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Abstract: This paper introduces a multidisciplinary conceptual perspective encompassing artificial
intelligence (AI), artificial general intelligence (AGI), and cybernetics, framed within what we call
the formalism of generalized neuromorphism. Drawing from recent advancements in computing,
such as neuromorphic computing and spiking neural networks, as well as principles from the
theory of open dynamical systems and stochastic classical and quantum dynamics, this formalism is
tailored to model generic networks comprising abstract processing events. A pivotal aspect of our
approach is the incorporation of the memory space and the intrinsic non-Markovian nature of the
abstract generalized neuromorphic system. We envision future computations taking place within an
expanded space (memory space) and leveraging memory states. Positioned at a high abstract level,
generalized neuromorphism facilitates multidisciplinary applications across various approaches
within the AI community.
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1. Introduction

A fundamental principle deeply ingrained in the framework of traditional artificial
intelligence (AI) research, traceable back to Turing’s seminal article in 1950 [1], can be
distilled as follows: intelligence fundamentally resides within the highly constricted do-
main of “mere computation” [2]. Although the very notion of computation itself may
undergo transformations to account for our limited capacity to model human or natural
forms of intelligence, the definition of computational intelligence expands dynamically and
unrestrictedly, encompassing a wide range of domains and implementations. However,
operating within the boundaries of this progressive framework, the proposition “intelli-
gence is just computation” begins to assume a tautological nature, given that the concept
of computing is allowed to adapt and mutate to meet prevailing requirements and limita-
tions [3]. At this fundamental level, no significant objections can be raised. Nevertheless,
we seek to contribute to the ongoing research exploring the existence (or absence) of bound-
aries demarcating natural and artificial intelligence by scrutinizing the subtle relationship
connecting intelligence, computation, and nature.

Initially, it is important to acknowledge that the field of AI has historically embraced
two distinct approaches, described as follows:

1. Artificial computation through designed algorithms.
2. Natural computation through the direct utilization of natural processes.

Despite the existence of these two levels of inquiry, throughout much of its history, AI,
particularly within the framework of artificial general intelligence (AGI), has predominantly
concentrated on the first approach, often referred to as “computing Nature”. Meanwhile,
the second option, described as “computing using Nature”, has received relatively little
attention within the practical AI community. Essentially, the latter perspective posits that no
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fundamental differentiation between natural and artificial intelligence is necessary. Instead,
it exploits this lack of ontological demarcation to explore potential avenues for harnessing
natural resources that enable direct computation without the intervention of artificially
designed algorithms. This alternative approach aims to discover “natural computational
rules” capable of replicating intricate natural structures and behaviors, as exemplified by
the work of Wolfram [4]. Furthermore, it seeks to leverage inherently computationally rich
physical phenomena, such as quantum transformations and information [5]. By tapping
into these natural resources, the objective is to circumvent the reliance on algorithmic
computation and enable direct computational processes.

In our view, a compelling approach to reevaluating the role of AI, within the context
of our current knowledge, involves the exploration of “artificial brains” [6]. The concept
revolves around the idea that, if properly designed, these engineered systems, whether
they be natural, artificial, or a hybrid of both, should be capable of demonstrating partial or
full capabilities akin to natural intelligence. It is important to note that emulating artificial
brains does not solely rely on algorithmic methodologies. Instead, it represents an ambitious
undertaking that leverages software/hardware co-design strategies [7], with the aim of
accomplishing what neuroscience has long aspired to achieve: the reverse engineering
of the intricacies of the brain [8,9]. However, achieving scientific supremacy through
the development of artificial brains is not limited to being a future frontier confined
solely to the realm of neuroscience. Instead, we propose that various fields, including
AI, cybernetics, cognitive psychology, and broader technology research, can all reap the
benefits of embracing alternative perspectives on intelligence that incorporate elements
from both the natural and the artificial. One particularly promising paradigm in this context
is “neuromorphism”. More specifically, we aim to explore theoretical frameworks that
seek to generalize neuromorphism to encompass both AI and artificial brains within a
unified abstract framework. By adopting this comprehensive perspective, we encourage
interdisciplinary collaborations and harness potential synergies between these domains.
This approach paves the way for transformative advancements in our comprehension and
replication of intelligence.

The fields of brain science and AI have a longstanding and complex relationship,
as demonstrated by their close connection [10]. However, the recent explosive advance-
ments in neuroscience and neural networks within machine learning have not only sparked
a revolution in high-tech industries [11] but also significantly reshaped the landscape of AI
research and philosophical discourse. With neuroscience now taking a prominent role in the
study of brain science [12], it is evident that contemporary AI and machine learning heavily
rely on neural networks and deep learning techniques [13,14]. This prevailing trend can be
characterized as a kind of de facto neuromorphism, where AI and computing, in general,
are seen as expressions of, or potentially realizable through, neural networks [15]. Some
authors have even ventured to suggest that the universe itself operates as a fundamental
neural network [16]. However, it is crucial to exercise caution and avoid taking extreme
positions when considering the boundaries and possibilities of neural computing within
the framework of AI. Therefore, in this paper, we use the technical term ‘neuromorphism’
in a specific and well-defined manner. It refers to a range of ideas, methods, techniques,
and concepts that are either inspired by classical neural networks [17] or directly related to
the re-emerging field of neuromorphic computing [18].

Figure 1 illustrates the modified bifurcation of the traditional hierarchical model
of AI systems. Within this framework, there are three distinct categories. Firstly, we
have strong AI, which aims to produce fully autonomous intelligent systems capable of
passing the Turing test [1] or delivering the Golem speech [19]. These systems strive for
complete autonomy and possess the potential for consciousness-level capabilities. Secondly,
there are weak AI systems, exemplified by ANNs (Artificial Neural Networks), which
focus on the performance of highly specific intelligent tasks involving learning, reasoning,
and representation. These systems do not seek consciousness-level autonomy but excel
in specialized domains. Lastly, neuromorphic AI occupies an intermediate position in
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complexity between fully fledged AI and bottom-up learning systems. It incorporates
numerous decision-making functions observed in strong AI but does not pursue complete
consciousness or a sentient mind. Instead, its ultimate goal is to emulate a complete brain
rather than an emotive mind.

Machine
Intelligence

Top-Down
(Strong

AI, AGI)

Neuro-
morphic

AI

Bottom-
Up

(Weak AI,
Connec-
tionism)

Figure 1. The modified bifurcation of the traditional hierarchical model of AI systems.

Research in neuroscience has revealed the limitations of the simplistic approach taken
by McCulloch and Pitts in their simple neuron computational model, which employed
discrete time steps for updating calculations [20]. This approach has dominated the field
of ANNs and von Neumann computing. However, our current understanding of real-life
neurons indicates that they are significantly more complex than the simple computational
activation functions, such as sigmoid or limiters, used in traditional models. By considering
the chemical and biophysical aspects of neuronal conduction, transmission, and processing,
we now recognize that neurons are intricate dynamical systems with rich internal spatiotem-
poral structures [21]. Furthermore, these processes are inherently random or stochastic,
with various noise processes playing a crucial role in the functioning of neural networks.
These noise processes contribute to top-down attention mechanisms and decision-making
processes [22].

The field of biosemiotics, which explores the semiotic perspective in biology, has pro-
vided valuable insights into the nature of intelligence beyond mere information processing
of conventional signals [23]. These insights reveal that intelligence is not solely confined to
the realm of electrical information processing within the standard connectionist paradigm,
as exemplified by the elementary firing neurons of the McCulloch–Pitts model or even
more sophisticated mechanisms like the integrate-and-fire model utilized in spiking neural
networks (SNNs) [13,18]. Even at smaller scales, such as membranes and molecules, non-
electrical forms of information exchange and modification occur among larger molecules,
organelles, and cells [24]. This subtle interplay gives rise to a remarkably complex un-
derstanding of computational intelligence in living organisms and their evolution [25,26].
Consequently, future advancements in brain processing and AI systems, inspired by the
brain, may involve the development of networks comprising significantly more complex
processing elements than the simple interconnections of basic neurons.

With the ongoing advancements in biophysical and biochemical theories, as well
as empirical data on intra- and inter-cell communications and interactions, there is an
anticipation of a shift away from the prevailing preference for the simple neuronal models
that have dominated research on ANNs and SNNs. This shift will lead to the emergence
of a new paradigm for computing, which we refer to as generalized neuromorphism. In this
paradigm, the traditional concept of a neuron is replaced by a more versatile and inclusive
entity known as a processing element or, more specifically, a processing event. The use of the
term ‘event’ emphasizes the spatiotemporal nature of neurodynamic information process-
ing, which is already evident in SNNs, where computation is inherently event-driven and
asynchronous. In the field of computer science, theoretical and conceptual paradigms such
as data-flow graphs, hardware–software co-design, and non-von Neumann computing
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have long been known but have gained wider attention only recently [27–29]. This can be
attributed in part to the emergence of technologies such as TensorFlow-GPU-TPU com-
puting and neuromorphic computing [30–32]. Generalized neuromorphism aligns with
this emerging trend of complexification in both space and time, aiming to enhance energy
efficiency and information processing capacity [33]. These are two key aspects where bio-
logical brains still surpass our artificial computing systems and AI capabilities [8]. Through
the adoption of generalized neuromorphism, we strive to bridge the gap between biological
intelligence and artificial intelligence, leveraging the complex spatiotemporal dynamics
observed in biological systems to enhance the capabilities of our computational systems.

Our theoretical approach involves generalizing neuromorphism through the concept
of a stochastic dynamic system (SDS). This approach has a rich history and has been ap-
plied in various fields, such as physics, mathematical physics, condensed-matter physics,
optics, physical chemistry, biochemistry, economics, and information theory [21,34,35].
Dynamical systems have played a crucial role in the revival of ANN research since the early
1980s [13]. Even prior to that, they were recognized for their significance in neurodynamics,
influencing both the neuroscience and machine intelligence communities from the 1940s
to the 1980s and beyond, particularly in the early development of SNNs [18]. From the
perspective of AI and machine learning, dynamical systems were proposed as a general
approach to computational intelligence, particularly in connection with fuzzy logic and
control [35]. In recent years, SDSs have also been suggested as a foundational framework
for understanding how cognition arises in the neuronal circuits of the brain [22]. In this
article, motivated by the theory of the SDS, we further highlight its integrative and unifying
power in the field of AI. The approach presented here is a development of the conceptual
framework proposed in [3]. We note that both classical and quantum systems can be
modeled as SDSs [36], offering a comprehensive framework for various AI functions, such
as memory, decision-making, and quantum brain dynamics, as well as traditional ANN and
SNN systems. This generalized SDS formalism encompasses abstract random or stochastic
systems, whether Markovian or non-Markovian in nature [37].

