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Abstract: Recently, many scientists have studied a wide range of strategies for solving characteristic
types of symmetric differential equations, including symmetric fractional differential equations
(FDEs). In our manuscript, we obtained sufficient conditions to prove the existence and uniqueness
of solutions (EUS) for FDEs in the sense i-Caputo fractional derivative (-CFD) in the second-order
1 < a < 2. We know that -CFD is a generalization of previously familiar fractional derivatives:
Riemann-Liouville and Caputo. By applying the Banach fixed-point theorem (BFPT) and the Schauder
fixed-point theorem (SFPT), we obtained the desired results, and to embody the theoretical results
obtained, we provided two examples that illustrate the theoretical proofs.
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1. Introduction

Fractional calculus (FC) is a branch of calculus that deals with integrals and derivatives
of non-integer orders. The history of FC can be traced back to the 17th century, when the
German mathematician Gottfried Leibniz first mentioned the concept of fractional differen-
tiation in a letter to his colleague Johann Bernoulli. However, the development of FCs as a
field of study actually began in the 19th century, with the work of several mathematicians,
including Augustin-Louis Cauchy, Liouville, and Riemann. In the early 20th century, the
French mathematician Paul Lévy used fractional calculus to model random processes, and
it was subsequently used in the study of fractals and other areas of mathematics.

Symmetrical FDEs have applications in various areas of science and engineering,
including physics, signal processing, and control theory. They are particularly useful for
modeling symmetric physical phenomena, such as waves, vibrations, and oscillations.
Solving symmetrical fractional differential equations can be challenging, and various nu-
merical and analytical techniques have been developed to tackle this problem (see [1,2]).
Symmetrical FC has many applications in physics, engineering, finance, and other fields.
For example, FDEs have been used to model anomalous diffusion in materials, and frac-
tional control systems have been developed for applications in robotics and automation.
FC has also been used in finance to model the behaviors of stock prices and other financial
variables (see [3-6] and the references cited therein).

Overall, the study of FC has proven to be a valuable tool for understanding a wide
range of phenomena in the natural world, and has led to many important applications
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in science and engineering. The EUS to FDEs is an important topic in the field of FC.
In general, FDEs can have a more complex solution behavior than their integer-order
counterparts. However, under certain conditions, it is possible to establish the EUS to these
equations. One approach to studying the EUS to FDEs is to use fixed-point theorems such
as the BFPT or the SFPT. These theorems provide conditions under which a unique solution
exists for a given FDE. Applications of FDEs are numerous and include the modeling of
anomalous diffusion, viscoelastic materials, and biological systems. In particular, FDEs
have been used to model the behaviors of cells and tissues, as well as the spread of diseases
and other biological phenomena (see [7-9]). FDEs have also found applications in the
modeling of financial markets and the analysis of stock price dynamics. For example, the
famous Black-Scholes model for option pricing can be generalized using FC to account for
non-Gaussian price fluctuations. Overall, the EUS to FDEs is an important topic with many
applications in science and engineering. Further research in this area is likely to lead to new
insights and advances in the modeling and analysis of complex systems. The fixed-point
theorem is a fundamental result in mathematics that provides conditions under which
a function has a fixed point, that is, a point that remains unchanged under the function.
The history of fixed-point theorems can be traced back to the early 19th century, when the
French mathematician Augustin-Louis Cauchy first introduced the concept of a fixed point
in his work on iterative methods (see [10-12]).

The first general fixed-point theorem was proved by the German mathematician Carl
Friedrich Gauss in the 19th century, and since then, many other fixed-point theorems have
been established in various areas of mathematics. The importance of fixed-point theorems
for FC lies in their application to the study of FDEs. Many FDEs can be written in the
form of an integral equation, and fixed-point theorems provide conditions under which a
unique solution to these equations exists. In particular, the BFPT and the SFPT have been
used extensively in the study of FDEs. These theorems provide sufficient conditions for
the EUS to integral equations, which can be used to model a wide range of phenomena
in science and engineering. Overall, fixed-point theorems play a crucial role in the study
of FC and have many important applications in fields such as physics, engineering, and
finance. By providing a powerful tool for the analysis of complex systems, fixed-point
theorems have enabled researchers to make significant advances in our understanding of
the natural world.

