redekei (Goor) Meffert 1988
Oscillatoria crassa (C.B.Rao) Anagnostidis 2001
Pseudanabaena minima (G.S.An) Anagnostidis 2001
Spirulina cf. labyrinthiformis Gomont 1892
Spirulina subtilissima Kützing ex Gomont 1892
Spirulina tenuior (Lagerheim) Kirchner 1900
Synechocystis salina Wislouch 1924
Diatoms
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photosynthetic microorganisms were found. 

Figure 7. Biomineralizing processes by Cyanobacteria under SEM. (A) A top abiotic layer consist-
ing of calcium carbonate crystals (scale bar: 50 µm). (B,C) EPSs surfaces along with filamentous
Cyanobacteria. (B) Overview of a dense EPSs layer (scale bar: 500 µm). (C) Closer view in another
position, where the EPSs form a net along with filamentous Cyanobacteria, favoring the trapping of
calcium carbonate crystals and diatoms (scale bar: 10 µm). (D,E) Details of filamentous Cyanobacteria
which are developing upwards above the EPSs layer, favoring their trapping. In (E), a diatom is
trapped (scale bar: 10 µm). (F) Calcified sheaths of filamentous Cyanobacteria (scale bar: 5 µm).

In the second layer, i.e., the Cyanobacteria layer, the presence of EPS and filamentous
Cyanobacteria were dominant (Figure 7B–E). The EPSs, mainly consisting of polysaccha-
rides, polymers, nucleic acids, humic acids, lipids, and proteins [70], form a crystal retention
lattice, and small crystals stick to it. It is also known that the EPSs act as a template favoring
mineral precipitation for crystal nucleation [63,64]. At the same time, the presence of EPS is
crucial for constructing the microbial mat. The exact composition of the EPSs in the study
site is the subject of future research.
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The filamentous Cyanobacteria favor the trapping of micritic mineral phases or di-
atoms (Figure 7C–E).

At the same time, some filamentous Cyanobacteria present properties of sheath calcifi-
cation (Figure 7F), resulting in the formation of dense, thick micritic encrustation around
the sheaths by calcium carbonate minerals. These processes could be related either to
photosynthesis, resulting in a local increase of pH and subsequent carbonate oversaturation
and precipitation [71,72], or to the presence of nucleating molecules. [73].

5. Conclusions

Microbial mats are multilayer bio-structures invaluable for geology, ecology, and
geomicrobiological studies. In Aedipsos, microbial mats were studied, several centimeters
thick, which occur in a vertical wall where hot water is coming out.

The main mineral phase is calcite, and some aragonite is also present. These mineral
phases contain several trace elements, i.e., up to 1.93 wt. % MgO, up to 0.52 wt. % SrO, up to
0.44 wt. % Na2O, up to 0.17 wt. % K2O and up to 3.99 wt. % SO3, in the mineral-chemistry
composition. The main facies of the studied samples are lamination and shrubs, which are
the most common among the facies of the thermogenic travertines of the area.

The mat consists of several layers, i.e., (i) a top mainly abiotic layer of calcium car-
bonate micritic crystals, (ii) a second layer–the Cyanobacteria layer, which is dominated
by the species Leptolyngbya perforans, (iii) a third layer where Leptolyngbya perforans, Chlo-
roflexus, and other bacteria occur, and (iv) several deeper layers, where no photosynthetic
microorganisms were found.

Nineteen Cyanobacteria species (plus diatoms) were identified belonging to Chroococ-
cales (37%) and Synechococcales (31%), which are the dominant orders, followed by Os-
cillatoriales (16%) and Spirulinales (16%). Among the identified Cyanobacteria, typical
thermophilic species, i.e., Spirulina subtilissima and Chroococcus thermalis, and typical lime-
stone substrate species, i.e., Leptolyngbya perforans, have been noticed.

Based mainly on SEM observations, several biomineralization and biologically-influenced
processes were recognized, mainly in the second layer, i.e., the Cyanobacteria layer. Filamen-
tous Cyanobacteria are trapping calcium carbonate crystals and diatoms. The extracellular
polymeric substances (EPSs) form a crystal retention lattice contributing to the biomineral-
ization process and also to the structure of microbial mats. Finally, calcified filamentous
Cyanobacteria sheaths were also identified, contributing to the biomineralization processes.

Among the future plans is a detailed geological (mineralogy and water characteristics)
and biological study of each layer separately, as well as metagenomic analysis, in an attempt
to identify all the species involved and further understand the processes taking place in
each layer.

The present study confirmed the importance of microbial mats in the microbial ecology
of extreme environments via understanding biomineralization and biologically-influenced
processes. Further research is needed, including phylogenetic analysis and additional study
sites to comprehend the biodiversity of all layers of the microbial mats in these or relevant
areas. Future selection of local strains of Cyanophyta with optimized biomass development
in cultures would further allow biotechnological uses, i.e., isolation of high-value co-
products with scientific, medical, or tentative commercial value (e.g., in balneotherapy).
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