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Abstract: There are several measures for comparing methods for solving a single nonlinear equation.
The first is the order of convergence, then the cost to achieve such rate. This cost is measured by count-
ing the number of functions (and derivatives) evaluated at each step. After that, efficiency is defined
as a function of the order of convergence and cost. Lately, the idea of basin of attraction is used. This
shows how far one can start and still converge to the root. It also shows the symmetry/asymmetry
of the method. It was shown that even methods that show symmetry when solving polynomial
equations are not so when solving nonpolynomial ones. We will see here that the Euler–Cauchy
method (a member of the Laguerre family of methods for multiple roots) is best in the sense that the
boundaries of the basins have no lobes. The symmetry in solving a polynomial equation having two
roots at ±1 with any multiplicity is obvious. In fact, the Euler–Cauchy method converges very fast in
this case. We compare one member of a family of fifth-order methods for multiple roots with several
well-known lower-order and efficient methods. We will show using a basin of attraction that the
fifth-order method cannot compete with most of those lower-order methods.
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1. Introduction

The solution of a single nonlinear equation

f (x) = 0 (1)

can be found in applied science and engineering; see some examples in [1,2]. Here, we are
interested in the case that the function f (x) has roots of multiplicity m ≥ 2. These methods
are based either on the knowledge of the multiplicity or on methods for simple roots for the
function g(x) = f (x)/ f ′(x); see Traub [3] and the more recent book by Petković et al. [4].
Neta [5] and Herceg and Petković [6] discussed the extension of Popovski’s method [7] to
the case of multiple roots using these two ideas. Several well-known methods for multiple
roots of order two and higher can be found in the literature. Recently, a new family of fifth
order was suggested by Thangkhenpau et al. [8]. The method is

yn = xn −m
f (xn)

f ′(xn) + α f (xn)

xn+1 = yn −mW(tn)
f (yn)

f ′(yn) + α f (yn)

(2)

where tn =
(

f ′(yn)
f ′(xn)

) 1
m−1 , α is a small real parameter, and W is a weight function. The

authors prove that, under certain conditions on the weight function, the method is of
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order five and requires four function evaluations per cycle. Several weight functions were
suggested. The order of a method is p if

|xn+1 − ξ| ≤ Cp|xn − ξ|p (3)

where ξ is the root. Given a method of order p requiring d function and derivative evalua-
tion per cycle, we define the efficiency index EI (see, e.g., [4]):

EI = p1/d. (4)

In this paper, we compare the performance of (2) with the second-order method (see
Schröder [9] or Rall [10])

xn+1 = xn −m
f (xn)

f ′(xn)
(5)

and with third-order methods due to Euler–Cauchy [11] and Dong [12].
The Euler–Cauchy method is a special case of Laguerre’s method for multiple roots

(see Bodewig [11] and Neta and Chun [13]):

xn+1 = xn −
2m f (xn)

f ′(xn)

1 +
√
(2m− 1)− 2m f (xn) f ′′(xn)

f ′(xn)2

. (6)

In [14], Dong introduced two methods that did not perform as well as the two methods
in his later paper [12]. These latter ones, called here Dong3 and Dong4, are given by

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = yn −
f (xn)(

m
m− 1

)m+1
f ′(yn) +

m−m2 − 1

(m− 1)2 f ′(xn)

, (7)

and

yn = xn −
m

m + 1
f (xn)

f ′(xn)
,

xn+1 = yn −

m
m + 1

f (xn)(
1 +

1
m

)m
f ′(yn)− f ′(xn)

.

(8)

Clearly, method (2) has an efficiency index of 51/4 = 1.4953, which is better than the
third-order method above, whose index is 31/3 = 1.4422, and Schröder’s method, whose
index is 21/2 = 1.4142.

The reason for choosing these methods for the comparison is that they were shown to
be superior to other methods of the same order; see [15–17]. The comparison is based on the
idea of basins of attraction. The idea of basin of attraction was introduced by Stewart [18]
and followed by the work of Amat et al. [17,19] and references there.

2. Basins of Attraction

Let R be a rational map on the Riemann sphere, and let z0 be a periodic point of period
`, i.e., R`(z0) = z0, where ` is the smallest such integer. If ` = 1, then z0 is called a fixed
point of the rational map R. For example, the rational map associated with Schröder’s
method is given by

R(z) = z−m
f (z)
f ′(z)

.
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The point z0 is called neutral, attractive, or repelling based on |R′(z0)| equal to, smaller,
or larger than 1, respectively. Let R be the rational function associated with an iterative
method to find multiple roots of f ; then the fixed points of R that are not roots of f are
called extraneous fixed points. The Julia set of a nonlinear map R(z) is the closure of the
set of its repelling periodic points. The complementary set in the Riemann sphere is the
Fatou set; see [19,20].

Definition of basin of attraction. If a fixed point π of R is attracting, then all nearby
points of π are attracted toward π under the action of R; i.e., the iterates under R converge
to π. The collection of all points whose iterates under R converge to π is called the basin of
attraction of π.

3. Numerical Experiments

We compare (2) with α = 0.1 and the weight function

W(t) =
1

1− t2 (9)

on the following 5 nonlinear functions having various multiplicities:

1. f1(z) = (z2 − 1)2

2. f2(z) = (z3 − 1)2

3. f3(z) = (z3 − z)4

4. f4(z) = (z5 − 1)4

5. f5(z) = (z2 + 1/4)3(ez−1 − 1
)3.