The theory of the existence of solutions to fractional differential models that are from
acquired investigations has drawn the attention of many authors (see [13-19]). Most of
them recognized the use of the derivatives of Riemann-Liouville and Caputo derivatives in
representing the basic FDE (see [20-23]). There is also another type of fractional derivative,
the y-Caputo derivative, which is a generalization of the previously mentioned derivatives
and was introduced in [24,25]. This derivative differs from other derivatives in the sense
that the kernel of integration is the generalization of the Hadamard derivative.

It is known that there are many types of fractional derivatives that can be used
to determine the EUS of FDEs. Recently, many authors have focused on the ¢-Caputo
fractional derivative, and our work is a continuation in this stream. The field of fractional
calculus has shown and supported the sense of Caputo due its accuracy in modeling
different phenomenal effects; this stems from the fact that the initial data for dynamical
systems are like those of classical ones. However, other types of derivatives such as the
Atangana-Baleanu derivative ([26]) will be considered in a forthcoming work.

Detailed concepts of {-CFD and integral can be found in ([9,27-30]). The new addition
to our research is the idea of the y-Caputo fractional operator.

In a clearer concept, we consider the nonlinear 1-Caputo given by

{ (D + D) 9le) = (e 9(6)), 6 € 10,9, )
¢(a) = ¢'(a) =0,
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wherel < a <2,6€ [4,9],1<a<S, f:]xR — Rare given continuous functions
(CFs), and 1 is a positive real number. Let ¢ : [4, 3] — R be increasing via ¢’ bounded and
Y'(¢) # 0, for all ¢. The symbol C(], R) represents the Banach space of CFs ¢ from J to R
with the norm ||¢[| = sup{[o(c)| : ¢ € J}.

2. Essential Preliminaries

In this session, we provide definitions and features of the previous familiar derivatives
and the y-fractional derivative (see [9,27,28]).

Definition 1 ([9]). Let ¢ : (0,00) — R be a CF. Then, the Riemann-Liouville fractional derivative
(RLFD) of order & > 0,n = [a] 4+ 1, ([a] indicates the integer part of the real number w), defined as

"D (6) = ey (a2)" ) (6= 1" o

wheren —1 < a < n.

Definition 2 ([9]). Let ¢ : (0,00) — R be a CF. Then, the CFD of order &« > 0,n = [a] + 1,
is defined as

L4 1 g n—u— n
D 96) = Fr gy [, (6~ 0" o (e
wheren —1 < a < n.

Definition 3 ([9]). The Hadamard fractional integral (HFI) of order & > 0 for a CF ¢:[1,4+-00) —

R is defined as
HAg o) = - /t LAY
Nel) =iy i losz ) o(@=

Definition 4 ([9]). The CHD of order & > 0 for a CF ¢ : [1, +00) — R is defined as

1 t AN dt
CHmoya n _
@14)(15)—71,(’1_06)/1 (log ) o go(T)T,n 1<a<mn,

T

where 6" = (t%)n,n eN.

Definition 5 ([9,27]). The -Riemann-Liouville fractional integral (-RLFI) of order « > 0 for a
CF ¢ : [a, 3] — Ris referred to as

_ a—1
z%9(c) = [T ID g ryg oy

Definition 6 ([28]). The CFD of order « > 0 for a ¢ : [0, +00) — R is intended by

1

()= — 1 [T = ey _
D (P(G)_F(n—zx)/o(g T) e"(t)dt, n — 1 <a<n.

Definition 7 ([9,27]). The y-Caputo fractional derivative ({-CFD) of order &« > 0 for a CF
¢ : [a,3] — Ris the aim of

900 = [ O e a1 <a

_ (1 4\"
whereaﬁ— (zp’(g)d?) ,neN,
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Lemma 1 ([9,27]). Let q,¢ > 0, and ¢ €C([a, b], R). Then, ¥g € [a , b], and by assuming
Ei(g) = ¢(c) — (a), we have
LI lPIKl/’ o(c) = Iq-i—éq; o),
2. DIVI9(c) = 9(c),
I'() i
3. TV =1 E, -1
PEQ) T = s (Bl

; - I'(¢) L
4 DR = gy (Rale) T,

5. DZ;w(Fa(g))k =0, forke{0,..., n—1},neN, g € (n—1,n].

Lemma 2 ([9,27]). Letn—1<way <n,ap >0,a>0, ¢ € L(a,T), Dgl;‘p(p € L(a, T). Then,
the differential equation

Do =0
has the unique solution

9(6) = Wo+ Wi(¥(e) = 9()) + Wa(p(e) = 9())* + -+ Wua (¥(c) — 9(a))" ",

and

3Dy o(g) = () + Wo + Wi(y(g) — (a)) + Walp(c) — ¢(a))?
+o Wi () — p(a)"

withWy eR, ¢ = 0,1, ... ,n—1
Furthermore, . '
DI (g) = 9(c),

and
LT () = TV T g(e) = T (o).

