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1. Introduction and Preliminaries

One effective technique that is primarily utilised to address several challenges in
both pure and applied research is the convexity of functions. There are several important
properties of symmetric convex sets. The Hermite–Hadamard inequality (H-H), one of
the most significant mathematical inequality linked to convex function, is often utilised in
many other branches of computer mathematics and is as follows:

Theorem 1 ((H-H) [1]). Suppose that Q : I ⊆ R → R is a convex function and r, w ∈ I with
r 6= w, then

Q

(
r+ w

2

)
≤ 1

w− r

∫ w

r
Q(y)dy ≤ Q(r) +Q(w)

2
.

Due to the significance of this inequality, over the past ten years, numerous types of
convexity, such as harmonically convex, exponentially convex, coordinated convex functions,
etc., have been explored in the literature along with versions of the H-H inequality. The H-H
inequality was also refined for an improved power mean inequality [2] and R-convex and
R-concave functions [3]. In addition, numerous authors have helped this subject advance by
using the discovered kernels and identities; see [4–15] and the references therein.

For the simplicity of notations, let us denote, respectively, Q = [0, ∞), where Q◦ = (0, ∞),
and L[r, w] the set of all Lebesgues integrable functions on [r, w].
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In the study of inequalities, the multiplicative convex function is crucial, and it is
summed up as follows:

Definition 1 (Refs. [16,17]). A function Q : I ⊆ R → Q is called multiplicative convex or
log-convex, if log Q is convex or equivalently, for all r, w ∈ I and $ ∈ [0, 1], i.e.,

Q($r+ (1− $)w) ≤ [Q(r)]$[Q(w)]1−$.

As stated by Definition 1, it is easily revealed that

Q($r+ (1− $)w) ≤ [Q(r)]$[Q(w)]1−$ ≤ $Q(r) + (1− $)Q(w),

which indicates that every multiplicative convex function is a convex function, but the
converse is not true.

Researchers have looked into a range of multiplicative-convex-function-related in-
equalities and characteristics. For instance, the H-H type of integral inequalities for multi-
plicative convex functions was studied by Bai and Qi [18]. Many H-H type weighted in-
equalities that are pertinent to multiplicative convex functions constructed on real intervals
were established by Dragomir [19]. A few H-H type integral inequalities were presented by
Set and Ardiç [20] concerning multiplicative convex functions and p-functions. Many mul-
tiplicative convex functions’ features were provided by Zhang and Jiang [21]. Kadakal [22]
established new versions of the H-H inequality for subadditive functions. Furthermore,
interested readers can see [23–27] and the references therein for recent developments based
on multiplicative convex functions.

The term “∗integral operators” is used to refer to a class of multiplicative operators
developed by Bashirov et al. [28], represented as

∫ w
r (Q(y))dy. The term “ordinary integral”

is represented by the symbol
∫ w
r Q(y)dy. In retrospect, if the function Q is positive and

Riemann integrable, defined on [r, w], then it is multiplicatively integrable and moreover,∫ w

r
(Q(y))dy = exp

{∫ w

r
ln Q(y) dy

}
. (1)

Compared to the calculus of Newton and Leibnitz, multiplicative calculus has a limited
range of applications. In fact, it exclusively includes positive functions. Nonetheless, the
requirement of inventing and implementing multiplicative calculus mirrors the relevance
of the polar coordinates when rectangular systems already exist. Moreover, we believe that
multiplicative calculus is a helpful mathematical tool for economics, finance, and other
scientific fields since multiplicative derivatives allow for several interpretations of situations
where the logarithmic scale emerges. In reality, a lot of scientific tables use logarithmic
scales. For instance, logarithmic scales are used to describe earthquake magnitude, chemical
acidities, and sound signal levels.

Definition 2 (Ref. [28]). Considering the function Q : R→ Q. The multiplicative derivative of
the function Q is given by

d∗Q
dy

(y) = Q∗(y) = lim
h→0

(
Q(y+ h)

Q(y)

) 1
h

.

