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Abstract: The aim of this work is to investigate osculating type ruled surfaces with a type 2-Bishop
frame in E3. We accomplish this by employing the symmetry of osculating curves. We examine oscu-
lating type ruled surfaces by taking into account the curvatures of the base curve. We investigate the
geometric properties of these surfaces, focusing on their cylindrical and developable characteristics.
Moreover, we calculate the Gaussian and mean curvatures and provide the requirements for the
surface to be flat and minimal. We determine the requirements for the curves lying on this surface to
be geodesic, asymptotic curves, or lines of curvature. Furthermore, relations between osculating type
ruled surfaces with central tangent and central normal vectors are given. Finally, some examples of
these surfaces are presented.

Keywords: Bishop frame; osculating ruled surface; minimal surface

1. Introduction and Preliminaries

Space curves are one of the most important topics of differential geometry. Curves
are characterized by the Frenet frame, which consists of tangent, principal normal, and
binormal vectors. However, the Frenet frame is defined only for differentiable curves, and
the second derivative of curves can be zero at some points. Because of this, for a more
thorough examination of the curve, an alternative to the Frenet frame, known as the Bishop
frame, was introduced by Bishop in 1975 [1]. The Bishop frame has been used in biology
and has spread to fields such as computer graphics. It is used to predict the structural
information of DNA helices and to control virtual cameras in computer graphics. This
alternative frame, associated with parallel vector fields and also known as the alternative
or parallel frame, is obtained without changing the tangent vector on the Frenet frame and
by rotating the principal normal and binormal vectors at an angle. The characterizations of
curves using the Bishop frame were obtained in [2–4]. Later, a new version of the Bishop
frame called the “Type-2 Bishop Frame” was defined by [5]. This other alternative frame,
also referred to as the parallel frame, is derived by rotating the tangent and principal
normal at an angle while keeping the binormal vector unchanged from the Frenet frame.
Subsequently, the characterizations of curves according to the type-2 Bishop frame were
studied in [4–7].

Ruled surfaces are defined as surfaces formed by a one-parameter family of straight
lines in Euclidean space. The well-known examples of these surfaces are cylinder and
conical surfaces. Their unique geometric properties make them a versatile tool with exten-
sive applications across various engineering disciplines such as manufacturing technology,
computer-aided geometric design (CAGD), simulation, rigid body Dynamics, and modern
engineering practices [8–10]. Izumiya and Takeuchi’s studies on ruled surfaces represent a
significant contribution to the field of geometry [11–14]. Moreover, many researchers have
studied different curves on ruled surfaces in [13–16]. On the other hand, the special ruled
surfaces with different direction vectors are called generalized rectifying ruled surfaces,
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generalized normal ruled surfaces, and osculating-type ruled surfaces in E3, as defined by
Önder and Kaya [17–19]. Ruled surfaces with the type-2 Bishop frame were studied in [20].

In this paper, we define osculating type ruled surfaces with a type-2 Bishop frame by
utilizing the symmetry properties related to osculating curves. We examine these surfaces
according to curvatures of the base curve. Moreover, we calculate their Gaussian and mean
curvatures and investigate surface curves on osculating-type ruled surfaces. We see that
some geometric properties of osculating type ruled surfaces with type-2 Bishop frame in
E3 shows similarity with the rectifying ruled surfaces according to Frenet frame in E3 [19].
Interestingly, the consequences slightly show that the osculating type ruled surfaces with
the type-2 Bishop frame are associated with the rectifying ruled surfaces according to the
Frenet frame in E3. Finally, we present illustrative examples demonstrating the properties
and behaviors of these surfaces.

Let ς be a regular curve. {T, N, B, κ, τ} and {N1, N2, B, k1, k2} are the Frenet and type-2
Bishop Frame apparatus of the unit speed curve ς, respectively. Then Frenet and type-2
Bishop frame formulas are given by [5,21,22].T

′

N
′

B
′

 =

 0 −κ 0
−κ 0 τ
0 −τ 0

T
N
B

,

N
′
1

N
′
2

B
′

 =

 0 0 −k1
0 0 −k2
k1 k2 0

N1
N2
B

. (1)

The relations between Frenet and type-2 Bishop frames areT
N
B

 =

sin Φ(s) − cos Φ(s) 0
cos Φ(s) sin Φ(s) 0

0 0 1

N1
N2
B

. (2)

where Φ is the angle between the N1 vector of the Bishop frame and the principal normal
vector N of the Frenet frame. The curvatures according to the type 2-Bishop frame are
defined by [5]

k1(s) = −τ cos Φ(s), k2(s) = −τ sin Φ(s) (3)

where Φ(s) = arctan
(

k2

k1

)
, κ(s) = Φ

′
(s) and τ(s) =

√
k2

1 + k2
2.