The theoretical program we refer to as generalized neuromorphism serves as a for-
malism or framework designed to facilitate the development of more specific and concrete
models based on tangible physical arrangements in the future. Before delving into the
specifics, we offer an overview of this theoretical framework. We propose a synthetic, mul-
tidisciplinary perspective that integrates artificial intelligence (AI) and cybernetics through
a generalized stochastic dynamic formalism designed to model networks consisting of
abstract processing events (see Figure 2). We term this formalism generalized neuromorphism,
drawing inspiration from spiking neural networks (neurodynamic processing) and the
theory of open dynamical systems. Generalized neuromorphism is deliberately constructed
at a high level of abstraction to enable its application across diverse approaches within the
AI community. In this framework, each processing event can represent a real computing
or intelligent agent, such as a spiking neuron processor in a neural circuit, a CMOS gate
in a chip, or a consumer in the market. Processing takes place in both space and time,
with each event interacting with other events only when their states become available
(event-driven computing). In our theory, each event is regarded as a generic stochastic
dynamic process with memory, making it a non-Markovian process. The driving force
behind an assemblage consisting of such events is the diverse physico-semiotic interactions
and information exchange among them. This is achieved through a global displacement
network operator, which shifts time signals from one event to another. However, it is
important to note that, for each event, time is defined locally. The global displacement op-
erator facilitates the distribution of information, encompassing programming, scheduling,
and network connectivity, across the global scale of the event assemblage. This, in turn,
gives rise to AI capabilities like learning, prediction, and adaptation. One of the primary
applications of this formalism is its capacity to simplify the utilization of information theory,
leveraging the well-known properties of the entropy functional in stochastic dynamics.
However, from our perspective, the most significant application lies in the ability to directly
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quantify the event assemblage. This leads to the emergence of a novel concept: quantum
neuromorphic computing. The final model bears a resemblance to a stochastic quantum
random field that is both spatially and temporally nonlocal. We hypothesize that a nonlocal
quantum field could potentially be linked to the fundamental structure of intelligence in
both the living and technological domains.

Neuro-
morphism

Generalized
Neuro-

morphism

Artificial
Brain
(AGI)

Figure 2. A potential path toward attaining a level of AGI confidence may have to go through a
serious attempt to construct artificial brains, effectively using neuroscience and AI to reverse engineer
the brain. The traditional theoretical program behind an approach such as this is neuromorphism.
In this paper, an AI-oriented generalized neuromorphism (GNM) is seen as a distillation and synthesis
of various trains of thought within this framework.

2. Overall Structure and Some Preliminary Considerations
2.1. The Structure of This Article

This paper is structured as follows. Before going into our main presentation, we offer
preliminary remarks about the methodology employed in this study (Section 2.2). We then
begin by offering an overview of the current landscape of AI, AGI, and neuromorphic com-
puting, emphasizing the conceptual scope of the field and its intrinsic capabilities. While
not aiming to comprehensively cover this expansive domain, our intention is to spotlight
key aspects crucial for achieving AGI capabilities in the future. Section 3 provides a reex-
amination of classical AI within its contemporary context. We reexamine AI in Section 3.1
in a conceptually broad yet rigorous manner, setting the stage for a focused analysis of the
doctrine of neuromorphism in Section 3.2. This groundwork lays the foundation for our
novel contribution in this article: the concept of generalized neuromorphism, introduced
conceptually in Section 4. In Section 4.1, we elucidate the core characteristics we envision
for generalized neuromorphism, underscoring the unique contribution of neuroscience in
providing a brain-inspired approach to intelligence. Conversely, Section 4.2 initiates the
exploration of a central theme within our proposed concept of generalized neuromorphism:
the pivotal role of memory. This role extends beyond the structure of cognition in intelli-
gence to encompass its significance at both the physical and mathematical levels within the
foundational framework of generalized neuromorphism itself.

The principal content of our proposed abstract formalism, termed generalized neu-
romorphism within this paper, is presented in Section 5. We initiate the discourse by
abstractly and broadly defining the various mathematical constituents of a computing
generalized neuromorphic system (GNS) using the framework of fiber bundles. Of utmost
significance is the introduction of the key concept of the memory state, which represents a
novel theoretical feature in our exposition. Here, we endeavor to encapsulate, in straightfor-
ward operational terms, the notion of non-Markovianity as an intrinsic memory structure
in its own right, constituting an element of a generalized state space, a superspace that we
term a memory space. Dynamical concepts are expounded upon in Sections 5.2–5.4, with a
focus on both local and global scenarios.

In Section 6, our focus shifts toward exploring potential physical realizations of the
framework for AI and AGI, termed generalized neuromorphism. The primary theme
we develop there is nonlocality, encompassing both spatial and temporal dimensions.
Section 6.1 posits that nonlocality will emerge as a crucial prerequisite in forthcoming
physical systems anticipated to embody attributes derived from the abstract framework of
generalized neuromorphism described in Section 5. Specifically, we propose a conceivable
correlation between memory, manifested physically through nonlocality, and cognitive
AGI. Additionally, we explore avenues of physical realization, such as quantum biology,
quantum AI, and the potential for conceiving a quantum manifestation of generalized
neuromorphism, as outlined in Section 6.2. To provide a more concrete proposal in this
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direction, Section 6.3 further elaborates on the form, structure, and functionality of a
candidate quantum GNS scheme.

Lastly, Section 7 furnishes a concise and targeted overview of how intelligence can be
embodied through the operation of generalized neuromorphic systems, such as those envis-
aged in this article. Initially, in Section 7.1, we specify how machine learning, for instance,
can be integrated within a GNS framework. Conversely, Section 7.2 expounds on how
certain cognitive functions might be actualized within a framework inspired by stochastic
dynamical systems akin to the one proposed here with GNS. In particular, we provide an
illustration of decision-making. Finally, we end with conclusions.

2.2. Preliminary Methodological Considerations

Before we begin our main presentation, it is essential to provide a comprehensive
introduction to our review, analysis, and synthesis methodologies. Detailing why the
proposed topics are relevant, how they were selected, and the rationale behind their
classification is crucial. The methodology employed in this article is centered around
several key thematic considerations:

1. The priority of AGI: While AGI stands apart from AI, it is worth noting that, histor-
ically, AI has been preoccupied with aspects that are now recognized as integral to
AGI. Thus, it is essential for a formal framework aspiring to encapsulate the core prin-
ciples of generalized neuromorphism to prioritize AGI directly, rather than confining
itself to the narrower functions within AI, such as those commonly emphasized in
contemporary mainstream research, notably machine learning. For a broader critique
along these lines, please refer to [38,39].

2. The primacy of brain science in AGI: Neuroscience and AI research represent distinct
fields with their respective methodologies. However, this author aligns with a growing
minority of researchers who contend that significant advancements in AGI can only
occur once a comprehensive understanding of the functioning of the neocortex in real
brains is achieved [40]. Although this paper does not go into detailed discussions of
neurobiology, our analysis and proposed framework, generalized neuromorphism,
draw inspiration from neuroscience, particularly studies focusing on the cerebral
neocortex [12,22].

3. The integral role played by memory: A fundamental methodological theme in our
investigation is the pivotal role of memory in elucidating the connection between
brain structure and AGI agents. Specifically, we observe within the intrinsically open
thermodynamic nature of the brain both structural and dynamic characteristics that
must be deliberately imbued into both artificial brains and core AGI agents in the
future (see Figure 2). Memory, a key aspect of complex open systems, significantly
influences both the structure and function of living and intelligent systems alike [41].
This aspect will be underscored throughout our study at various levels, including
the review section, the proposed formalism of generalized neuromorphism, and the
applications and implementation segment.

4. How AGI should be approached: One of the central inquiries addressed in this study
pertains to the most effective approach for achieving AGI. After examining the tradi-
tional top-down and bottom-up approaches, we support a novel synthesis that draws
inspiration from both and is informed by our current understanding of brain function.
This approach aligns with the aspiration of neuroscience to “reverse engineer the
brain” [8] and subsequently employs engineering principles to construct an artificial
brain [9]. We argue that pursuing the development of artificial brains represents a
promising path toward realizing AGI. Generalized neuromorphism emerges as a
theoretical framework that offers insights into the feasibility of this endeavor.

5. Avoiding overemphasis on machine learning: While our presentation addresses ML as
an essential component of the bottom-up approach to AGI, we aim to avoid overem-
phasis on it. While acknowledging the significant progress made in ML, particularly
within deep learning paradigms, we align with a growing chorus of critical voices that
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highlight the fundamental inadequacies of conventional ML, particularly the ANN
framework, in solving the problem of general intelligence [38–40,42]. We advocate for
considering other directions of research, such as classical and quantum brain theory,
non-Markovian dynamical systems, and dissipative structures, to shape the future
direction of research outlined in this paper. Hence, in our presentation, training and
optimization constitute only a portion of the overarching formalism of generalized
neuromorphism.

The present article is intended as neither a survey article nor a comprehensive review
of AI and related themes. Instead, it is a conceptual piece aimed at formulating a view on
AGI based on a new synthesis of various existing paradigms, which we term generalized
neuromorphism. Consequently, some important topics are omitted due to space constraints
and being beyond the original scope of the research presented here. Notably, aspects such
as the nature, role, and function of consciousness in attaining and maintaining intelligence,
whether natural intelligence or AGI, are not addressed. Additionally, we avoid delving
into theories of the mind, a detailed examination of cognitive psychology, and discussions
on the philosophy of language and mathematical logic. Furthermore, we do not examine
the well-known problems of epistemology and logic that typically arise in conjunction with
AI, especially strong AI, such as that associated with AGI and artificial brains.

3. Revisiting Classical AI in Light of Neuromorphism
3.1. What Is Artificial Intelligence?

Brain functions are commonly categorized into three main areas: (1) motor control,
(2) cognition, and (3) information storage, retrieval, and processing. Throughout the history
of AI and AGI, these functions have been of significant interest. Motor control plays a
crucial role in applications related to robotics, industrial control, and automation. Cognition
was a focal point in early AI systems, including expert systems and electronic assistants.
On the other hand, information or data processing has emerged as the dominant topic in
contemporary AI and machine learning research, particularly in the context of bottom-up
approaches such as connectionism, which emphasize the processing of information at a
granular level.

Let us begin by examining the traditional definition of an AI core, which is often con-
sidered to be a system that demonstrates most, if not all, of the following four fundamental
traits (functional modalities):

1. Knowledge representation.
2. Reasoning with these representations (information processing and deduction).
3. Learning from past and current experiences to adapt ongoing reasoning (and knowl-

edge representations).
4. Autonomy via self-organization or the self-sustainability of the entire system, poten-

tially leading to replication and reproduction.