The link between the function Q∗ and the ordinary derivative Q is as follows, if the
function Q is differentiable and positive at y:

Q∗(y) = exp
{
[ln Q(y)]′

}
= exp

{
Q′(y)

Q(y)

}
.

These ∗differentiable characteristics are true.
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Definition 3 (Ref. [28]). Suppose that Q1 and Q2 are ∗differentiable functions. If the constant c
is arbitrary, then the functions cQ1, Q1Q2, Q1 +Q2, Q1/Q2, and QQ2

1 are ∗differentiable, and
the following identities are true:

1. (cQ1)
∗(y) = Q∗1 (y);

2. (Q1Q2)
∗(y) = Q∗1 (y)Q

∗
2 (y);

3. (Q1 +Q2)
∗(y) = Q∗1 (y)

Q1(y)
Q1(y)+Q2(y) Q∗2 (y)

Q2(y)
Q1(y)+Q2(y) ;

4.
(

Q1
Q2

)∗
(y) =

Q∗1 (y)
Q∗2 (y)

;

5.
(
QQ2

1

)∗
(y) = Q∗1 (y)

Q2(y)Q1(y)
Q′2(y).

Bashirov et al. [28] showed the following characteristics of the multiplicative integral
operators:

Theorem 2 ((Multiplicative Integration by Parts) [28]). Let the functions Q1 : [r, w]→ R be
∗differentiable and Q2 : [r, w]→ R be differentiable. Then, the function QQ2

1 is ∗integrable and the
following equality holds true:

∫ w

r

(
Q∗1 (y)

Q2(y)
)dy

=
Q1(w)

Q2(w)

Q1(r)Q2(r)
· 1∫ w

r

(
Q1(y)

Q′2(y)
)dy .

Theorem 3 (Ref. [28]). Let the functions Q1 and Q2 be positive and Riemann integrable defined
on [r, w]. Then, the function Q1Q2 is ∗integrable on [r, w] and the following identities hold true:

1.
∫ w
r ((Q1(y))

p)dy =
∫ w
r

(
(Q1(y))

dy
)p, p ∈ R;

2.
∫ w
r (Q1(y)Q2(y))

dy =
∫ w
r (Q1(y))

dy ·
∫ w
r (Q2(y))

dy;

3.
∫ w
r

(
Q1(y)
Q2(y)

)dy
=
∫ w
r
(Q1(y))

dy∫ w
r
(Q2(y))dy

;

4.
∫ w
r (Q1(y))

dy =
∫ v
r (Q1(y))

dy ·
∫ w

v (Q1(y))
dy, r ≤ v ≤ w;

5.
∫ r
r (Q1(y))

dy = 1 and
∫ w
r (Q1(y))

dy =
(∫ r

w (Q1(y))
dy
)−1.

The H-H inequalities for multiplicative convex functions, which are visually appealing
geometric-mean-type inequalities, are shown below.

Theorem 4 (Ref. [29]). Let the function Q be positive and multiplicative convex on [r, w]. Then,

Q

(
r+ w

2

)
≤
(∫ w

r
(Q(y))dy

) 1
w−r
≤
√

Q(r)Q(w),

holds true.

According to Abdeljawad and Grossman [30], the multiplicative Riemann–Liouville frac-
tional integrals are an exciting refinement of the Riemann–Liouville fractional integrals (R-L).

Multiplicative fractional calculus is the combination of multiplicative calculus and
fractional calculus. Basic forms of fractional integrals and derivatives are defined and
described to understand what exponential varying quantities look like with an arbitrary
order reflected by delay effects. This makes the multiplicative fractional integrals more
interesting to work with.

Definition 4 (Ref. [30]). The multiplicative left-sided Riemann–Liouville fractional integral
rIα
∗Q(x) of order α ∈ C, where Re(α) > 0, is defined as

rIα
∗Q(x) = exp

{
Jα
r+ ln Q(x)

}
,
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and the multiplicative right-sided one ∗Iα
wQ(x) is defined as

∗Iα
wQ(x) = exp

{
Jα
w− ln Q(x)

}
.