More information about the type-2 Bishop frame can be found in [5–7].
A ruled surface Ω(ς,η) is defined by

Ω(ς,η) = ς(s) + uη(s) (4)

where ς : I ⊂ R → R3, η(s) : I → R3 − {0} are the base curve and ruling, respectively.
Ω(ς,η) is cylindrical if and only if η

′
= 0 with ∥η∥ = 1. The curve d lying on Ω(ς,η) satisfying

the condition ⟨d′, η′⟩ = 0 is defined as the striction curve of Ω(ς,η) [23].
The normal vector n, the Gaussian and mean curvatures of Ω(ς,η) are defined by [22]

n(s, u) =
(Ω(ς,η))s ∧ (Ω(ς,η))u∥∥∥(Ω(ς,η))s ∧ (Ω(ς,η))u

∥∥∥ , (5)

K =
eg − f 2

EG − F2 , H =
Eg − 2F f + Ge

2(EG − F2)
(6)

where

E =
〈
(Ω(ς,η))s, (Ω(ς,η))s

〉
, F =

〈
(Ω(ς,η))s, (Ω(ς,η))u

〉
,

G =
〈
(Ω(ς,η))u, (Ω(ς,η))u

〉
,

(7)
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e =
〈
(Ω(ς,η))ss, n

〉
, f =

〈
(Ω(ς,η))su, n

〉
, g =

〈
(Ω(ς,η))uu, n

〉
. (8)

More information about surfaces and ruled surfaces can be found in [11–14,22–24].

2. Osculating Type Ruled Surfaces with Type 2-Bishop Frame

We define an osculating developable surface by ODς = ς(s) + uD̃0(s) where ς : I → R3

is a differentiable unit speed curve with curvatures k1(s) ̸= 0, k2(s), type 2-Bishop frame
{N1, N2, B} and where D̃0(s) is the modified Bishop Darboux vector of ς(s), which is defined
by D̃0(s) = − k2

k1
(s)N1(s)+ N2(s). We define a base curve ς of an osculating type ruled surface

where the ruling of the surface always lies in the {N1, N2} plane of ς. The definition of a
surface can be given as follows:

Definition 1. Let ς(s) be a regular curve in R3 with a type-2 Bishop frame. The ruled surface
Ω⃗(ς,η0)

: IxR → R3 defined by

Ω(ς,ηo) = ς(s) + uηo(s), ηo = r1(s)N1(s) + r2(s)N2(s). (9)

is named an osculating type ruled surface where r1 and r2 are differentiable functions of the arc
length of parameter s.

The osculating type developable surface Ω(ς,D̃0)
is an example of an osculating type

ruled surface with r1(s) = − k2

k1
(s) and r2(s) = 1. If we take r1(s) = 1 and r2(s) = 0, then

we have a developable tangent surface of Ω(ς,N1)
. Similarly, taking r1(s) = 0 and r2(s) = 1

gives the principal normal surface Ω(ς,N2)
of ς(s).

Theorem 1. The surface Ω(ς,ηo) is not regular if and only if

r1(s)k1(s) + r2(s)k2(s) = 0,

1 + ur2(s)
(

r1(s)
r2(s)

)′

= 0.
(10)

Proof. From the Equations in (9), we obtain

(Ω(ς,ηo))s = (1 + ur
′
1)N1 + ur

′
2N2 − u(r1k1 + r2k2)B,

(Ω(ς,ηo))u = r1N1 + r2N2.
. (11)

From the last Equations in (11), we get

(Ω(ς,ηo))s ∧ (Ω(ς,ηo))u = ur2(r1k1 + r2k2)N1 − ur1(r1k1 + r2k2)N2

+ r2

(
1 + ur2

(
r1

r2

)′)
B.

(12)

Then, (Ω(ς,ηo))s ∧ (Ω(ς,ηo))u = 0 if and only if r1k1 + r2k2 = 0 and 1+ ur2

(
r1

r2

)′

= 0.