Figure 3 presents a visual representation of this structure. In the diagram, the AI core
(core AI system) is depicted at the center of the universe, while various manifestations of
this central entity are generated, propagated, and executed like satellites. The diagram
highlights the importance of allowing for mutual interactions among the four different
modalities, as they are not entirely independent. Uni-directions are not assigned because
interactions along both directions are possible for each pair. For instance, reasoning and
representations can influence each other reciprocally, leading to the formation or selection
of rules, and learning stores the acquired knowledge. Collectively, these interactions
express the holistic or globally interconnected nature of the four modalities and their active
dynamic relationships.

It should be noted that the definition of AI just provided is extensive and deviates from
the typical concise and condensed style of an encyclopedia entry. However, the intention
behind this approach is not to present a standard textbook definition of AI, but rather to
engage in an analysis of existing ideas. The aim is to explore the potential impact of recent
advancements in computing, machine learning, physics, and mathematics and how they
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might shed new light on the subject matter. By moving deeper into these domains, we
hope to uncover novel insights and perspectives that can contribute to the development
and understanding of artificial intelligence.

Core AI
System

Learning

Rea-
soning

Repre-
sentation

Auton-
omy

Figure 3. The four fundamental functional modalities of a generic AI core system.

Let us now turn our attention to the fourth modality in the aforementioned list, which
is autonomy. The inclusion of autonomy as an essential component of intelligence is a
subject of ongoing debate. Many experts in the field of AI do not consider autonomy to
be an absolute requirement for a system to be classified as an AI core module. In the early
history of computing, autonomy and related abilities, such as self-repair and reproduction,
were explored in the context of the origin-of-life problem. Scholars like Freeman Dyson,
Erwin Schrödinger, and John von Neumann have contributed significantly to these con-
cepts [43–45]. Reproduction is widely regarded as a fundamental characteristic of living
organisms [46]. However, the necessity of replication in the context of AI is a separate
matter. Does an AI system need to concern itself with perpetuating its own existence?
Strictly speaking, the other three functions—learning, reasoning, and representation—can
be pursued independently of the requirement for maintaining complete autonomy at the
system level. Therefore, an ANN chip, for example, can be considered an AI system even
though it may require a supervisor or teacher to operate effectively within its broader
environment [13].

Indeed, within the category of autonomy, there are various sub-modes that go beyond
self-reproduction. Traits such as self-repair or autoprogramming can enable an agent to be
“self-governing” or relatively independent from a supervisor. An AI core equipped with
a multitude of sensors, data-gathering probes, and antennas may possess the capability
to modify its own internal algorithmic structures through a process known as adaptation,
which can be considered a sub-category of learning. It is at this point that the conventional
bifurcation of an AI system into two fundamental configurational strategies, namely, the top-
down and bottom-up approaches, becomes significant. This is because the same process
of adaptation and change is treated differently based on distinct types of information
processing and flow (refer to Figures 4 and 5).
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Diffusion of knowledge

Outcome derivations

Rules of reasoning (deduction)

Knowledge formulation
(encoding representations)

Figure 4. The top-down approach to AI.

Traditional (strong) AI can be represented by the top-down flow diagram shown in
Figure 4. The top stratum of the diagram represents a high-level abstract representation
of “relevant data”, which aims to extract useful information from the system’s initial “raw
data”. In this top-down schema, the “raw data” can be modeled as premises, axioms,
hypotheses, or various conceptual states in a deductive chain that is about to unfold. The
execution of deductive reasoning, often depicted as a computational process, involves
the selection and configuration of a set of rules (meta-axioms, logical deductive schemas,
generative rules, etc.). These rules can either be supplied from an external source to
the agent (which is the case in most practical systems) or developed internally by the
intelligent agent itself (although fully achieving this capability is still not feasible in practice,
though research on autoprogramming is being pursued by several researchers). The rules of
inference generate outcomes or data that are then passed to the lowest level of the machine,
which is responsible for the diffusion, distribution, and communication of these outcomes
(including actions) to consumption sinks or other processing nodes in multi-agent networks,
such as neuromorphic systems, biological swarms, or economic systems.

Construct a connection-
ist plan (wire or design a
computational network)

Perform data sensing and gath-
ering (raw knowledge foraging)

Train the network
(enforce preplan)

Test (compare with
other experiences)

Generalize (knowledge con-
struction by extraction)

Figure 5. The bottom-up approach to AI.

On the other hand, bottom-up AI, sometimes referred to as “weak” AI, is represented
by the flow diagram shown in Figure 5. Incidentally, while the McCulloch–Pitts 1943
neural network model [20] is often considered the first systematic proposal for creating
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intelligent behavior using simple lower-level neurons [13], it appears that Turing himself
developed key ideas shortly after in his 1948 article entitled “Intelligent Machinery” [47].
Nevertheless, the essential objective of bottom-up AI is to move away from the rigid, fixed,
homogeneous, and deterministic computing architectures of classical systems. Instead, it
aims to adopt a dynamic, network-based, decentralized, adaptive, evolving, self-organizing,
and developing approach. This shift toward an open and dynamic system is similar to
Turing’s Connectionism Paradigm, which is rooted in some of Turing’s lesser-known
writings [47]. It is also associated with the concept of “intrinsic computing”, as described
by C. Teuscher [48]. The generalized neuromorphism framework outlined below shares
strong similarities with this bottom-up approach to intelligence, emphasizing dynamic and
adaptive systems that can self-organize and evolve over time.

Certainly, the category of autonomy can still be utilized in the definition of AI
(Figure 3), this time to distinguish between the two major types of AI systems: top-down
(strong) AI and bottom-up (weak) AI. Both approaches are necessary, and in a complete
solution to constructing a competitive intelligent system, it is expected that the two will be
integrated. As illustrated in Figure 6, each form of AI complements the other, forming a
dialectical relationship characterized by mutual determination and perpetual circularity.
The strong and weak approaches to AI are interdependent and influence each other in a
continuous feedback loop. By acknowledging the dialectical relationship between the two
approaches, we can appreciate the importance of integrating their strengths and leveraging
their respective advantages. This integration can lead to more robust and comprehensive AI
systems that benefit from both top-down reasoning and bottom-up learning and adaptation.

Top-Down AI Bottom-Up AI

Figure 6. The essentially dialectical relation between strong AI (top-down) and weak AI (bottom-up).
While each camp has its own advocates, the final “ultimate” AI system cannot involve only one at the
expense of the other.

Being an autonomous agent can indeed serve as a distinguishing marker strongly
indicating the presence of top-down control. This notion becomes evident in classic ex-
amples such as robots, androids, and cyborgs, which represent futuristic forms of fully
autonomous intelligent agents. These systems are often envisioned with a central brain-
like command center capable of conducting extensive computations. This computational
power enables them to anticipate future actions, plan ahead, and make strategic decisions.
(An iconic illustration of this concept is the computer-based chess player that defeated
Kasparov, reminiscent of Kubrick and Clarke’s sentient AGI agent HAL 9000 in 2001: A
Space Odyssey [49]).

It is evident that the visionary projections of fully autonomous intelligent agents
have not materialized as initially envisioned [38,39,42]. One of the primary reasons for
this discrepancy is our underestimation of the complexity inherent in the knowledge
representation problem. Despite our increasing computational power and ability to perform
complex calculations, we have not made significant progress in our understanding of
complex cognitive systems in a manner that aligns with those initial visions. The emergence
of deep learning, which represents a resurgence of neural networks, can be seen as an
acknowledgment of our failure to achieve a complete revolution in AI and move closer
to the strong AI approach advocated by the early pioneers of the field. Instead, the focus
has shifted toward weak AI, emphasizing the bottom-up strategy. Some researchers now
consider weak AI as the primary avenue for progress, although research into knowledge
representation from the perspective of symbolic processing and rule extraction has never
completely ceased. While deep learning has demonstrated remarkable success in various
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domains, it is still limited in its ability to provide comprehensive solutions to the broader
challenges of intelligence.

3.2. What Is Neuromorphism?

Neuromorphism is a paradigm wherein the generation of both natural and artificial
intelligence is believed to arise from intricate computations executed by neural circuits. It
constitutes an approach aimed at comprehending and replicating the operational mech-
anisms of neural systems, encompassing both organic entities and synthetic systems.
By harnessing the computational capabilities and parallel processing inherent in neural
circuits, neuromorphism strives to engender intelligent systems that emulate the cognitive
faculties observed in nature. Through the meticulous study and implementation of neural
circuits, researchers aspire to unlock novel prospects for advancing the realms of natural
and artificial intelligence. We start with a formal definition of what is generally meant by
the bottom-up approach to AI called neuromorphism:

Definition 1. (Neuromorphism) Neuromorphism is an intellectual framework in which natural
and artificial intelligence is believed to emerge through the interconnected computations of neural
circuits. It encompasses the concept of a vast rhizome, where the collective interactions of neural
circuits give rise to intelligence and cognitive phenomena.

It is important to note that neuromorphism is considered to be more encompass-
ing than connectionism. Although these terms are often used interchangeably today, it
is conceivable that, in the future, the emergence of intelligence in large and complex
neural-like computing circuits may not solely be explained by connectionist theories. Non-
connectionist theories of intelligence are now emerging in fields such as quantum biology,
quantum psychology, and quantum brain dynamics (see Section 6 for further references).
In some of these alternative proposals, the existence of a field-like global structure that
sustains long-range correlations is postulated to underlie higher-level cognitive functions
such as consciousness and long-term memory. In other words, while neuromorphism
remains rooted in the significance of neuronal computational circuits as the fundamental
material substrate of intelligence, it may also attribute certain AI functions to global or
nonlocal physical processes that are yet to be discovered and utilized in the creation of
artificial brains and AGI, as well as in elucidating the workings of the human brain.

Due to the factors mentioned above, as well as additional considerations discussed
later, we propose an expansion of the original Definition 1 to incorporate novel concepts
derived from ongoing and future research in neuroscience and AI.

Definition 2. (Generalized neuromorphism) Generalized neuromorphism (GNM) is a theoretical
framework that posits the emergence of both natural and artificial intelligence through computations
executed by parallel assemblages of processing events. These events bear a resemblance to neural
networks but exhibit distinct characteristics, such as being inherently open stochastic dynamical
systems, leveraging intrinsic memory structures, and relying on spatiotemporal modes of processing.