Theorem 1. Let f € C(],R), and ¢ € C3(],R). The fractional linear differential equation

(D +9Di ) gle) = fle) 1 <a <2,

2
¢(a) = ¢'(a) =0, ?

has a solution given by
#(6) = (= e ) [yl (e WO p(ryar ®)

Proof. Taking the y-fractional integral Z,’ ¥ to both sides of Equation (2), we obtain

(D ((e))) +Zh (Za D5 (9(e))) = T (f(6))-

Using Lemma 2, this implies that

(#(6) = b1(9(e) = 9(@)* " = balw(c) — 9(a))"?)
+923 (9(6) — e ((c) — ¥(@)* ) = TV (£(c)),
which implies that
9(6) = b1 ((6) — ()" = ba((c) — ()" >
i (00 — () - pl@) ?)y (@ar = T (5(6)) @
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The initial condition ¢(a) = 0, leads to by = 0. Obviously, we can take the first ordinary
derivative of the Equation (4),

' () + 7' () 9(c) = (ba(a — 1) +9d) ¢ (¢) (¥(g) — P(a))* 2+ (a — 1)y’ () s " f(¢)-

The condition ¢’(a) = 0, implies that by (« — 1) + yd; = 0.
Let qD(g) = 677¢(€)u(g), q)/(g) = —’)’l/)l(g)eilyw(G)M(g) + 377¢(€)u/(g); hence

e () = (a — 1)zp’(g)I§‘71;¢f(€);

accordingly,
w'(6) = (e = Dy ()™ IT M f (c). ©)
Integrating Equation (5), it follows that

u(g) = u(a) + (« —1) /f ¢ ()OI f (),

condition ¢(a) = 0 implies u(a) = 0; hence

G 1
ple) = (= De ) [*y (@)L floyar.
This finishes the proof. O

3. Existence Theorems
We always need fixed-point theorems, which are auxiliary tools for dealing with
nonlinear differential equations. The idea is to prove that this equation has a fixed point,

which is the desired solution. In our research, we rely on two fixed-point theories, BFPT
and SFPT [31].

Theorem 2 ([31]). (BFPT). Let H be a Banach space. If Z : H — H is a contraction, then Z has a
unique fixed point in H.

Theorem 3 ([31]). (SFPT). Let H be a closed, bounded, and convex subset of Banach space X, and
the mapping Z : H — H is a continuous map such that the set {z, : ¢ € H} is relatively compact.
Then, Z has at least one fixed point.

In view of Theorem 1, we define the operator P on C(J,R), as
¢ 1
Po(s) = (a—1e O [*y/(0)et Oy f(rar. ©®)
a
Theorem 4. The operator P is completely continuous.

Proof. With our knowledge of the continuity of the function f, from it, we inevitably obtain
that continuity of the operator P. Let 3 be a bounded proper subset of C(],R), so there
exists a positive real number A¢, such as [f(g, ¢)| < Ay, for any order pair (g, ¢) € | x B.
Additionally,

A e 1¥(a) N
Po(c)| < %(lp(%) ) () ).

We apply the maximum over ], and we conclude that the operators P is bounded on C(], R).
We are now interested in the proof of the equicontinuity of P. For this, leta < ¢y < ¢ < S,
then
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Afe*’ﬂlf(gz)
(e —1)
As (e—w<gz> _ e—vu/(gl))
Y (a—1)

Po(c2) = Po(r)| < ((3) — p(a))* ! (erviea) — gr¥en))

_l’_

($(3) = p(a))* T (e7¥(er) — evl)

< réf ffl) (#(S) = 9(@))* " ($(c2) — ¥(61))
+ Féf Afl) ($(S) = ()" (1 - POV (y(2) - p(c1))
_ r(]féfn ($(3) — (@) (2 - VO VD) (p(c2) - lea)),

where M = sup ., 1 ¥'(6)- As |2 — 61| = 0, then [Po(c2) — Pe(c1)| — 0. These imply
that P is equicontinuous on J. We conclude from it by using the Arzela-Ascoli theorem
that the operator P is completely continuous. This finishes the proof. [J

We state next the so-called SFPT.