Proposition 1. Let Ω(ς,ηo) have singular points and let the base curve ς not be a plane curve with
r1, r2 ̸= 0. Then the locus of the singular points of Ω(ς,ηo) is the curve ϱ(s) = ς(s) + uηo(s) where

r1k1 + r2k2 = 0 and u(s) = −
(

r2

(
k2
k1

)′)−1

.
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Proof. For the singular points of Ω(ς,ηo) with the help of Equation (10), we have

u(s) =
(

r2

(
k2
k1

)′)−1

.

From now on, we will take

f̃ (s) = r1k1 + r2k2, g̃(s, u) = 1 + ur2

(
r1

r2

)′

. (13)

From (9), we have η
′
o = r

′
1N1 + r

′
2N2 − f B. Then, η

′
o = 0 if and only if ri and (i = 1, 2)

are non-zero constants and f̃ = 0. As a result, we find that
k2

k1
is constant. If

k2

k1
= constant,

we have a contradiction. So, the surface Ω(ς,ηo) cannot be cylindrical.

Corollary 1. There exists no cylindrical osculating type ruled surface Ω(ς,ηo).

Proposition 2. For k1 ̸= 0, osculating type ruled surface Ω(ς,ηo) is developable if and only if
Ω(ς,ηo) = Ω(ς,D̃0)

.

Proof. Ω(ς,ηo) is developable if and only if

det(ς
′
, ηo, η

′
o) = 0 ⇔ −r2 f̃ = 0. (14)

From (14), −r2 f̃ = 0 if and only if f̃ = 0, which implies that r1 = −r2
k2

k1
. Thus, we get

ηo = r2

((
− k2

k1

)
N1 + N2

)
= r2D̃0(s), i.e., Ω(ς,ηo) = Ω(ς,D̃0)

.

Proposition 3. Let ∥ηo∥ = 1 and ς(s) be a striction line of Ω(ς,qo). Then, r1 is constant.

Proof. The striction parameter of Ω(ς,ηo) is obtained as

u(s) = − ⟨ς′
, η

′
o⟩

⟨η′
o, η

′
o⟩

=
r
′
1

(r′1)
2 + (r′2)

2 + f̃ 2
. (15)

From (15), we conclude that the curve ς(s) is a striction line if and only if r1 is constant.

Corollary 2. If k1 ̸= 0, then for the surface Ω(ς,ηo), the following statements are equivalent.

(i) Ω(ς,ηo) is developable.
(ii) Ω(ς,ηo) = Ω(ς,D̃0)

.

From Theorem 1 and Proposition 1, we can give the following corollary.

Corollary 3. The developable osculating type ruled surface Ω(ς,ηo) is regular if and only if g̃ ̸= 0.

Corollary 4. Let Ω(ς,ηo) be an osculating type ruled surface. Then

(i) ς(s) is a geodesic.
(ii) ς(s) is not an asymptotic curve.

Proof. The unit normal vector n of the surface Ω(ςηo) can be obtained as

n(s, u) =
ur2 f̃ N1 − ur1 f̃ N2 + r2 g̃B√

(r2
1 + r2

2)u
2 f̃ 2 + r2

2 g̃2
. (16)
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By taking u = 0, the unit normal vector along the base curve ς(s) on Ω(ς,ηo) can be
obtained as nς = B. Thus, we have nς ∧ ς′′ = 0, then ς(s) is a geodesic and the equality
⟨nς, ς′′⟩ = 0 implies that ς(s) is not an asymptotic curve.

Theorem 2. The curve ς is a line of curvature on the osculating type ruled surface Ω(ς,ηo) with the
type-2 Bishop frame if and only if Ω(ς,ηo) is a plane.

Proof. The curve ς is a line of curvature on the surface Ω(ς,ηo) if and only if

n
′
ς ∧ ς

′
= 0 ⇔ −k2B = 0 (17)

where nς = B. From (12), we have k2 = 0. Then, ς lies on the plane sp{N1, N2} and
binormal vector B is constant. Since n ⊥ η0 and n ⊥ N1, we find n = ±B. Then the
unit normal vector of Ω(ς,ηo) is constant, which implies that Ω(ς,ηo) is a plane. For the
converse, let a unit normal vector n of Ω(ς,ηo) be constant and Ω(ς,ηo) be a plane. Since
n ⊥ sp{η0, N1}, we get n ⊥ sp{N1, N2}, which means the vector n = ±B is constant. Then
n
′
ς ∧ ς

′
= −k2B = 0 gives ς is a line of curvature on the surface Ω(ς,ηo).