Here, we denote Jα
r+

Q(x) as the left-sided R-L integral and Jα
w−Q(x) as the right-sided

R-L integral, which are defined as

Jα
r+Q(x) =

1
Γ(α)

∫ x

r
(x− $)α−1Q($)d$, (x > r)

and
Jα
w−Q(x) =

1
Γ(α)

∫ w

x
($− x)α−1Q($)d$, (x < w),

respectively, for all α > 0.
Moreover, Sarikaya et al. [31], using R-L fractional integrals, proved the following

impressive inequality.

Theorem 5 (Ref. [31]). Assume that the function Q : [r, w] → R is positive together with
0 ≤ r < w and Q ∈ L[r, w]. If the function Q defined on [r, w] is convex, then the following
inequalities with α > 0 for fractional integrals hold true:

Q

(
r+ w

2

)
≤ Γ(α + 1)

2(w− r)α

[
Jα
r+Q(w) + Jα

w−Q(r)
]
≤ Q(r) +Q(w)

2
.

The importance of using fractional calculus as a tool for integrating and differentiating
real or complex number orders has been demonstrated. It has developed swiftly as a result
of being used to simulate a variety of issues, particularly when tackling stochastic difficul-
ties, the dynamics of complex systems, and decision-making in structural engineering. For
further information, please see [32,33]. Fractional calculus has a lot of applications with
reference to fluid dynamics, for example see the articles [34–36], and engineering [37,38].
For recent developments on fluid dynamics, one can refer to [39–45] and the references
therein. Researchers have been paying close attention to this subject recently. Many studies
have been conducted on the H-H type inequalities involving various types of fractional
integral operators. For example, [46] for R-L fractional integrals, Pshtiwan et al. [47]
for tempered fractional integrals, Chen et al. [48] for Katugampola fractional integrals,
Sahoo et al. [49] for Caputo–Fabrizio fractional integrals, Botmart et al. [50] for fractional
integrals with exponential kernels, and Peng et al. [51] for new bounds estimates on the
multiplicative fractional integral. Due to its potential applications in several sectors of the
pure and applied sciences, fractional integral inequalities have captured the attention of
many mathematicians and researchers. The primary function of fractional operators is to
build connections between continuous and discrete situations.

The goal of this work was to define the left- and right-sided generalised multiplicative
fractional integral operators, as well as several H-H inequalities, including the generalized
multiplicative fractional integrals via the multiplicative convexity property. The research in
the publications described above served as an inspiration for this one. Our findings using
these novel generalizations may be used to assess a wide range of mathematical issues with
applications in the real world. We expect that the innovative approaches presented in this
study will motivate researchers working in the field of analysis, numerical analysis, and
mathematical inequalities. Future research in this area is fascinating. Our theories might
inspire a good number of additional studies.

Our paper is organised as follows: For multiplicative convex functions and their product,
we find some new generalised multiplicative fractional H-H type inequalities in Section 2.
We derive many inequalities for multiplicative convex functions relevant to generalized
multiplicative fractional integrals in Section 3, utilising a new identity as an auxiliary result.
In Section 4, we provide several examples for appropriate selections of multiplicative convex
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functions and their graphical representations to verify the veracity of our main results. In
Section 5, the conclusions and recommendations for further study are provided.

2. Main Results

Now, we are in position to introduce the following definition regarding generalized
multiplicative fractional integral operators.

Definition 5. Let Q ∈ L[r, w] and φ : Q→ Q. The left- and right-sided generalized multiplicative
fractional integrals Tφ

r+
Q(x) and Tφ

w−Q(x) with respect to the function φ are defined as follows:

Tφ
r+

Q(x) := exp
{ ∫ x

r

φ(x− $)

x− $
· ln Q($)d$

}
(x > r)

and

Tφ
w−Q(x) := exp

{ ∫ w

x

φ($− x)
$− x

· ln Q($)d$

}
(x < w), (2)

where the function φ was constructed by Sarikaya et al. in [52].