It is accurate to acknowledge that certain aspects of generalized neuromorphism,
as outlined in Definition 2, may also be found in various forms of neuromorphism. How-
ever, our primary aim is to construct a specific formalism that explicitly emphasizes these
aspects within the framework of generalized neuromorphism. We recognize that there are
commonalities and intersections between the two frameworks, especially in areas such
as spatiotemporal processing and intrinsic memory elements. Nonetheless, our central
focus is on establishing a formalism that accentuates the specific facets of neuromorphism
that we believe will be of utmost significance for future research in advanced AI, artificial
brains, and AGI.
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4. Generalized Neuromorphism
4.1. Main Features of Neuromorphism

The philosophy behind neuromorphism is that the surest path toward successful and
strong AI must go through the following steps:

1. Understanding the structure and functions of the brain.
2. Implementing this understanding via specialized neuromorphic (brain-inspired) hardware.

Hence, this constitutes an exceptionally ambitious program, making bold claims that,
in principle, cannot be proven a priori but are certainly worthy of in-depth investigation.
Currently, the most promising approach for neuromorphism is the development of ad-
vanced AI chips employing technologies like SNNs. It is essential for the convergence
between the fields of neuroscience and the semiconductor, computer, and AI communities
to strengthen, ultimately paving the way for the gradual emergence of a comprehensive
multidisciplinary initiative in machine intelligence in the coming decades. This initiative
could give rise to neuromorphic AI or, for brevity, neuromorphism.

When it comes to the organizational ontology of generalized neuromorphism, there
are several options to consider, including both vertical (Cartesian) ontologies and flat
(Deleuzian) ontologies. In Figure 7, we present a non-hierarchical model depicting the
emergence of strong AI and AGI from lower-level, bottom-up AI representations of com-
putational tasks, such as ANNs, SNNs, HMMs, and others. In this model, a generalized
neuromorphic system (GNS) serves as a transitional step toward AGI. If we assume a
monist position in which the mind and brain are ontologically identical, a GNS may, on its
own, exhibit strong AI capabilities if it successfully emulates a real brain. We advocate
that generalized neuromorphism should adopt such a flat or horizontal approach to the
relations between the various ontological components of the system.

Bottom-up AI

Generalized
Neuromorphic

Systems
(GNS)

Strong AI
and AGI

Figure 7. A non-hierarchical model for the emergence of strong AI and AGI.

There are several crucial traits within neuromorphism that warrant emphasis before
moving on to the formulation of a comprehensive approach to AI systems founded on
SNNs with spatiotemporal processing capabilities:

1. The AI system is an open system.
2. The AI system must make use of intrinsic memory elements.
3. The AI system processes information in space and time.

These characteristics are somewhat distinctive and serve to distinguish SNNs from
ANNs, laying the foundation for a potential new paradigm in computational intelligence
for the future.

Openness and memory represent two noticeable changes in emphasis in the traditional
paradigm of bottom-up AI. Note that both features already exist (somehow) in top-down
and bottom-up AI, but in the emerging paradigm of SNN and neuromorphic computing,
there is a drift toward a new structural possibility. ANNs are of course capable of exhibiting
memory-like performance (for instance, Hopefield networks and recurrent networks),
where much of this capability is based on realizing what are essentially memoryless
neurons using feedback mechanisms (recurrent networks) or exploiting the deep nonlinear
structure of the neuron (Hopefield networks) [13]. On the other hand, top-down AI
has been traditionally aware and conscious of the importance of exploiting memory for
the successful implementation of various decision strategies; e.g., expert systems make
extensive use of context-addressable memory-based decision rules, while the very standard
von Neumann architecture, which was developed at the same time as top-down AI was
envisioned, requires the use of a fundamental addressable memory space.
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The emphasis on openness is less obvious in the older approaches. For example,
a circuit implementation of an ANN on a chip, say an ASIC or FPGA, must ensure that the
circuitry is isolated from extraneous environmental disturbances (EMC considerations). But,
again, reinforcement learning is a striking example where the interaction of the learning
system with the external environment is treated as fundamental. Should we consider
such systems genuine open systems, then? The answer is no: open systems must involve
intrinsic generators of randomness that are due to what is essentially an unpredictable
coupling with the external reservoir. On the other hand, reinforcement systems work by
incorporating a set of highly structured and specific measures dictating how the learning
system behaves and interacts with the surrounding milieu, e.g., risk functionals, reward
cost, penalty measures, and so on. Those various loss functions are then coupled with
special search algorithms in order to fine-tune the system parameters through the learning
process (learning by optimization of loss/cost functionals). While the time evolution of
reinforcement learning systems does appear random, clearly, this is not an example of an
open dynamical system in the conventional sense of the term, as understood in stochastic
dynamics; e.g., see [34,36].

In neuromorphism, these three features—openness, memory, and spatiotemporal-
ity—serve as driving forces for innovation and complexity. Let us begin by exploring
the least obvious trait: openness. A neuromorphic system endeavors to replicate actual
brain functions to tackle intriguing computational tasks. Evidently, the ultimate aim in
emulating a system like the brain is to approach the most fundamental aspects exhibited
by such a highly complex structure: conscious awareness and even emotional intelligence.
This is why neuromorphism is inherently associated with the strong version of AI, which
has traditionally been considered achievable primarily through a top-down strategy [50].
The brain, however, differs from a chip in numerous aspects, with one of the least-discussed
differences being that a brain, like all biological systems, is fundamentally an open system.
This means that it constantly exchanges energy, momentum, and information with the
external world. While the skull provides thermal and mechanical insulation to protect the
cerebral cortex from the external environment, the brain continues to engage in continu-
ous interaction with the rest of the body through various systems, including the nervous,
circulatory, and endocrine systems. The cortex actually exists in a far-from-equilibrium
thermodynamic state. Such systems are fundamentally distinct from those addressed in
equilibrium thermodynamics, where the concept of temperature is only applicable in the
latter case [51]. Nonequilibrium systems, particularly dissipative systems, have the poten-
tial to exhibit significant self-organization and self-ordering behaviors [52]. Of particular
significance are strongly nonlinear open systems that demonstrate chaos and operate in
the vicinity of strange attractors [53]. While the mathematical theory behind these systems
is highly intricate, recent proposals have suggested that self-organization through chaos
in complex open dynamical systems could offer a novel way to understand intelligence
without relying on strictly computational methods [54]. For instance, the concept of chaos
cannot be adequately comprehended using conventional computing theory [55].

4.2. The Function of Memory and Non-Markovianity in Generalized Neuromorphism Viewed as a
Stochastic Open System

Open dynamical systems are inherently characterized by random or stochastic dy-
namics, known as stochastic dynamic systems (SDSs). Consequently, their behavior cannot
be entirely determined by a set of deterministic laws, as is the case with ANNs, SNNs,
and noise-free neurodynamics. The most straightforward approach to incorporating ran-
domness involves modeling noise. This noise may originate from fluctuations in the exter-
nal and internal degrees of freedom that interact with the neural or computing system [12]
or may result from the finite nature of the dynamical system concerning the external de-
grees of freedom [12,22,36,37]. In either case, it has been suggested that noise can play a
constructive and even essential role in the emergence of intelligence in various computing
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systems, whether they are biological, such as brain systems [12,22], or physico-chemical
systems [52,55–57].

In the most extensively studied cases of stochastic dynamic systems (SDSs) in the
literature, the Markovian approximation is commonly employed to model the SDS as a
Markovian stochastic process. In a Markovian system, information primarily flows from the
system to the environment, where it becomes irreversibly lost, as discussed in detail in the
literature [34]. In non-Markovian dynamical systems, information can flow in the reverse
direction, specifically from the environment to the finite system, as illustrated in Figure 8.
This phenomenon is particularly evident when multiple subsystems are interconnected
with the surrounding domain. The subtle interplay between various subunits, all integrated
into a larger network of interconnected processes, can result in delicate patterns of complex
mutual information exchange between the system and its surrounding informative envi-
ronment. This could potentially pave the way for innovative opportunities in intelligent
computing systems, encompassing the brain, artificial brains, and AGI systems. In such
scenarios, significant knowledge about the external world could be directly integrated into
the inner workings of the computing core. In simpler terms, a process of “non-Markovian
learning” becomes conceivable within such memory-like open quantum systems, given the
close relationship between non-Markovianity and memory (nonlocality in time).

Figure 8. An illustration of the main topological features of information flow in Markovian (mem-
oryless) and non-Markovian (memory-laden) stochastic open systems. The wavy arrows capture
the direction of information flow between the system and the environment. (a) A Markovian open
system. Information always flows away from the system to the environment. (b) A non-Markovian
open system. Information can be drawn from the environment.

5. The Structure and Dynamics of Memory Space
5.1. Structure of Memory States in Generalized Neuromorphism

Let us start by outlining the fundamental structural elements of the generalized
neuromorphic system (GNS), referred to as A . Essentially, A can be described as a
collection of processing events (PEs). The foundational (base) manifold for the assembly of
computing events is denoted by M. This manifold serves as the overarching spatiotemporal
configuration, forming the basis for the GNS A . It functions akin to an “index space” or
“label space”, where labels differentiate evolving physical states responsible for generating
the event E, with M serving as its base manifold.

Remark 1. For instance, M might adopt the form of a discrete, finite-dimensional space such asZd,
d = 1, 2, 3, representing one-dimensional, two-dimensional, or three-dimensional lattices, respec-
tively, commonly observed in traditional ANNs [13] and SNNs [18]. However, within generalized
neuromorphism, we entertain the prospect of a continuous spatial base space underlying the event
E—a feature crucial for accommodating nonstandard processing events in the future, as envisaged
in hypercomputing paradigms and post-Turing Computing machines [48]. In such cases, M can be
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endowed with a conventional smooth manifold structure [58], enabling computing to progress as an
analog process indexed by multidimensional real spaces [59].

At every point m ∈ M, we associate a fiber Xm, which functions as a generalized
(abstract) state space for the mth processing event (PE), denoted by Em, rooted at or labeled
by m. In Figure 9, the event assembly is illustrated as a fibration of the base manifold M,
following the conventional approach [60,61]. This approach links a state space Xm to each
point m ∈ M in the base manifold. Each space Xm operates as a complete, self-contained,
and independent state space.

Figure 9. The event assemblage viewed as a fiber space.

Remark 2. In most applications, Xm is typically assumed to be finite-dimensional. Conventionally,
discrete values for each state’s dimension dim(Xm) are employed, akin to the classical theory of
Markov chains, where xm ∈ A, and |A| (the cardinality of A) is finite [62]. However, in generalized
neuromorphism, we adopt a broader perspective, allowing xm to encompass continuous, discrete,
or a combination of both types, and each fiber space Xm can potentially accommodate a countably
infinite number of dimensions. The latter scenario involves Xm being isomorphic to a Hilbert space,
which is particularly pivotal for imbuing the GNS with a quantum structure [63].