The fundamental coefficients of the surface Ω(ς,ηo) are calculated as follows:

E =(1 + ur
′
1)

2 + u2(r
′
2)

2 + u2(r1k1 + r2k2)
2,

F =r1 + ur1r
′
1 + ur2r

′
2, G = r2

1 + r2
2,

e =
u2 f̃ 2(r1k2 − r2k1) + u2 f̃ (r2r

′′
1 − r1r

′′
2)− r2 g̃(k1(1 + ur

′
1) + uk2r

′
2 + u f̃

′
)√

(r2
1 + r2

2)u
2 f̃ 2 + r2

2 g̃2
,

f =0, g =
f̃ (u(r

′
1r2 − r

′
1r2)− r2 g̃)√

(r2
1 + r2

2)u
2 f̃ 2 + r2

2 g̃2
.

(18)

By using the fundamental coefficients computed in (18), the Gaussian curvature K and
the mean curvature H of Ω(ς,ηo) are given by

K =
f̃ 2(u(r

′
1r2 − r

′
1r2)− r2 g̃)2(

(r2
1 + r2

2)u
2 f̃ 2 + r2

2 g̃2
)2 ,

H =

f̃
{

u2(r2
1 + r2

2
)(

f̃ (r1k2 − r2k1) + r2r
′′
1 − r1r

′′
2

)
−
(

u(r
′
1r2 − r

′
2r1)− r2 g̃)(2r1 + u(r2

1 + r2
2)

′
)}

−r2 g̃
(
r2

1 + r2
2
)(

k1(1 + ur
′
1) + u(k2r

′
2 + f̃

′
)
)

2
(
(r2

1 + r2
2)u

2 f̃ 2 + r2
2 g̃2
) 3

2

(19)

respectively. We can easily see from (19) and Proposition 2 the Gauss curvature K vanishes
if and only if the surface is developable. Then, the following corollary can be given:

Corollary 5. For k1 ̸= 0 the osculating type ruled surface with vanishing Gauss curvature K is Ω(ς,D̃0)
.

Corollary 6. Regular points of Ω(ς,ηo) are minimal if and only if

f̃
g̃
=

r2

(
(r2

1 + r2
2)(k1(1 + ur

′
1) + u(k2r

′
2 + f̃

′
))− f̃ (u(r2

1 + r2
2)

′
+ 2r1)

)
u2(r2

1 + r2
2)( f̃ (r1k2 − r2k1) + r2r′′1 − r1r′′2)− u(r′1r2 − r1r′2)(u(r

2
1 + r2

2)
′ + 2r1)

. (20)

Theorem 3. Let Ω(ς,ηo) be developable osculating type ruled surface. For k1 = 0, the Ω(ς,ηo) is minimal
and for k1 ̸= 0, the Ω(ς,ηo) is not minimal.
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Proof. Let Ω(ς,ηo) be developable. Then, f̃ = 0 and from (19), we get

H =
−(r2

1 + r2
2)(k1(1 + ur

′
1) + uk2r

′
2)

2r2
2 g̃2

. (21)

If k1 = 0, then k2 = 0 and we have H = 0. This result implies that Ω(ς,ηo) is minimal.
If k1 ̸= 0, then by utilizing f̃ = 0 in (21) we obtain

H =
r1k2 − r2k1

2r2 g̃
.. (22)

From (22), Ω(ς,ηo) is minimal if and only if r1k2 − r2k1 = 0. Hence, we obtain r2/r1 = −r1/r2.
Then, r2

1 + r2
2 = 0 gives r1 = r2 = 0. In that case, ηo = 0 which is a contradiction. Therefore,

Ω(ς,ηo) is not minimal.

Corollary 7. If k1 ̸= 0, there is no developable osculating type ruled helicoid.

Proof. The Catalan Theorem in [24] puts forward that helicoids and pieces of helicoids
are the only minimal ruled surfaces and, as a result of Theorem 3, there is no developable
osculating type ruled helicoid.

Under the assumption that Ω(ς,ηo) is developable, the Equations in (11) can be written as

(Ω(ς,ηo))s =(1 + ur
′
1)N1 + ur

′
2N2,

(Ω(ς,ηo))u =r1N1 + r2N2
. (23)

and the normal vector n of the surface is n⃗ = B. For the vector ϑ⃗p ∈ TpΩ(ς,ηo), the

Weingarten map of the surface Ω(ς,ηo) is expressed by Sp = −Dpϑ⃗ : TpΩ(ς,ηo) → Tϑp S2,

where TpΩ(ς,ηo) is tangent space and
{
(Ω(ς,ηo))s, (Ω(ς,ηo))u

}
is its base at p ∈ TpΩ(ς,ηo).