Remark 1.

• Taking φ($) = $ in Definition 5, we have the notion of multiplicative integral operator given
by (1).

• Choosing φ($) = $α

Γ(α) in Definition 5, we get the notion of multiplicative Riemann–Liouville
fractional integral operators given by Definition 4.

For other suitable choices of function φ, for example $(x− $)α−1, $
α exp

(
− 1−α

α $
)

, etc., in
Definition 5, we can deduce some new interesting multiplicative fractional integral operators.

The generalized multiplicative fractional H-H type inequalities for multiplicative
convex functions are given as follows:

Theorem 6. Let Q : Q→ Q be a multiplicative convex function with r, w ∈ Q◦ and r < w, then[
Q

(
r+ w

2

)]Ω
≤
√

Tφ
r+

Q(w) · Tφ
w−Q(r) ≤ [Q(r)Q(w)]

Ω
2 , (3)

where

Ω :=
∫ 1

0

φ($(w− r))

$
d$.

Proof. Since Q is a multiplicative convex function on Q, we have

Q

(
r+ w

2

)
= Q

(
$r+ (1− $)w+ (1− $)r+ $w

2

)
≤ [Q($r+ (1− $)w)]

1
2 · [Q((1− $)r+ $w)]

1
2 .

Hence,

ln Q

(
r+ w

2

)
≤ 1

2
[ln Q($r+ (1− $)w) + ln Q((1− $)r+ $w)]. (4)

Multiplying both sides of (4) by φ($(w−r))
$ , integrating the resultant inequality with

respect to $ over [0, 1], and changing the variables of integration, we get
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ln Q

(
r+ w

2

) ∫ 1

0

φ($(w− r))

$
d$ = Ω ·

[
ln Q

(
r+ w

2

)]
≤ 1

2

[∫ 1

0

φ($(w− r))

$
ln Q($r+ (1− $)w)d$ +

∫ 1

0

φ($(w− r))

$
ln Q((1− $)r+ $w)d$

]
=

1
2

[∫ w

r

φ($− r)

$− r
ln Q($)d$ +

∫ w

r

φ(w− $)

w− $
ln Q($)d$

]
.

It readily yields that[
Q

(
r+ w

2

)]Ω
≤
√

Tφ
r+

Q(w) · Tφ
w−Q(r),

which shows that the left-side inequality of (3) is proved. For the proof of the right-side
inequality in (3), we first note that Q is a is multiplicative convex function on Q; then, for
$ ∈ [0, 1], it yields

Q($r+ (1− $)w) ≤ [Q(r)]$ · [Q(w)]1−$ (5)

and

Q((1− $)r+ $w) ≤ [Q(r)]1−$ · [Q(w)]$. (6)

By taking the logarithmic function on both sides of inequalities (5) and (6), and adding
them, we obtain

1
2
[ln Q($r+ (1− $)w) + ln Q((1− $)r+ $w)] ≤ ln Q(r) + ln Q(w)

2
. (7)

Multiplying both sides of (7) by φ($(w−r))
$ , integrating the resultant inequality with

respect to $ over [0, 1], and using the change of variables, we have the right-side inequality
in (3). The proof of Theorem 6 is completed.

Corollary 1. Taking φ($) = $ in Theorem 6, we have[
Q

(
r+ w

2

)]w−r
≤
∫ w

r
(Q(y))dy ≤ [Q(r)Q(w)]

w−r
2 , (8)

which is Theorem 4 established by Ali et al. ([29], Theorem 5).