Theorem 5 ([31]). We that assume F is a closed, bounded, and convex subset of a Banach space X,
and that the mapping A : U — U is completely continuous, and so it has a fixed point in F. If we
define that subset F of C(]J,R) on which the operator P, as defined by (6), is completely continuous,
so the problem (1) has the respective solution.

Theorem 6. Let By be a positive constant, where

lim L9 < .
=0 @ =f ’

so, the problem (1) has a solution.

Proof. The conditions given impose on us the exist of positive constants py, such that

f(s @) < (1+Bf )y

Therefore, we define the subset Fy of C(J,R) as

Fr= {fp €C(LR):lo(o)l <pfc€ ]}.

Hence, Fy is a subset of C(J,R). According to Theorem 4, the operator P is completely
continuous; then, according to SFPT 5, each problem of (1) has a solution. This finishes the
proof. O

We demonstrate the EUS to each problem of (1) using the contraction principle based
on BFPT.

Theorem 7. Let f be a Lipschitzian function verifying the condition
(6 9) = f6, x)| < Crlo —xl,
where g € ], ¢, x € R, and Cy > 0. So, each of (1) has a unique solution when

Cfefﬁ/ll](ﬂ)

0 = oy W) — (@) (Y ) <1
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Proof. Since f is continuous, there must be positive constants Dy, such that
max{[f(c,0)[ : ¢ € J} < Dy.
We begin by proving that P8, C B, , where B, is defined by
B, = {pcCUR): gl <7},
such that r; is given by

De—v¥() N
rf> %(4’(%) —p(a))" (eWJ(\S) - e"ﬂ/}(ﬂ)) (1 - ﬁf)

For doing this, let ¢ € B, fr then

Po(e)] < (x = e ™) [* /(@) OTL ¥ (| f(z,9()) - F(7,0)| + |f(x, 0))de

3) — a1 o—7p(a)
_ (SAllol+ D) (9(3) = p(a)* e

(ew/J(%‘) _ ew/ﬂ(u))

- (e —1)
Dr($(S) — p(a)* e o .
< Zf T(a=1) (EWJ( ) _ 19! )) + 1y

S Tf.

Here, we show the contraction principle. To do this, let ¢, x € C(],R), then

Po(e) = Pa(e)] < (x = Ve [*y/(m)e M OL £z, 0(1)) — f(x,x(x) v

Ce_')/lp(a)

() — a=1(p(S) _ o190 )| p —
< Ty (PO — @) (Y =@ o -2
< Ol — xll-

As ¥y < 1, the contraction principles are satisfied. From BFPT, there exists a unique solution
for each problem of (1). End of proof. [

Remark 1. If v = 0 in Equation (1), hence, the integral equation will be

o(c) = Za" (¢, 9(c))

Hence, all of the above results will be simpler.

We close our research by giving the following two examples.

4. Examples
4.1. Example 1

Consider the following FBVP,

{ (D;'W + 21)2-7F‘P)§0<€) = Larctan ¢(g), ¢ € [2,9], @
%

(a) = ¢'(a) =0.

Let ¢(¢) =logg herea =17,y =2,a=1,F =¢,and f(¢, ¢(g)) = %arctan ¢(g). We

notice that
. larctang 1
lim -———F = -,
¢—03 0 3
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References

and

0y =0.82034 < 1.

So, problem (7) has a unique solution in C([a, 3], R). So, we can apply Theorems 6 and 7.

4.2. Example 2
Consider the following FDE,

6. 1.
(D;*" + 105" ) plc) = 2v3log(g(c) + 1), ¢ € [2,3),
0.

/ (8)
p(a) = ¢'(a) =
Let () = logg; here, a = g,’y = %,a =1, =¢and f(c, ¢(c)) = 2\/510g(<p(g) +1).
We notice that .
lim zﬁw =23,
¢—0 %
and

¥y =097901 < 1.

So, problem (8) has a unique solution in C([a, ¥],R). So, we can apply Theorems 6
and 7.

5. Conclusions

In this research, we have come up with sufficient conditions to prove the EUS of the
FDEs solution in the ¢-CFD for orders 1 < & < 2. This is achieved with the help of BFPT
and SFPT. Since we are interested in the EUS, two examples were given to explain the
applicability of previously theoretically theorized theorems. We propose future work to
apply the same technique to a special type of pantograph equation and its applications.
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