Then, we have

Sp(Ω(ς,ηo))s = −∂n
∂s

=
r1k2 − r2k1

r2 g̃
(Ω(ς,ηo))s +

uk1r
′
2 − k2(1 + ur

′
1)

r2 g̃
(Ω(ς,ηo))u,

Sp(Ω(ς,ηo))u = −∂n
∂u

= 0.

(24)

Then the Weingarten map can be expressed by

S =


r1k2 − r2k1

r2 g̃
0

uk1r
′
2 − k2(1 + ur

′
1)

r2 g̃
0

. (25)

Thus, for the surface Ω(ς,ηo), the Gaussian curvature and mean curvature are expressed by

K = det(Sp) = 0 and H =
1
2

tr(Sp) =
r1k2 − r2k1

2r2 g̃
, (26)

respectively. From det(Sp − λI) = 0, we get the principal curvatures of the surface Ω(ς,ηo)

as λ1 =
r1k2 − r2k1

r2 g̃
, and λ2 = 0. Hence, the following corollary can be given:

Corollary 8. Let Ω(ς,ηo) be a developable osculating type ruled surface.

(i) For k1 ̸= 0, there exists no umbilical point on the surface Ω(ς,ηo).
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(ii) For λ1λ2 = 0 and k1 ̸= λ1 ̸= 0, the quadratic approach of the surface is a parabolic cylinder.
(iii) For λ1 = λ2 = 0, the quadratic approach of the surface is a plane.

Since the unit normal vector n of the developable osculating type ruled surface Ω(ς,ηo)

along the base curve ς(s) is nς = B, we have

Sp(N1) = −DN1 nς = −
nς

ds
= −k1N1 − k2N2. (27)

The base curve ς(s) is a line of curvature, i.e, (SN1 = λN1) if and only if ς(s) is a plane

curve. However, Ω(ς,ηo) being developable implies that k1 = −
(

r2

r1

)
k2. Then r1 ̸= 0 and

k2 = 0 satisfies k1 = 0 so that ς(s) is a line. Therefore, the following corollary can be given:

Corollary 9. The base curve ς(s) is a line of curvature if and only if ς(s) is a line.

If k1 ̸= 0, the equation S(λ1) = λ1e1 gives the principal direction e1 as

e1 =

(
r1k2 − r2k1

r2 g̃

)
(Ω(ς,ηo))s +

(
uk1r

′
2 − k2(1 + ur

′
1)

r2 g̃

)
(Ω(ς,ηo))u. (28)

If we assume r1k2 − r2k1 = 0, it leads to a contradiction. Then the following corollary
can be given:

Corollary 10. Let k1 ̸= 0 and Ω(ς,ηo) be a developable osculating type ruled surface.

(i) The parameter curve Ω(ς,ηo)(s, u0) is a line of curvature if and only if u0k1r
′
2 − k2(1+ u0r

′
1) = 0.

(ii) The parameter curve Ω(ς,ηo)(s0, u) cannot be a line of curvature.

Moreover, using (11) in (28), we get e1 = −k1N1 − k2N2. This result satisfies Corollary 9.
Assume that ϑp ∈ TpΩ(ς,ηo) is a unit tangent vector at a point p on the developable

osculating type ruled surface Ω(ς,ηo). Then we express ϑp as

ϑp = A(s, u)(Ω(ς,ηo))s + B(s, u)(Ω(ς,ηo))u (29)

where A and B are differential functions and A2 + B2 = 1. Then, we have

Sp(ϑp) = A(s, u)

[(
r1k2 − r2k1

r2 g̃

)
(Ω(ς,ηo))s +

(
uk1r

′
2 − k2(1 + ur

′
1)

r2 g̃

)
(Ω(ς,ηo))u

]
. (30)

Using (11) in (29) and (30), it is obtained that

ϑp = (A(1 + ur
′
1) + Br1)N1 + (Aur

′
2 + Br2)N2,

Sp(ϑp) = −A(k1N1 + k2N2).
(31)

Then the normal curvature can be written as

kn(ϑp) = ⟨Sp(vp), vp⟩

= −A[k1(A(1 + ur
′
1) + Br1) + k2(Aur

′
2 + Br2)].