Corollary 2. Choosing φ($) = $α

Γ(α) in Theorem 6, we get

[
Q

(
r+ w

2

)] (w−r)α
Γ(α+1)

≤ exp
{

Jα
r+

ln Q(w) + Jα
w− ln Q(r)

2

}
≤ [Q(r)Q(w)]

(w−r)α
2Γ(α+1) . (9)

Corollary 3. Let Q1, Q2 : Q→ Q be two multiplicative convex functions; then, from Theorem 6,
we obtain[

Q1

(
r+ w

2

)
·Q2

(
r+ w

2

)]Ω

≤
√

Tφ
r+

Q1(w)T
φ
r+

Q2(w) · T
φ
w−Q1(r)T

φ
w−Q2(r)

≤ [Q1(r)Q2(r) ·Q1(w)Q2(w)]
Ω
2 . (10)

Proof. As the functions Q1 and Q2 are positive multiplicative convex, the product function
Q1Q2 is positive and multiplicative convex.
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Indeed,

Q1($r+ (1− $)w) ≤ [Q1(r)]
$ · [Q1(w)]

1−$,

and

Q2($r+ (1− $)w) ≤ [Q2(r)]
$ · [Q2(w)]

1−$.

Multiplying the above two inequalities, we get

Q1($r + (1 − $)w) · Q2($r + (1 − $)w) ≤ [Q1(r)Q2(r)]
$ · [Q1(w)Q2(w)]

1−$.

If we apply Theorem 6 to the function Q1Q2, then we deduce the required double
inequality (10).

Corollary 4. Taking φ($) = $ in Corollary 3, we have[
Q1

(
r+ w

2

)
·Q2

(
r+ w

2

)]w−r
≤
∫ w

r
(Q1(y)Q2(y))

dy≤ [Q1(r)Q2(r) ·Q1(w)Q2(w)]
w−r

2 . (11)

Corollary 5. Choosing φ($) = $α

Γ(α) in Corollary 3, we get

[
Q1

(
r+ w

2

)
·Q2

(
r+ w

2

)] (w−r)α
Γ(α+1)

≤ exp
{

Jα
r+

ln Q1(w)Q2(w) + Jα
w− ln Q1(r)Q2(r)

2

}
(12)

≤ [Q1(r)Q2(r) ·Q1(w)Q2(w)]
(w−r)α
2Γ(α+1) .

3. Further Results

Lemma 1. Let Q : Q→ Q be a ∗differentiable function on Q◦ with r, w ∈ Q◦ and r < w. If the
integrable function Q∗ is defined on [r, w], then the following generalized multiplicative fractional
integral equality holds true:

Tφ
r+

Q(w)

Tφ
w−Q(r)

= [Q(r)Q(w)]Ω(1) ·
∫ 1

0

[
Q∗($r+ (1− $)w)Ω(1−$)−Ω($)

]d$
, (13)

where

Ω($) :=
∫ $

0

φ(x(w− r))

x
dx.

Proof. Let us denote

I :=
∫ 1

0

[
Q∗($r+ (1− $)w)Ω(1−$)−Ω($)

]d$
.

Employing the multiplicative integration by parts and changing the variables of
integration, we find that

I =
1

[Q(r)Q(w)]Ω(1)
· 1∫ 1

0

[
Q($r+ (1− $)w)−Ω′(1−$)−Ω′($)

]d$

=
1

[Q(r)Q(w)]Ω(1)
· 1∫ 1

0

[
Q($r+ (1− $)w)

φ((1−$)(w−r))
1−$ − φ($(w−r))

$

]d$
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=
1

[Q(r)Q(w)]Ω(1)
· 1

exp
{ ∫ 1

0

[
φ((1−$)(w−r))

1−$ − φ($(w−r))
$

]
ln Q($r+ (1− $)w)d$

}
=

1
[Q(r)Q(w)]Ω(1)

· 1

exp
{ ∫ w

r
φ($−r)

$−r ln Q($)d$−
∫ w
r

φ(w−$)
w−$ ln Q($)d$

}
=

1
[Q(r)Q(w)]Ω(1)

·
Tφ
r+

Q(w)

Tφ
w−Q(r)

.

Multiplying the above equality by the factor [Q(r)Q(w)]Ω(1), we obtain the desired
result (13).