The comparison is performed on a 6 by 6 square centered at the origin and con-
taining all the roots of the functions. We take a uniformly distributed set of points in
the complex plane zj k = xj + Iyk, where I =

√
−1, xj = −3 + (j− 1)∆x, j = 1, 2, . . . N

and yk = −3 + (k− 1)∆y, k = 1, 2, . . . M. We took ∆x = ∆y = 0.01 and N = M = 601.
Each of these points is used as a starting point for the iteration. We have collected the
following data:

1. Number of iterations required to converge within 10−7 (up to 40 iterations). Note that
since the methods use a different number of function and derivative evaluations per
iteration, we listed the number of function evaluations per iteration step.

2. Which root the iteration converged to.
3. CPU run time for the whole set of initial points. The computations are performed on

a MacBook Pro 3.1 GHz Quad-Core Intel Core i7.
4. The total number of points for which the iterative method did not converge.

Each point is colored based on the root it converged to and black in case of divergence.
In Figure 1, we plotted the basins of attraction for the 5 methods running on the first
example.

It is clear from the figure that the Euler–Cauchy method is best. There are no lobes
along the boundary of the basins. Notice that the square domain is divided equally between
the two basins. This symmetry does not show up when we find the double roots of the
nonpolynomial

F(z) = (z + 1)2
(

ez−1 − 1
)2

as can be seen in Figure 2. Here, the boundary is no longer a vertical line through the origin.
This asymmetry is also visible in Figure 1 for TPMJ.
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(a) Schröder (5) (b) Euler–Cauchy (6)

(c) Dong3 (7) (d) Dong4 (8)

(e) TPMJ (2)

Figure 1. Basins of attraction of analyzed methods for the roots of the function f1(z).
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Euler–Cauchy (6)

Figure 2. Basins of attraction of the Euler–Cauchy method for the roots of the nonpolynomial F(z).

The symmetry of Euler–Cauchy shows also in the other examples except the fourth;
see Figures 3–6. Notice that in Figure 4, the basin for the root z = 0 is much smaller for
Euler–Cauchy than for the other schemes. In Figure 5, Euler–Cauchy has some bunny ears
around the origin.

We now turn to more quantitative measures by listing the CPU run time (see Table 1),
the average number of function evaluations per point (see Table 2), and the total number of
divergent points (see Table 3).

It is clear from Table 1 that Euler–Cauchy is fastest, followed by Schröder’s method.
The fifth-order method is slowest for the first example. The other two tables show the
superiority of Euler–Cauchy in terms of the number of divergent points and the average
number of function evaluations per point. In fact, Euler–Cauchy has the lowest number
of divergent points in all examples, followed by Dong3. Unfortunately, Euler–Cauchy
requires more CPU run time than the other methods except TPMJ.

Table 1. CPU time (msec) for each example (1–5) and each of the methods.

Method f1 f2 f3 f4 f5 Average

Schröder (5) 147.015 273.376 315.397 624.16 625.352 331.661
Euler–Cauchy (6) 103.597 488.069 601.789 939.69 1033.156 550.839

Dong3 (7) 173.106 331.946 373.455 488.017 671.488 332.285
Dong4 (8) 168.588 288.231 401.532 541.621 704.872 365.219
TPMJ (2) 232.999 419.495 1220.686 1870.103 1107.163 1233.198

Table 2. Average number of function evaluations per point for each example (1–5) and each of
the methods.

Method f1 f2 f3 f4 f5 Average

Schröder (5) 11.65 15.21 14.62 22.22 16.31 16.00
Euler–Cauchy (6) 3.00 11.43 12.44 16.83 13.40 11.42

Dong3 (7) 11.10 15.08 12.84 13.78 12.77 13.12
Dong4 (8) 10.27 11.77 13.50 15.18 13.24 12.79
TPMJ (2) 13.04 16.84 16.32 23.72 17.46 17.47
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(a) Schröder (5) (b) Euler–Cauchy (6)

(c) Dong3 (7) (d) Dong4 (8)

(e) TPMJ (2)

Figure 3. Basins of attraction of analyzed methods for the roots of the function f2(z).
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(a) Schröder (5) (b) Euler–Cauchy (6)

(c) Dong3 (7) (d) Dong4 (8)

(e) TPMJ (2)

Figure 4. Basins of attraction of analyzed methods for the roots of the function f3(z).
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(a) Schröder (5) (b) Euler–Cauchy (6)

(c) Dong3 (7) (d) Dong4 (8)

(e) TPMJ (2)

Figure 5. Basins of attraction of analyzed methods for the roots of the function f4(z).
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(a) Schröder (5) (b) Euler–Cauchy (6)

(c) Dong3 (7) (d) Dong4 (8)

(e) TPMJ (2)

Figure 6. Basins of attraction of analyzed methods for the roots of the function f5(z).

Considering the column of averages in Tables 1–3, we can say that Schröder’s and
Dong3 are fastest, followed by Dong4. The average number of function evaluations is
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lowest for Euler–Cauchy and Dong4, followed by Dong3. The number of divergent points
is lowest for Euler–Cauchy, followed by Dong3 and TPMJ.

Table 3. Number of black points for each example (1–5) and each of the methods.

Method f1 f2 f3 f4 f5 Average

Schröder (5) 601 8 0 5162 386 1231.4
Euler–Cauchy (6) 1 1 0 1 0 0.6

Dong3 (7) 601 1 0 8 177 157.4
Dong4 (8) 603 139 12 950 147 370.2
TPMJ (2) 248 354 94 222 457 275

4. Conclusions

Even though TPMJ (2) is of higher order and having a higher-efficiency index, it is
the slowest method (about four times of any other scheme). It requires almost as many
function evaluations per point as the second-order method. The number of divergent points
is smaller than that for Schröder and Dong4. The symmetry observed in the basins of all
methods for example 1 does not manifest itself in the case of TPMJ for which the basin for
the root z = −1 is larger (Figure 1). The basins for Dong3 for example 2 are more chaotic
than for the others.

Funding: This research received no external funding.
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