(32)

If k1 ̸= 0, since Ω(ς,ηo) is developable, k2 = −k1

(
r1

r2

)
is obtained. Then, (32) becomes

kn(vp) = −A2k1 g̃. If k1 = 0, we get kn(vp) = 0. Then the following theorem can be given:

Theorem 4. Let Ω(ς,ηo) be a developable osculating type ruled surface.
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(i) If k1 ̸= 0, then a unit tangent vector ϑ(p) ∈ TpΩ(ς,ηo) is asymptotic if and only if g̃ = 0 and
ϑp = ηo.

(ii) If k1 = 0, then ς is a straight line and any tangent vector ϑp is asymptotic.

Since the vector ηo is unit, considering the type-2 Bishop frame of the osculating type
ruled surface, we can take ηo = cos ψ(s)N1(s) + sin ψ(s)N2(s) where ψ is the angle between
ηo and N1. Differentiating the ruling ηo with respect to s, we obtain

η
′
o = −(ψ

′
sin ψ)N1 + (ψ

′
cos ψ)N2 − f̃ B (33)

where f̃ = k1 cos ψ + k2 sin ψ. Then, using the definitions in [23], the central normal and
central tangent vectors of the surface Ω(ς,ηo) are determined by

h(s) =
η
′
o(s)

∥η
′
o(s)∥

=
−(ψ

′
sin ψ)N1 + (ψ

′
cos ψ)N2 − f̃ B√

(ψ′)2 + f̃ 2
,

a(s) = ηo(s) ∧ h(s) =
−( f̃ sin ψ)N1 + ( f̃ cos ψ)N2 + ψ

′
B√

(ψ′)2 + f̃ 2

(34)

respectively. Then the following corollaries can be given:

Corollary 11. Let Ω(ς,ηo) be an osculating type ruled surface. Then the following statements are equivalent:

(i) The angle between ηo and N1 is constant.
(ii) The central normal vector h(s) and the binormal vector of ς are linearly dependent.
(iii) The central tangent vector a(s) lies on the plane {N1, N2} of ς.

Corollary 12. For the osculating type ruled surface Ω(ς,ηo) the following statements are equivalent:

(i) Ω(ς,ηo) is developable.
(ii) The central normal vector h(s) lies on the plane {N1, N2} of ς.
(iii) The central tangent vector a(s) and the binormal vector of ς are linearly dependent.

Example 1. Let ξ(s) be a unit speed curve of E3 given by

ξ(s) =
(

12 cos
s

13
, 12 sin

s
13

,
5s
13

)
. (35)

Using (2), the type-2 Bishop frame of ξ = ξ(s) is written as follows:

N1(s) =
(
−12

13
sin

12s
169

sin
s

13
− cos

12s
169

cos
s

13
,

12
13

sin
12s
169

cos
s

13
− cos

12s
169

sin
s

13
,

5
13

sin
12s
169

)
,

N2(s) =
(

12
13

cos
12s
169

sin
s

13
− sin

12s
169

cos
s

13
,

− 12
13

cos
12s
169

cos
s

13
− sin

12s
169

sin
s

13
,− 5

13
cos

12s
169

)
,

k1(s) =− 5
169

cos
12s
169

, k2(s) = − 5
169

sin
12s
169

(36)

where Φ(s) =
∫ s

0
12
169 ds = 12s

169 .



Symmetry 2024, 16, 498 9 of 12

By taking r1(s) = −sin
12s
169

and r2(s) = cos
12s
169

, developable osculating type ruled surface
Ω1(ξ,ηo) is obtained as (37). The surface is displayed in Figure 1.

Ω1(ξ,ηo) =

(
12 cos

s
13

, 12 sin
s

13
,

5s
13

)
+ u

(
12
13

sin
s

13
,−12

13
cos

s
13

,− 5
13

)
. (37)

Figure 1. Developable osculating type ruled surface Ω1(ξ,ηo) from two different perspectives.

By taking r1(s) = − cos
12s
169

and r2(s) = sin
12s
169

, we obtain a non-developable osculating

type ruled surface Ω2(ξ,ηo) = ξ(s) + uηo(s). The surface is displayed in Figure 2 where

ηo(s) =
(

12
13

sin
24s
169

sin
s

13
+ cos

24s
169

cos
s

13
,

cos
24s
169

sin
s

13
− 12

13
sin

24s
169

cos
s

13
,− 5

13
sin

24s
169

)
.