Remark 2.

(a) Taking φ($) = $ in Lemma 1, we have

[Q(r)Q(w)]w−r ·
∫ 1

0

[
Q∗($r+ (1− $)w)(w−r)(1−2$)

]d$
= 1. (14)

(b) Choosing φ($) = $α

Γ(α) in Lemma 1, we get

rIα
∗Q(w)

∗Iα
wQ(r)

= [Q(r)Q(w)]
(w−r)α
Γ(α+1) ·

∫ 1

0

[
Q∗($r+ (1− $)w)

(w−r)α
Γ(α+1) ((1−$)α−$α)

]d$

. (15)

Theorem 7. Let Q : Q→ Q be a ∗differentiable function on Q◦ with r, w ∈ Q◦ and r < w. If the
integrable function |Q∗|q defined on [r, w] is multiplicative convex with p > 1 and 1

p + 1
q = 1, then∣∣∣∣∣ 1

[Q(r)Q(w)]Ω(1)
·

Tφ
r+

Q(w)

Tφ
w−Q(r)

∣∣∣∣∣ ≤ exp

{
C

1
p (Ω, p) ·

(
ln |Q∗(r)|q + ln |Q∗(w)|q

2

) 1
q
}

, (16)

where

C(Ω, p) :=
∫ 1

0
|Ω(1− $)−Ω($)|pd$.

Proof. By using Lemma 1, Hölder’s inequality, the multiplicative convexity of |Q∗|q on Q,
changing the variables of integration, and the properties of the modulus, we have∣∣∣∣∣ 1

[Q(r)Q(w)]Ω(1)
·

Tφ
r+

Q(w)

Tφ
w−Q(r)

∣∣∣∣∣
=

∣∣∣∣∫ 1

0

[
Q∗($r+ (1− $)w)Ω(1−$)−Ω($)

]d$
∣∣∣∣

≤ exp
{∫ 1

0
|Ω(1− $)−Ω($)||ln Q∗($r+ (1− $)w)|d$

}

≤ exp

{(∫ 1

0
|Ω(1− $)−Ω($)|pd$

) 1
p

·
(∫ 1

0
|ln Q∗($r+ (1− $)w)|qd$

) 1
q
}

≤ exp

{
C

1
p (Ω, p) ·

(∫ 1

0

[
$ ln|Q∗(r)|q + (1− $) ln|Q∗(w)|q

]
d$

) 1
q
}

= exp

{
C

1
p (Ω, p) ·

(
ln |Q∗(r)|q + ln |Q∗(w)|q

2

) 1
q
}

.
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This concludes the proof.

Corollary 6. Taking φ($) = $ in Theorem 7 and using Remark 2(a), we have

∣∣∣∣ 1
[Q(r)Q(w)]w−r

∣∣∣∣ ≤ exp

 (w− r)

(p + 1)
1
p
·
(

ln |Q∗(r)|q + ln |Q∗(w)|q
2

) 1
q

. (17)

Corollary 7. Choosing φ($) = $α

Γ(α) in Theorem 7 and using Remark 2(b), we get∣∣∣∣∣∣ 1

[Q(r)Q(w)]
(w−r)α
Γ(α+1)

· rIα
∗Q(w)

∗Iα
wQ(r)

∣∣∣∣∣∣ (18)

≤ exp

{
(w− r)α

Γ(α + 1)
F

1
p (p, α) ·

(
ln |Q∗(r)|q + ln |Q∗(w)|q

2

) 1
q
}

,

where

F(p, α) :=
∫ 1

0
|(1− $)α − $α|pd$.