Every state xm ∈ Xm within the mth event Em is endowed with a local dynamical
evolution relative to the corresponding event’s time variable. In Figure 10, the dynamics of
a generic non-Markovian event are depicted within its dedicated memory space M (refer
to Definition 7). The dynamics of each processing event are exclusively defined locally,
confined to this specific event only. This distinction is reflected in the utilization of distinct
time variables for each processing event. The local time pertaining to the mth processing
event Em is represented by tm ∈ R+, where the instantaneous state locally corresponds
to xm(tm) ∈ Xm for all tm ∈ R+. It is important to note that, in this paper, all stochastic
processes are irreversible, and time is considered to belong to the positive time axis only.

Remark 3. Viewed from an AI system’s standpoint, each fiber space Xm embodies the internal
states of a sophisticated intelligent agent, where these states mirror the underlying physics of the
material system. AI functionalities, such as memory storage, decision-making, and other cognitive
processes, are inherently encoded within the memory space Mm correlated with each physical state
space Xm, as will be explicated below.

The laws governing dynamical changes are inherently stochastic, typically expressed
through a probability space defined on Xm. As the details from probability theory are
widely recognized, we refrain from reiterating them here. Our approach aligns with
the standard methodology employed in ergodic and dynamical system theory, as seen
in references like [64]. Notably, each state space Xm may be associated with a distinct
probability space, particularly relevant for “hybrid” event assemblies accommodating a
mixture of discrete random states within the same model. In the classical version of GNS
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theory, xm represents a random variable, whereas in quantum GNSs, the state assumes the
form of a quantum density operator ρm(t).

Figure 10. Event dynamics on memory space M.

Definition 3. (Markovianity and Non-Markovianity) Let x(t) be a stochastic dynamic process
corresponding to a processing event (PE) whose state space is X. We say that the dynamics on X
captured by the event’s local time flow x(t) is Markovian if the following condition holds:

Pr
[
x(t) ∈ B

∣∣x(t1), . . . , x(tn)
]
= Pr

[
x(t) ∈ B

∣∣x(tn)
]
, (1)

for every Borel set B and all arrangements of ordered n time samples satisfying

t1 < t2 < · · · < tn−1 < tn < t, (2)

for all n ∈ N. If condition (1) is not satisfied, we say that x(t) is non-Markovian.

In essence, a process adheres to Markovian dynamics when its behavior at a given
moment relies solely on the most recent state. However, if the evolution of x(t) is influenced
by more than just the immediate past state, the system displays dynamics reminiscent of
memory, as its time evolution is contingent upon an entire historical sequence.

Remark 4. In the various literature, Markov processes are defined diversely; however, the fun-
damental concept is that the current state relies solely on the immediately preceding moment in
discrete system models or the infinitesimally immediate state in continuous models. Put differ-
ently, predicting the future necessitates only one state. Although most models emphasize the
discrete case, it is important to note the discrete–continuous distinction. For further details, refer
to [65] for a mathematical perspective and [34,66] for insights from the physics and mathematical
physics standpoint.

It is important to highlight that the definition of non-Markovianity lacks a constructive
nature. This complicates the development of a comprehensive theory for non-Markovian
processes, as it remains unclear how to effectively construct processes that exhibit non-
Markovian behavior. In the subsequent discussion, we present a particular formulation
of non-Markovianity that, while less general, encompasses a broad range of applications
within generalized neuromorphism. Our approach involves introducing the concept of
memory states and establishing non-Markovian dynamics directly as a function of these
memory states.

We gather all past states contributing to the generation of a specific present state
xm(tm) ∈ Xm within a newly defined structure termed the causal history of the stochastic
process relative to the local time instant tm, denoted by Xm(tm). The aim is to consolidate
all microstates that causally determine the system’s evolution up to the local time tm of the
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processing event Em. For brevity in notation, we use t instead of tm when the processing
event in context is evident.

Definition 4. (Memory states) We define the memory state Xm(t), with a temporal length denoted
by Tm, aligning with the mth processing event xm(t), as follows:

Xm(t) := {xm(t) ∈ Xm, s. t. for all sequences like (2) condition (4) holds ∀n ∈ N }. (3)

The fundamental probabilistic causal law is the following:

Pr
[

xm(t) ∈ B
∣∣⋃

0≤t′≤t
{xm(t′)}

]
= Pr

[
xm(t) ∈ B

∣∣∣{xm(t1), . . . , xm(tn), ∀ |tn − t1| ≤ Tm}
]}

, (4)

for every Borel set B. The condition
tm − Tm ≥ 0 (5)

must be satisfied for all m ∈ M and tm ∈ R+. (Recall that tm is t in expressions like xm(t), i.e., the
local time of the mth event.)

The length of a given memory state, Tm, need not be unique. However, we can define
a unique nonnegative number T∗

m := sup{Tm} as the memory depth of the mth PE’s
non-Markovian process at t. Note that T∗

m is possibly dependent on t.
In general, T∗

m ̸= 0, representing the more common situation encountered in nature,
where strongly coupled complex systems often exhibit memory. However, when Tm = 0, it
can be readily demonstrated that Markovian behavior is recovered, as illustrated by the
following theorem:

Theorem 1. A processing event whose memory state X (t) has zero memory (T∗
m = 0) depth at

every time instant t is Markovian.

Proof. Subject to constraints (2) and (5), the condition |tn − t1| ≤ Tm in (3) can only be
fulfilled under T∗

m = 0 when Tm → 0. Consequently, in the conditional joint probability (4),
only a single “infinitesimally prior” state contributes, leading to a reduction akin to the
Markovian expression (1).

Non-Markovian systems exhibit a complex state structure where dynamical rules
govern memory states rather than the states themselves. As the depth or recall capability
of memory states diminishes to zero, the dynamics regress to the standard local-in-time
Markovian scenario. In this scenario, the laws of nature and information processing
rules directly impact the microstates of the state space. Consequently, within the classical
framework of generalized neuromorphism, Markovianity encompasses classical Newtonian
dynamics and closed quantum systems.

The collective space encompassing all memory states can be endowed with a Hilbert
space structure. To facilitate this, let us introduce a helpful technical concept: the discrete
approximation of a continuous memory state.

Definition 5. (n-approximation) We define the n-approximation of a memory state X (t) as a set of
states x(ti) evaluated at time instants ti, i = 1, · · · , n, satisfying condition (2).

Given the n-approximation, defining linear combinations such as α1X 1
m(t) + α2X 2

m(t′),
where α1, α2 ∈ C, and any two memory states, X 1

m(t) and X 2
m(t′) (not necessarily based at

the same time instant; i.e., in general, t ̸= t′), is straightforward using obvious pointwise
operations involving X1

m(ti) ∈ Xm and X2
m(t′i) ∈ Xm. Hence, we conclude the following.

Theorem 2. The set of memory states can be endowed with a linear (vector) space structure
inherited from Xm.
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Next, we show that this linear space can be endowed with an inner product struc-
ture, too.

Definition 6. (Inner product on memory states) Assume that the state space X is a vector space
equipped with an inner product form ⟨·, ·⟩. Let X (t) and X (t′) be two memory states belonging
to the same event but based at two time points, t and t′. To streamline the notation, we abstain
from using superscripts or subscripts to label generally distinct memory states Xm. Instead, we rely
on the time index to indicate the potential distinction among memory states. For instance, X (t)
and X (t′) denote two potentially distinct memory states, which might correspond to X 1(t) and
X 2(t′). Let the n-approximations corresponding to the above memory states be {ti}n

i=1 and {t′i}n
i=1,

respectively. The n-approximation inner product ⟨X (t),X (t′)⟩n, or n-form for short, is defined as

⟨X (t),X (t′)⟩n :=
n

∑
i=1

⟨x(ti), x(t′i)⟩. (6)

It is straightforward to demonstrate that the summation in (6) adheres to the properties
of an inner product when each term individually satisfies the criteria for an inner product.
Definitions 5 and 6 are most appropriate for depicting discrete or digitized computing
systems, where time operates in a discrete manner and the count of computations within
each finite temporal interval is limited.

It is evident that the inner product between two memory states, X (t) and X (t′),
as defined previously, relies on the n-approximations of the two memory states consid-
ered in computing (6). Extending this definition to the scenario where n → ∞ while
maintaining the depth of the memory state allows for a version more apt for continuous
time representations.

For example, consider the following two measurable maps: tτ : [0, 1] → [t − T, t]
and t′τ : [0, 1] → [t′ − T′, t′]. These maps essentially establish a continuous version of the
segmentation (2), replacing the discrete index i with the real variable τ. Here, T and T′

represent the depths of the memory states X (t) and X (t′), respectively. Additionally, we
can define the inner product for an infinite number of samples using the following formula:

⟨X (t),X (t′)⟩L2 :=
∫

τ∈[0,1]
⟨x(tτ), x(t′τ)⟩dτ , (7)

whenever the Lebesgue integral exists. Again, it is easy to check that the integral above is
an inner product, provided that the integrand is an inner product, too.

The size of the memory state Xm(t) can be defined in terms of the norm induced by
the inner product, i.e., ∥Xm(t)∥ = ⟨Xm(t),Xm(t)⟩. (This size should be distinguished from
the temporal depth captured by quantities such as Tm and T∗

m.) The distance between two
elements of the memory space M is given by

dist
[
Xm(t),Xm(t′)

]
:=

∥∥Xm(t)−Xm(t′)
∥∥, (8)

where we have exploited the fact that each memory space inherits an obvious linear (vector)
space structure from the original state space Xm. With a distance, one can introduce metric
topology and perform analysis.

Now, equipped with all the necessary tools, we can define a concept of a memory
space that is comprehensive enough to accommodate dynamics within it.

Definition 7. (Memory space) Let Xm(t) be a generic memory state belonging to the mth event
Em based at time t ∈ R+. The set

Mm :=
⋃

t∈R+

{Xm(t)}, (9)
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equipped with an inner product as defined above, is called the memory space associated with the
event Em.

An immediate consequence of this definition is that the memory space is a Hilbert space:

Theorem 3. If X has a Hilbert space structure, then the memory space M, whose inner product
is defined in Definition 6, is a Hilbert space denoted by Mn or ML2 , depending on the type of the
utilized inner product on memory states.

It is interesting to note that the memory space Mm is a larger space than the state space
Xm. More precisely, if Xm is a finite Hilbert space of dimension l, then Mn has the dimension
nl. On the other hand, the memory space ML2 as a Hilbert space is infinite-dimensional
even with finite l.