(38)

Figure 2. Non−developable osculating type ruled surface Ω2(ξ,ηo) from two different perspectives.

Example 2. Let ρ(s) be a unit speed curve of E3 given by

ρ(s) =

(
1

12
sin 4s − 1

3
sin 2s,− 1

12
cos 4s +

1
3

cos 2s,
2
√

2
3

sin s

)
. (39)

Using (2), the type-2 Bishop frame of ρ = ρ(s) is written as follows:
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N1(s) =
(

sin (2
√

2 cos s)
(

1
3

cos 4s − 2
3

cos 2s
)
+

2
√

2
3

cos (2
√

2 cos s) cos 3s,

sin (2
√

2 cos s)
(

1
3

sin 4s − 2
3

sin 2s
)
+

2
√

2
3

cos (2
√

2 cos s) sin 3s,

2
√

2
3

sin (2
√

2 cos s) cos s +
1
3

cos (2
√

2 cos s)
)

,

N2(s) =
(

cos (2
√

2 cos s)
(
− 1

3
cos 4s +

2
3

cos 2s
)
+

2
√

2
3

sin (2
√

2 cos s) cos 3s,

+ cos (2
√

2 cos s)
(
− 1

3
sin 4s +

2
3

sin 2s
)
+

2
√

2
3

sin (2
√

2 cos s) sin 3s,

1
3

sin (2
√

2 cos s)− 2
√

2
3

cos (2
√

2 cos s) cos s
)

,

k1(s) = −2
√

2 cos s cos (2
√

2 cos s), k2(s) = −2
√

2 cos s sin (2
√

2 cos s)

(40)

where Φ(s) = −2
√

2
∫ s

0
sin s ds = 2

√
2 cos s.

By taking r1(s) = − sin (2
√

2 cos s) and r2(s) = cos (2
√

2 cos s), a developable osculating
type ruled surface Ω1(ρ,ηo) = ρ(s) + uηo(s) is displayed in Figure 3 where

ηo(s) =

(
−1

3
cos 4s +

2
3

cos 2s,−1
3

sin 4s +
2
3

sin 2s,−2
√

2
3

cos s

)
. (41)

Figure 3. Developable osculating type ruled surface Ω1(ρ,ηo) from two different perspectives.

By taking r1(s) = r2(s) =
√

3
3 , we obtain a non-developable osculating type ruled surface

Ω2(ρ,ηo) = ρ(s) + uηo(s) is displayed in Figure 4 where

ηo(s) =
√

3
3

(
sin (2

√
2 cos s)

(
1
3

cos 4s − 2
3

cos 2s
)
+

2
√

2
3

cos 3s cos(2
√

2 cos s),

− sin(2
√

2 cos s)
(

1
3

sin 4s +
2
3

sin 2s
)
+

2
√

2
3

cos(2
√

2 cos s) sin 3s,

2
√

2
3

sin(2
√

2 cos s) cos s +
1
3

cos(2
√

2 cos s)
)

+

√
3

3

(
cos(2

√
2 cos s)

(
−1

3
cos 4s +

2
3

cos 2s
)
+

2
√

2
3

sin(2
√

2 cos s) cos 3s,

− cos(2
√

2 cos s))
(

1
3

sin 4s − 2
3

sin 2s
)
+

2
√

2
3

sin 3s sin(2
√

2 cos s) sin 3s,

1
3

sin(2
√

2 cos s)− 2
√

2
3

cos(2
√

2 cos s) cos s
)

.

(42)
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Figure 4. Non−developable osculating type ruled surface Ω2(ρ,ηo) from two different perspectives.

3. Conclusions

This study examines the construction of osculating type ruled surfaces, whose ruling
always lies on the osculating plane of the base curve with the type 2-Bishop frame in R3. The
differential geometric features of these surfaces are expressed in terms of the curvatures of
the base curve. The conditions for these surfaces to be cylindrical and developable are given.
Moreover, the Gaussian and mean curvatures are calculated and examined for conditions
to be flat and minimal. Finally, we investigate the conditions for the isoparametric curves to
be geodesic, asymptotic curves or lines of curvature. Examples of these surfaces are given
and their graphics are drawn. With this research, we offer a new study to the literature by
investigating geometric properties of these surfaces according to the type 2-Bishop frame.
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