Theorem 8. Let Q : Q→ Q be a ∗differentiable function on Q◦ with r, w ∈ Q◦ and r < w. If the
integrable function |Q∗|q defined on [r, w] is multiplicative convex with q ≥ 1, then∣∣∣∣∣ 1

[Q(r)Q(w)]Ω(1)
·

Tφ
r+

Q(w)

Tφ
w−Q(r)

∣∣∣∣∣ (19)

≤ exp
{

C1− 1
q (Ω) · [D(Ω) ln |Q∗(r)|q + (C(Ω)−D(Ω)) ln |Q∗(w)|q]

1
q

}
,

where

C(Ω) :=
∫ 1

0
|Ω(1− $)−Ω($)|d$, D(Ω) :=

∫ 1

0
$|Ω(1− $)−Ω($)|d$.

Proof. By using Lemma 1, the power mean inequality, the multiplicative convexity of |Q∗|q
on Q, changing the variables of integration, and the properties of the modulus, we have∣∣∣∣∣ 1

[Q(r)Q(w)]Ω(1)
·

Tφ
r+

Q(w)

Tφ
w−Q(r)

∣∣∣∣∣
=

∣∣∣∣∫ 1

0

[
Q∗($r+ (1− $)w)Ω(1−$)−Ω($)

]d$
∣∣∣∣

≤ exp
{∫ 1

0
|Ω(1− $)−Ω($)||ln Q∗($r+ (1− $)w)|d$

}

≤ exp

{(∫ 1

0
|Ω(1− $)−Ω($)|d$

)1− 1
q

·
(∫ 1

0
|Ω(1− $)−Ω($)||ln Q∗($r+ (1− $)w)|qd$

) 1
q
}

≤ exp

{
C1− 1

q (Ω) ·
(∫ 1

0
|Ω(1− $)−Ω($)|

[
$ ln|Q∗(r)|q + (1− $) ln|Q∗(w)|q

]
d$

) 1
q
}

= exp
{

C1− 1
q (Ω) · [D(Ω) ln |Q∗(r)|q + (C(Ω)−D(Ω)) ln |Q∗(w)|q]

1
q
}

.

This concludes the proof.
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Corollary 8. Taking q = 1 in Theorem 8, we have∣∣∣∣∣ 1
[Q(r)Q(w)]Ω(1)

·
Tφ
r+

Q(w)

Tφ
w−Q(r)

∣∣∣∣∣ (20)

≤ exp{D(Ω) ln |Q∗(r)|+ (C(Ω)−D(Ω)) ln |Q∗(w)|}.

Corollary 9. Choosing φ($) = $ in Theorem 8 and using Remark 2(a), we get∣∣∣∣ 1
[Q(r)Q(w)]w−r

∣∣∣∣ ≤ exp

{(
1
2

)1+ 1
q
(w− r) · [ln |Q∗(r)|q + ln |Q∗(w)|q]

1
q

}
. (21)

Corollary 10. Letting φ($) = $α

Γ(α) in Theorem 8 and using Remark 2(b), we obtain∣∣∣∣∣∣ 1

[Q(r)Q(w)]
(w−r)α
Γ(α+1)

· rIα
∗Q(w)

∗Iα
wQ(r)

∣∣∣∣∣∣ (22)

≤ exp
{

C1− 1
q (α)

(w− r)α

Γ(α + 1)
· [D(α) ln |Q∗(r)|q + (C(α)−D(α)) ln |Q∗(w)|q]

1
q

}
,

where

C(α) :=
∫ 1

0
|(1− $)α − $α|d$, D(α) :=

∫ 1

0
$|(1− $)α − $α|d$.

Remark 3. For suitable choices of the function φ, for example $(x− $)α−1, $
α exp

(
− 1−α

α $
)

, etc.,
in Theorems 6–8, we can deduce some new interesting integral inequalities. We omit their proofs
and the details are left to the interested reader.

4. Numerical and Graphical Computations

Before starting this section, it is easy to prove that the functions Q1(x) =
√

1
x

and |Q2
∗(x)| = exp { 2

x} for all x > 0 are multiplicative convex. Using this fact and
Theorems 6–8 above, we have the following numerical results and their graphical represen-
tations to verify the correctness of the derived findings given in Table 1, Table 2 and Table 3
for Figure 1, Figure 2 and Figure 3, respectively.