There is then a tremendous increase in complexity, which is an inevitable outcome
of taking memory effects into account. The dynamics of non-Markovian systems are
considerably more complex than memoryless Markovian processes because the usual state
space in the latter is no longer adequate for capturing the essential dynamical effects of
time change and information flow.

Nonlocality in time, akin to nonlocality in general, is recognized for introducing
infinite superspaces, an outcome arising from the inherently more intricate and richer
underlying topological structure of such systems [67]. However, from an AI perspective,
this may be perceived as an added advantage. Despite the computational complexity rising
with larger configuration space dimensions, the computing system itself, particularly
the event assemblage in our context, gains additional degrees of freedom. Specifically,
the memory space structure with its potential infinite dimensions can be harnessed for the
development of innovative intelligent search and computing strategies.

5.2. The Dynamical Map

We have witnessed how the inclusion of memory, i.e., non-Markovianity, notably
amplifies the complexity of the stochastic process’s dynamic behavior. This is evident in
the larger dimensionality of the memory space M compared to the original state space
X associated with the event. Furthermore, another contributing factor to this complexity
surge is the intricate involvement of correlations between two or more past states within the
causal history of the non-Markovian stochastic process under scrutiny.

In a generalized dynamics scenario wherein the dynamic process of a given PE can
manifest as either Markovian or non-Markovian, the crux of the theory resides in the
transformations of time histories, whose formal structure might be encapsulated by the
following expression:

Xm(t′)
Dynamical Map L−−−−−−−−−−→ Xm(t), (10)

where t′ and t pertain to the local time of the PE indexed by m ∈ M (strictly speaking,
denoted by t′m and tm). Notably, in (10), we intentionally refrain from utilizing the term
‘evolution’ to characterize the dynamics of time alteration in the states. This is because the
concept of dynamics, understood as the evolution from an initial state, strictly pertains to a
purely Markovian (local-in-time) attribute, applicable only to systems neglecting memory
effects. Conversely, a general non-Markovian dynamical system surpasses the simple
tracking of a single state’s evolution over time. It must encompass the behavior of two or
more (sometimes a continuum of) states, namely, those belonging to the initial memory
state Xm(t′) of the mth event. In this case, the physics becomes notably more intricate,
as the correlation or stochastic dependence among different states will influence how each
state develops dynamically over time.

We depict this structure of dynamical transformation in Figure 10, representing a
“thick slice” of the history within the non-Markovian system as an n-approximation of an
initial memory state Xm(t′). Conversely, the “output” of the dynamical transformation of
the internal original states in xm of the event Em is represented by another memory state,
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denoted by Xm(t), now based at the later time instant t > t′. This final memory state is itself
discretized via an n-approximation. Consequently, we can conceive the total dynamical
transformation as a shift of the “entire durational block” of initial states along the direction
of an irreversible increase in local time from t′ to t. However, it is crucial not to interpret this
transformation as a result of a “point-by-point” conversion, where each discrete moment
of the final memory state, e.g., xm(ti), is perceived as having “evolved” from an earlier
moment (e.g., xm(t′l)) belonging to the initial memory state, where, in general, l ̸= n.

Another complicating factor arises in systems with memory, particularly in the case of
dynamical maps, where, contrary to the Markovian scenario, the map L may depend on
the initial states xm ∈ Xm(t). This dependence is observed in quantum stochastic dynamics,
where the quantum map, generated by the Kraus operators, transforms a generic density
operator into another in open quantum systems and itself relies on the initial quantum state
(see, for example, [66], Theorem 3.1.2, p. 23.). While we are dealing with classical systems
here, it is essential to note that the general structure of the quantum map with memory is
still applicable in the classical case. This is because its origin lies in the existence of memory
operations rather than quantum effects per se. Therefore, in general, we should express (10)
as X ′

m = L(Xm)[Xm] instead of X ′
m = L[Xm] to explicitly indicate the dependence of the

dynamic operators on initial states.
In essence, the dynamic map L cannot always be reduced to a multiple-input–multiple-

output (MIMO) system. Non-Markovian systems encompass a new aspect of “holism” that
is absent in Markovian systems yet precisely expressed using our mathematical framework:
the complete memory state evolves over time as a unified “whole unit”. This signifies
that the actual transformation induced by the system transpires from one memory state to
another. The individual moments within each memory state in a given n-approximation
merely serve to model or manifest this inseparable transformation of memory states.
Particularly in non-Markovian systems, states in Xm that are temporally close may not be
regarded as discrete or separate degrees of freedom due to the substantial correlation effect
stemming from the intrinsic memory structure in the system (where memory originates
from temporal correlations).

5.3. The Dynamics of Events with Intrinsic Memory: The Local Theory

Next, we derive explicit dynamical transformation equations for the evolution of a
generalized neuromorphic system (GNS), potentially equipped with an intrinsic memory
structure. Our formulation emphasizes the treatment of each event’s dynamical change as
a purely local theory. This process’s dynamics were previously encapsulated in Section 5.2
through the map Lm in (10) (refer also to Figure 10). Here, we aim to present a more
comprehensive overview.

Fix a base manifold M, which can be continuous or discrete (or even both). Consider
an event assemblage,

A =
⋃

m∈M
{Em}, (11)

where the mth event is a general stochastic dynamic system (SDS), possibly non-Markovian.
Without compromising generality, we approach the problem in terms of the memory
space. (For Markovian systems, a memory space with zero depth becomes isomorphic to
the state space, as illustrated in Theorem 1). In addition to the initial memory, external
inputs um(t) enter each processing event Em, bringing in information from other processing
events. The set of all inputs belonging to Em is denoted by Um, while the total inputs of the
assemblage A are defined by U , represented as the disjoint sum (performed over evental
data) of all inputs. Here, we employ the disjoint sum to signify that local data, such as local
time signals and local states (local in the sense of being part of a specific event), cannot
be combined. Overall, we define the total state space X and the total memory space M .
These are

U =
⊔

m∈M
{Um}, M =

⊔
m∈M

{Mm}, X =
⊔

m∈M
{Xm}, (12)
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where
⊔

is the disjoint union operation. Here, the set of inputs Um is the space of time
functions um : R+ → K, where K is either Rl or Cl , with l possibly infinite. Note that,
depending on the application, additional conditions like continuity and smoothness might
be necessary, but at present, we do not go into these specifics. Moreover, more abstract
target spaces can be introduced if the Hilbert space is deemed insufficient. Indeed, in open
quantum systems, there are instances where a transition to a larger space, such as the rigged
Hilbert space, becomes necessary to accurately model irreversible phenomena like Markov
processes [55].

We obtain all external data arriving at the mth event in the presynaptic excitation operator
E , which maps all other events’ memory states and outputs to a single signal u(t) inserted
into the mth event. The general structure of this operator is the operator family

E =
⋃

m∈M
{Em}, (13)

where Em is the mth component of the global excitation operator E representing the process

Em : X ×U ×M → Um ×H U
M ×H X

M ×H X
M. (14)

Here, the following spaces represent the total histories of X , M , and U , respectively:

H X
M :=

⊔
m∈M

⋃
τ∈[0,∞[

{xm(τ)},

H X
M :=

⊔
m∈M

⋃
τ∈[0,∞[

{Xm(τ)},

H U
M :=

⊔
m∈M

⋃
τ∈[0,∞[

{um(τ)}.

(15)

On the other hand, for S ⊆ M, one may create specialized segments of the total history
based on the most recent current data using the following segmentation history operators:

HSxm(t) :=
⊔

m∈S

⋃
τ∈[0,t]

{xm(τ)},

HSXm(t) :=
⊔

m∈S

⋃
τ∈[0,t]

{Xm(τ)},

HSum(t) :=
⊔

m∈S

⋃
τ∈[0,t]

{um(τ)}.

(16)

For example, upon operating on the current state xm(t), the operator HS will produce the
entire time history of all past states {xm(τ)}, τ ≤ t, belonging to all events whose space
indices are in S ⊆ M.

From the detailed structure outlined earlier, it is evident that Em functions as a global
operator, capable of accessing all other states and signals continuously to generate a specific
input um and other historical data, such as those identified in expressions of the form (16).
Conversely, the outputs of this operator are presented locally to the mth event. This
distinction characterizes it as a global/local operator.

The overall local structure of an event assemblage simplifies to the configuration
illustrated in Figure 11, illustrating specific details relevant to individual events. Intercon-
nections with other events are established solely via the global/local operator Em. Despite
each event being described as operating locally, it retains its status as an open system, engag-
ing in continuous interaction with the surrounding environment. Conversely, interaction
between events is facilitated through the global operator Em.
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Figure 11. The fundamental components of a processing event, including circuits for processing and
outputting information from and into the other events in the GNS.

The dynamical equations of the mth event can be represented in the following form:

dxm(t)
dt

= F{xm, um, t; HSxm(t), HSum(t), HSXm(t)}, (17)

The map F represents the system dynamics map, defining the internal mechanism of the
processing event. Here, S ⊆ M denotes the indices of the events influencing the mth event,
whose dynamics are under consideration. The historical segment HSxm(t) encompasses
the entirety of unstructured previous states, while HSum(t) generates the history of past
inputs. Conversely, the historical segment HSXm(t) provides the past history of structured
memory states from other events that may impact the dynamics of the current event. In this
context, the historical slice HSXm(t) might be conceived as a “second-order state history”
or a “meta-historical dataset”, furnishing information about how the internal dynamics of
the present event (when m ∈ S) and other events are structured.

The solution of (17) leads to the dynamic operator of the mth processing event Em,
represented by Lm, as given in (10). It is worth noting that, in general, this operator itself
may depend on the initial states or the memory state.

5.4. The Dynamics of Events with Intrinsic Memory: The Global Theory

A generalized neuromorphic system (GNS) can be represented as a collection of inter-
connected processes, each realized by a system described by the form (17). Each subsystem
operates within its own locally accessible state space Xm, where m represents a discrete or
continuous index corresponding to the mth neuronal process, and M ∋ m denotes the index
space. The overarching theory of GNS emerges from the interconnection of all processing
elements (PEs). Each PE is governed by an equation akin to (17). The global excitation
operator E , introduced earlier, serves as a mechanism for global synchronization, facili-
tating the coordination of the manifold M and orchestrating the complex spatiotemporal
relationships among the various PEs composing the GNS.

A global time operator τ is defined by the expression

(t, T ) = τ[tm,Xm(tm), m ∈ M], (18)

where τ operates on the local time array [tm]m∈M of all PEs’ local time variables, ultimately
yielding a unified global time t to be applied to the entirety of the temporal dynamics
within the global assemblage. Additionally, supplementary data stored within an ap-
propriate mathematical object T are generated to facilitate the temporal scheduling of
information propagation and flow throughout the networked assemblage. This frame-
work finds utility in various contexts, such as event-driven information flow paradigms,
data-flow graphs, neurodynamics, spiking neural networks, and neuromorphic comput-
ing [13,21,22,27,32,33,68].
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The entire “state” of this generalized neuromorphic system is encompassed by the
distribution function in the classical scenario or the global density operator in the quantum
scenario, collectively referred to as the global state, denoted by Rτ . The dynamical law can
be expressed as

Rτ = Φτ{Em,Xm(tm), m ∈ M}, (19)

where Φτ represents the collective (global) dynamical evolution operator of the entire
assemblage. It is important to note that, due to the necessity to account for nonlocality
arising from non-Markovianity, the operator Φ is not required to be a semigroup [66]
or analyzable as products of semigroups. The comprehensive dynamics of a networked
assemblage of dissipative non-Markovian networks remains less understood compared to
the Markovian case.

6. Physical Realization and the Prospect for Quantum Generalized Neuromorphism
6.1. Cognitive AGI and Nonlocality

It is in the highly nontrivial correlations between multiple states operative at the
microevolutionary level of time change where one finds what makes non-Markovian
flows, or systems with memory in general and neuromorphic systems in particular, highly
interesting, both for theory and applications. Since information processing in a GNS (or
even a plain SNN with simple firing neurons) depends on the spatiotemporal dynamics of
the signal flow, while such a flow, in turn, exhibits strong collective or nonlocal “holistic”
behavior due to stochastic correlations between several states in each memory state Xm(t),
it is expected to have great potential in computing (and subsequently computation-based
AI) for realizing new intelligent functions.

In generalized neuromorphic systems (GNSs), the primary objective is to achieve arti-
ficial intelligence (AI) functions through the deployment of strongly interacting intelligent
agents (IIAs) within advanced dense dissipative networks, known as the IIA paradigm.
In such intricate systems, the intensity of interactions often leads to nonlocal effects, even
at the classical level [69]. Conversely, quantum physics is fundamentally regarded as
nonlocal [70]. Consequently, nonlocality emerges as a pivotal concern in GNS-based ap-
proaches to AI, as discussed in this article. Therefore, it is imperative to provide additional
insights into this crucial topic of nonlocality, as it serves to motivate the exploration for
new physical hardware capable of realizing and harnessing non-Markovianity in natural
systems, a central theme in our project.

Nonlocality in field theories refers to the phenomenon where the response of a field sys-
tem at one spacetime point depends on the system’s history at other spacetime points [69,71].
This concept has a rich history in physics, tracing back to plasma and crystal physics [72,73],
and has regained attention recently due to its fundamental role in nanostructures [74–78].
In the context of this article, the significance of nonlocality in AI systems arises from the non-
trivial role played by topology in dynamical interactions within complex systems [55,67].
Memory, as it directly involves mechanisms such as recall and storage [79], can be viewed
as nonlocal in time, hence linking it to the physical concept of nonlocality just cited above.
Conversely, cognitive operations encompass activities such as concept formation and
processing [80].

The theory of concepts in AGI is inherently complex and still subject to controversy.
However, simplifying the presentation by focusing on one characteristic aspect of concepts,
namely, order, can facilitate understanding. Order relations are crucial in the realm of
concepts, whether they are representational or not, particularly in the context of AGI.
Concepts typically entail a minimum requirement of order relations between different
parts, whether for storing or representing information. Furthermore, cognitive process-
ing, achieved through the manipulation of concepts, is best implemented or modeled as
transformations of the order relations inherent in the concepts themselves. If we define
order as a long-range spatial correlation, then we may equate order with nonlocality in
space. Combining these two aspects—memory and order—we recognize that the two
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essential structural manifestations of cognition jointly require spatiotemporal nonlocality
(Figure 12).

Spatiotemporal Nonlocality
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Figure 12. The fundamental role played by nonlocality in space and time in generalized neu-
romorphism stems from the importance of nonlocal interactions and processes in the theory of
complex systems.

In neuroscience, nonlocality is often described using alternate terms, such as mass ac-
tion, where it has a more specific meaning: memory cannot be localized within the confines
of a single cortical domain but instead tends to be distributed nonlocally throughout the
entire cortex [81]. In essence, memory, which embodies nonlocality in time (see Figure 12),
is distributed spatially in a nonlocal manner [82]. Presently, the origin and structure of
memory are commonly believed to reside within the neuronal circuitry of the brain, reflect-
ing a reductionist approach [83]. It is reasonable to anticipate that neurodynamic networks,
such as SNNs and beyond, should be capable of replicating this collective, fundamentally
nonlocal behavior. Previously, there was speculation that memory could only be elucidated
by postulating a new field—a “neuron field”—which would then explain the nonlocalizable
nature of memory processes. In generalized neuromorphism, this field will represent the
total stochastic or random field of the networks, defined as the collection of random states
belonging to the various processing events indexed over the GNS’s base manifold M.

6.2. Quantum Biology, Quantum AI, the Quantum Brain, and the Prospect for
Quantum Neuromorphism

While numerous researchers have explored the potential of explaining consciousness
through quantum physical processes [84–87], in neuroscience, there is now a prevailing
conviction, held by many (if not all) scientists in this field, that classical mechanics, classical
statistical mechanics, and classical field theory alone cannot account for consciousness.
This realization is also linked to the decline (or at least the erosion) of the prevailing belief
in molecular reductionism—a hallmark inherited from deterministic classical science [88].
A non-reductionist, or nonlocal, perspective—sometimes termed “holistic”—is deemed
necessary to elucidate the apparently non-mechanistic emergence of intelligent behavior
in organisms governed by complex systems like the brain. In recent years, emerging
interdisciplinary fields such as quantum biology, quantum brain dynamics, and quantum
models of consciousness have raised serious questions about whether strong AI can ever
be realized without resorting to quantum information processing operations executed by
biological material systems.

Contrary to the prevailing modern belief, which persists, that all computations are
ultimately Turing-effective (achievable using a standard Turing machine), a minority of
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writers and scientists argue that the laws of physics should not be constrained solely
to what is Turing-computable. This perspective is exemplified by Roger Penrose, who
contends that (1) quantum mechanics is incomplete [89] and (2) achieving the completion
of quantum theory will necessitate the incorporation of fundamentally non-commutable
physical processes [90]. While initially grounded in Godel’s incompleteness theorem [50,91],
our focus lies on its implications for an open dynamical model of the brain. Irrespective
of technical intricacies, the unconventional perspective on consciousness and intelligence
championed by Hameroff and Penrose necessitates a level of quantum coherence spanning
substantial spatiotemporal scales [85]. While mainstream neurobiology typically operates
under the assumption, empirically adequate thus far, that cognitive functions, motor
functions, internal organ regulation, etc., can be explained solely by neuronal firing and
action potential transmission [12], proposals like those put forth by Penrose and others are
frequently categorized within the discipline of quantum biology.

We differentiate between quantum brain dynamics (QBD) and quantum neurodynam-
ics (QND). QBD typically involves the systematic application of concepts and methods
from quantum field theory (QFT) to explore how the structure of the brain may underpin
cognitive functions and memory-like states. Conversely, QND is primarily focused on
remodeling some or all neurons using a quantum model instead of the classical activation
function commonly utilized in conventional neuroscience. Classical and quantum neurody-
namics both investigate the cortical neural network of the brain, albeit through different
physical frameworks and methodologies. QBD, being rooted in quantum field theory, offers
a broader perspective compared to QND, as it encompasses traditional processes involved
in understanding brain function, including neural network structure. Moreover, QBD intro-
duces concepts such as the global coherent memory state, the corticon, and super-radiance,
which transcend both classical and quantum neurodynamics [92].

Generalized neuromorphism should indeed take cues from advances in quantum
biology, particularly QBD, as certain quantum concepts directly intersect with key fea-
tures in GNSs, such as memory, nonlocality, and long-range order. Interestingly, some
QBD approaches heavily utilize the formalism and methods of open (dissipative) complex
nonlinear systems, specifically stochastic dynamics. Therefore, the theory of generalized
neuromorphism represents a logical extension and enhancement of ongoing unconven-
tional research on brain dynamics and intelligence, which is now gaining traction in the
burgeoning field of quantum biology.

6.3. Quantum GNS Circuits

A significant obstacle to the projected transition from a general theory of non-Markovian
neuromorphic circuits to a quantum version lies in the fundamental disparity between the
structures of probability in the classical and quantum realms. It is now established that
probability relationships valid in classical physics can be contravened in the quantum do-
main [93,94]. While this issue has garnered considerable attention from theorists, it remains
relatively obscure to the broader public. For a comprehensive mathematical and conceptual
exploration of probability in physics and related fields, I recommend consulting [95].

For our main objectives here, a significant technical challenge lies in constructing non-
Markovianity within the quantum framework. Since joint probability distributions cannot
be defined in the quantum realm for all potentially relevant cases (as not all quantum
observables or measurement operators can have joint density functions [96]), it follows
that the formulation presented in Definition 3 for classical GNM cannot be directly applied
to construct quantum GNM. The extension of non-Markovianity from the classical to the
quantum domain is currently a vibrant and expanding multidisciplinary research field.
Various proposals have been published on quantum non-Markovian stochastic processes,
although there is no universal agreement on the best formulation of the problem [34,97–99].

Figure 13 showcases a quantum generalized neuromorphic circuit illustrating a sin-
gle quantum processing event (PE) with the supporting presynaptic and postprocessing
circuits. In contrast to the classical GNS architecture in Figure 11, both the presynaptic
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and post-event processing must involve quantum measurement operators to reduce the
evolved quantum memory state ρ̃(t) to output signals Om. At the input (presynaptic)
stage, the presynaptic quantum measurement operator Ẽm will measure (collapse) previous
quantum states belonging to previous PEs and process them in order to prepare the input
signal um to be fed into the quantum stochastic dynamic (SD) process of the quantum event
Em. The quantum dynamic map Φm specifies the dynamical details of the evental’s SD.

Figure 13. A proposed quantum GNS architecture generalizing the classical system shown in
Figure 11.

Let us begin with the description at the single-processing-element (PE) system level
without introducing the quantum memory state. Let ρt represent a quantum density
operator [34,55] characterizing the state of a physical dynamical system defined on a state
space X. The system is characterized by an internal state xt ∈ X and an input ut ∈ U at time
t, where U represents the space of input classical/quantum excitation fields (a collection of
physical inputs carrying information from the environment and possibly other interacting
agents represented by other dynamical processes). It is important to distinguish between
the internal state xt and the physical state captured by ρt; the latter is a statistical density
defined on the state space X ∋ xt. While the evolution equations in terms of the density
operator ρt (in the quantum case) are linear [66], the underlying dynamics, when expressed
in terms of the internal states xt, can be highly nonlinear.