Table 1. Numerical validation of Theorem 6 for r = 1, w = 2, Q1(x) =
√

1
x , and φ($) =

$α

Γ(α) .

α Values of the Left Term Values of the Middle Term Values of the Right Term

0.1 0.808069 0.828942 0.833478

0.2 0.801869 0.819867 0.828009

0.3 0.797796 0.81346 0.824413

0.4 0.795726 0.809497 0.822584

0.5 0.795513 0.807751 0.822396

0.6 0.796999 0.807991 0.823709

0.7 0.800014 0.809991 0.826372

0.8 0.804385 0.813529 0.83023

0.9 0.809936 0.818388 0.835123
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Left term

Middle term

Right term

0.2 0.4 0.6 0.8 1.0

0.80

0.81

0.82

0.83

0.84

α

Figure 1. Graphical behaviour of Theorem 6 for r = 1, w = 2, Q1(x) =
√

1
x , φ($) =

$α

Γ(α) ,
and 0 < α < 1.

Table 2. Numerical validation of Theorem 7 for r = 1, w = 2, |Q2
∗(x)| = exp { 2

x}, and φ($) =
$α

Γ(α) .

α Values of the Left Term Values of the Right Term

0.1 0.765017 1.32413

0.2 0.601802 1.65435

0.3 0.487657 1.96873

0.4 0.407373 2.24682

0.5 0.350791 2.47288

0.6 0.311124 2.63777

0.7 0.283816 2.73922

0.8 0.2658 2.78087

0.9 0.254999 2.77053

Left term

Right term

0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

α

F
u
n
c
ti
o
n
V
a
lu
e
s

Figure 2. Graphical behaviour of Theorem 7 for r = 1, w = 2, |Q2
∗(x)| = exp { 2

x}, φ($) =
$α

Γ(α) , and
0 < α < 1.
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Table 3. Numerical validation of Theorem 8 for r = 1, w = 2, |Q2
∗(x)| = exp { 2

x}, and φ($) =
$α

Γ(α) .

α Values of the Left Term Values of the Right Term

0.1 0.765017 1.24817

0.2 0.601802 1.50229

0.3 0.487657 1.7462

0.4 0.407373 1.96457

0.5 0.350791 2.14523

0.6 0.311124 2.28061

0.7 0.283816 2.36816

0.8 0.2658 2.40973

0.9 0.254999 2.41046

Left term

Right term

0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

α

F
u
n
c
ti
o
n
V
a
lu
e
s

Figure 3. Graphical behaviour of Theorem 8 for r = 1, w = 2, |Q2
∗(x)| = exp { 2

x}, φ($) =
$α

Γ(α) , and
0 < α < 1.

From the above figure, it is clear that for 0 < α < 1, the inequalities of Theorem 6 are

satisfied. The green line represents the right-side inequality
(
[Q(r)Q(w)]

Ω
2
)

, the yellow

line represents the middle inequality
(√

Tφ
r+

Q(w) · Tφ
w−Q(r)

)
, and the blue line represents

the left-side inequality
([

Q
(
r+w

2
)]Ω

)
. Thus, it shows that the inequality holds true for

different values of α.

5. Conclusions

First, a generalized multiplicative fractional integral operator was introduced. Then,
for multiplicative convex functions and their products, some new generalized multiplica-
tive fractional H-H inequalities were constructed in this study. Additionally, we derived
a number of inequalities for multiplicative convex functions related to generalized multi-
plicative fractional integrals utilizing a novel identity as an auxiliary result. To validate the
accuracy of our main results, we gave some examples for suitable choices of multiplicative
convex functions and their graphical representations. Some future aspects of this concept
could be defining interval-valued multiplicative convex functions and establishing new
kinds of interval-valued inequalities. A novel approach on this concept could be linking
the multiplicative convex functions to coordinates i.e. establishing new generalized multi-
plicative coordinated convex functions and related inequalities. We believe that these novel
definitions can be treated also using quantum calculus.
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