To incorporate memory effects and thus generate nonlocal behavior, we introduce a
quantum history operator H . This operator transforms a given input Vt into the past tempo-
ral history or time slice of past instantiations, denoted by H Vt. Technically, we introduce
three distinct quantum history operators, Hphys, Hint, and Hpre, for updating past time
slices of the physical state, internal states, and the presynaptic input excitations, respec-
tively. A generic memory operator is nonlocal in time. Through the evolution of various
coupled degrees of freedom in complex systems, this temporal nonlocality transforms into
nonlocality in spacetime, rendering the resulting dynamical system effectively nonlocal.

Motivated by the standard Markovian dynamical theories prevalent in memoryless
systems, as discussed in works such as [34,36,37,66], the general dynamical law governing
non-Markovian (memory-inclusive) processes can be expressed as a first-order differential
equation involving the density operator/distribution ρt. This equation takes the form of a
generalized master equation [3]:

d
dt

ρt = S{Hsρt, HiXt, HpUt, t}, (20)

where t represents a local time variable, and S denotes the dynamical evolution super-
operator. In the quantum context, where ρt represents an operator, the preferred term is
superoperator [55], which signifies a transformation from operators to operators.

The solution to Equation (20) offers a comprehensive understanding of the evolution of
the physical state, captured by the density operator ρt. Within this framework, information
processing involves either direct access to internal states or the possible utilization of
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hidden Markovian network estimation techniques [100]. However, the inclusion of three
quantum memory operators in the equation introduces intricate nonlocal behaviors, posing
a significant challenge for a direct solution without resorting to approximations [97]. Given
these complexities, it is common in the literature to simplify matters by focusing on the
quantum Markovian case, which is well studied and can be succinctly described using
the GKSL master equation process [36,101]. In this regard, we leverage the abstract and
powerful formalism of stochastic semigroups in probability theory, serving as a direct link
between classical and quantum scenarios in Markovian settings [66,102,103]. However,
it is crucial to acknowledge that the detailed exploration of a quantum non-Markovian
theory of generalized neuromorphism falls beyond the scope of this article. Navigating
this complexity requires balancing accuracy with tractability. While approximations may
facilitate solutions, they often impose additional restrictive assumptions, which we aim to
avoid in our comprehensive treatment.

Equation (20) maps out a localized application, elucidating the behavior of an individ-
ual agent within an interacting dynamical agent framework. While our focus has centered
on prescribing the rules governing individual agents for the sake of clarity, it is paramount
to recognize the broader context within which these agents operate. In population-based
AI methodologies, clusters of agents engage in interactions over time, orchestrated by engi-
neered interaction Hamiltonians. These interactions steer their collective behaviors toward
problem-solving objectives, thereby showcasing emergent intelligent behavior [32,104–108].
Furthermore, each subsystem described by (20) may exhibit non-Markovian behavior at-
tributable to the incorporation of nontrivial history operators L [34,102]. When viewed
through the lens of a stochastic dynamic system, it also displays dissipative or irreversible
flow characteristics [55,109]. Understanding these dynamics not only enriches our compre-
hension of the system’s behavior but also underscores the complexity inherent in modeling
and analyzing such intricate systems.

7. Generalized Neuromorphism and the Dynamic Approach to Intelligent
Systems Design
7.1. Incorporating Machine Intelligence into the Dynamic Multi-Agent Assemblage

Introducing intelligence into the system can be accomplished through various methods,
inspired by ML and DL but also potentially surpassing them in the future. To attain this, var-
ious risk, reward, and policy functionals can be constructed on the assemblage R through
the application of machine learning [14] and reinforcement learning techniques [110].
To elucidate, consider V as the environment, A as a mathematical entity encapsulating
learning, reward, and policy parameters, and Ct as the cost function value at global time
instant t corresponding to a learning task K. In this context, we express

Ct = YRτ{V ,A,K}, (21)

where YRτ denotes the global AGI operator of the assemblage R assessed utilizing the
time operator τ. This operator comprehensively encapsulates internal states, presynaptic
excitation fields, temporal scheduling data T , local and global time variables, and other
pertinent information. Real-time data flow is contained within the environment object V ,
which also encompasses access to the local and global time parameters of the assemblage
R. In the domain of AGI systems, both the cost function C and the task K are anticipated
to be complex multidimensional constructs. This complexity is essential to accommodate
the diverse array of interaction scenarios possible with the environment V .

In orchestrating the learning process within the assemblage R, one can tailor its
dynamics by adjusting the interconnections among its constituent dynamical processes or
agents. These agents collectively form a networked structure, as depicted in (19). While the
methods for achieving such adjustments are diverse, our focus here remains on providing
a high-level overview. In this model, the modifications primarily revolve around the three
history operators Hs, Hi, and Hp, which extend beyond the confines of individual agents
or processes outlined in (20). Instead, they establish connections with every other agent,
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resembling a generalized neuron subsystem characterized by equations akin to (20). This
progressive extension ultimately spans the entirety of the assemblage (19). Adjustments
to these history operators, driven by the learning algorithm cost in (21), can be likened to
the synaptic connections’ adaptation observed in contemporary neural networks [13]. This
comparison underscores the dynamic nature of the learning process within the assemblage
R, where the fine-tuning of inter-agent interactions mirrors the plasticity inherent in
biological neural systems.

7.2. The Dynamic Approach to Cognition

The GNS is not a closed device like a computer or a ship but is more akin to the
organism and the brain: an open system that is operating in a far-from-equilibrium ther-
modynamic mode and is constantly interchanging information with its immediate (and
sometimes distant) surrounding environing sphere (Figure 14). The AI capabilities of either
GNS ASIC chips or artificial brains alike will crucially depend on the bidirectional nature
of energy/information exchange between the event assemblage and the world (Figure 8).
Knowledge can be extracted from the AI-directed dynamically evolved memory states of
the GNS, e.g., eventually making decisions, directing attention, or releasing short-term
memories. These and other various outcomes may be fed back into the computing agents
through the world or passed forward to an action-producing module (Figure 14).

Figure 14. The fundamental functional circuit of the GNS as an AGI agent.

Figure 14 presents the core functional circuitry of the GNS AI domain. Central to
this depiction is the event assemblage A , nestled within the physical domain M, where
computational processes unfold. This setup characterizes an inherently open stochastic
dynamic (SD) system engaged in continuous interactions with its surrounding environ-
ment. This environment comprises two primary constituents: (1) the world and (2) the
knowledge/action base. Within this framework, information flow between the GNS and
the external world occurs bidirectionally, driven by the inherent non-Markovian nature of
the system. Actions initiated within the GNS can reverberate back into the system through
the encompassing sphere of the world, establishing intrinsic coupling with the assemblage.

Figure 15 illustrates the implementation of decision-making processes, whether cog-
nitive or non-cognitive, within generalized neuromorphism. This is achieved through
attractor decision circuits operating within the memory space. Panel (a) depicts the po-
tential energy landscape of a decision GNS featuring two possible decisions: D1 and D2.
The initial state is denoted by the blue dot, situated within a stable region in the memory
space of the system. Depending on stochastic fluctuations, depicted by the dashed arrows
representing symmetry breaking, the system may transition to either decision D1 or D2. In a
quantum GNS, a novel possibility emerges wherein quantum tunneling flow can directly
transition the GNS from its initial state to one of the two decisions, such as D2, even when it
resides at a higher energy level. Panel (b) illustrates the bifurcation diagram of the decision
GNS process. An initial memory state (depicted as the blue dot) encapsulates micromem-
ories concerning past actions. As the system undergoes dynamic evolution propelled by
internal memory-like alterations (represented by complete trajectories in memory space
rather than traditional state space) alongside external inputs (such as stimuli, control sig-
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nals, and environmental information feedback due to non-Markovianity), the GNS might
undergo a symmetry-breaking bifurcation (highlighted by the green dot). This bifurcation
leads to the selection of one of the two decisions (represented by the red dots), D1 or D2.

Figure 15. Decision-making using dynamical systems.

8. Conclusions

A synthetic multidisciplinary view of artificial intelligence (AI) and cybernetics is
proposed in terms of a generalized stochastic dynamic formalism developed to model
generic networks comprising assemblages of abstract processing events. The formalism,
dubbed generalized neuromorphism, was inspired by spiking neural networks (neurodynamic
processing) and the theory of open dynamical systems. Generalized neuromorphism was
intentionally constructed at a high abstract level to allow for multidisciplinary applications
to different approaches within the AI community. Each processing event represents a real
computing or intelligent agent, such as a spiking neuron processor in a neural circuit,
a CMOS gate in a chip, or a consumer in the market. Processing is executed in space
and time, where each event interacts with other events only when their states are made
available (event-driven computing). In our theory, each event is viewed as a generic
stochastic dynamic process with memory (non-Markovian process). The prime mover of
an assemblage comprising such events is the various possible physico-semiotic interac-
tions and information exchange among them, enacted via a global displacement network
operator that shifts time signals from one event to another. On the other hand, for each
event, time is defined only locally. The global displacement operator allows information
(programming, scheduling, network connectivity) to be distributed on the global scale of
the event assemblage, thereby giving rise to AI capabilities such as learning, prediction,
and adaptation.

Among the possible future applications of this formalism is the simplification of
the use of information theory since the entropy functional in stochastic dynamics is well
known. However, the most important application from our perspective is the ability to
directly quantize the event assemblage, leading to a possible future concept, quantum
neuromorphic computing. The final model appears to resemble a stochastic quantum
random field that is spatiotemporally nonlocal. We conjecture at the end that a nonlocal
quantum field could then be related to the basic structure of intelligence in both the living
and technological worlds.
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Abbreviations
The following abbreviations are used in this manuscript:

AGI Artificial general intelligence
ANN Artificial Neural Network
ASIC Application-Specific IC
GKSL Gorini–Kossakowski–Sudarshan–Lindblad
SNN Spiking neural network
TPU Tensor Processing Unit
IIA Interacting intelligent agent
PE Processing element/event
HMM Hidden Markov Model
ML Machine learning
SD Stochastic dynamic/dynamics
ND Neurodynamic/neurodynamics
GNM Generalized neuromorphic/neuromorphism
GPU Graphical Processing Unit
GA Genetic Algorithm
QBD Quantum brain dynamics
QND Quantum neurodynamics
PSO Particle Swarm Optimization
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