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Abstract: Most popular graph attention networks treat pixels of a feature map as individual nodes,
which makes the feature embedding extracted by the graph convolution lack the integrity of the
object. Moreover, matching between a template graph and a search graph using only part-level
information usually causes tracking errors, especially in occlusion and similarity situations. To
address these problems, we propose a novel end-to-end graph attention tracking framework that
has high symmetry, combining traditional cross-correlation operations directly. By utilizing cross-
correlation operations, we effectively compensate for the dispersion of graph nodes and enhance the
representation of features. Additionally, our graph attention fusion model performs both part-to-part
matching and global matching, allowing for more accurate information embedding in the template
and search regions. Furthermore, we optimize the information embedding between the template and
search branches to achieve better single-object tracking results, particularly in occlusion and similarity
scenarios. The flexibility of graph nodes and the comprehensiveness of information embedding have
brought significant performance improvements in our framework. Extensive experiments on three
challenging public datasets (LaSOT, GOT-10k, and VOT2016) show that our tracker outperforms
other state-of-the-art trackers.

Keywords: symmetry; single-object tracking; graph attention network; Siamese networks; cross-
correlation; feature fusion

1. Introduction

Visual object tracking is a fundamental and challenging task in computer vision. It has
wide applications in virtual reality, human-–machine interactions, image understanding,
unmanned vehicles, pedestrian identification [1], object re-identification [2], and other
fields. The basic task of single-object tracking is to continuously track and locate the target
in each subsequent frame, which is only given the initial position of the target, without
providing prior conditions about the color, shape, and size of the target in the process. This
means trackers can only track by learning the target in the first frame. In general, difficulties
in the tracking process mainly include: occlusion, disappearance, deformation, motion blur,
and complex backgrounds. In recent years, mainstream trackers [3–9] based on Siamese
networks, which have a symmetrical structure, have achieved an excellent balance between
tracking accuracy and efficiency. The template features and search region features are
extracted by deep networks, and a cross-correlation-based layer for information embedding
is used to obtain similarity maps or response maps, which use the whole template as a
convolution kernel.

In traditional Siamese trackers, the information embedding between the template and
search region contains global information, in which the information transmitted from the
template to the search region is limited and inadequate. Aiming at solving these issues,
graph convolution networks [10–12] are widely used for object tracking. The scalability
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and flexibility of graph nodes achieve a part-to-part information embedding and obtain
better response information. These trackers [13,14] treat pixels in feature maps as nodes
and leverage graph convolution networks for information transmission. This part-to-part
similarity matching can greatly alleviate the effects of deformation and occlusion. Despite
their great success, the pixel-level matching-based graph convolution trackers [14] still
have some drawbacks.

Graph attention networks that use part-to-part similarity information focus on local
matching. These trackers ignore the integrity of nodes in objects. Within an object, the
distribution between nodes is correlated and integrated. However, treating pixels in
feature maps as independent nodes means that each node is a part of an object. This
operation separates the global information about an object, making the object information
too scattered. During the actual single object tracking, there will be a lot of interference
in the environment, which is similar to the local part of the object. As Figure 1 shows,
it easily makes the response to the interference environment stronger, causing tracking
errors. Furthermore, the use of only local information embedding can’t make full use of the
information in search images and template images. How to make the node have both local
information and global information is the key to tracking.

Template

SiamGATCFGC GroundTruth

Figure 1. of our CFGC with SiamGAT on the challenging sequences from LaSOT. The baseline
SiamGAT (in blue) only uses local information, while our CFGC (in red) has both local and global
information in nodes. Based on the same template image and search image, our CFGC obtains a more
accurate response map and tracking results. Please zoom in for a better view.

Aiming at solving these issues, we combine the graph convolution features of nodes
with the cross-correlation features between the template and search regions. We obtain
the template feature map and search region feature map through the template branch and
search branch in Siamese network-based architectures, which have symmetry. Then, we
use the whole template as a convolution kernel for a global information propagating to
obtain the response map. Furthermore, we leverage graph attention networks to learn the
part-level relations, and the final node information is fused with the response map as a new
response map. Therefore, the information embedding between the template and search
region has both global information and part-level information, combining part features
and global features. It greatly alleviates the problems of similar interference, occlusion, and
deformation. With the graph attention fusion module (GAF), we propose a graph attention
network-based object tracking method with cross-correlation feature fusion.

In this work, we focus on improving the performance of traditional graph atten-
tion trackers for occlusion and similar interference problems. We propose a novel cross-
correlation fusion graph convolution-based object tracking (CFGC) network with GAF
for general object tracking. The framework is simple yet effective, combining the graph
convolution network with the cross-correlation operation directly. Instead of only local in-
formation embedding, our CFGC improves node information, enabling nodes to have both
global information and part-level information. Local information embedding improves the
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accuracy of tracking boxes, and global information embedding weakens the interference
of complex environments. These optimized information embeddings make the proposed
CFGC more accurate and robust.

We evaluate our tracker on several challenge benchmarks, including the VOT2016 [15],
GOT-10k [16], and LaSOT [17] datasets. Our proposed model outperforms state-of-the-art
trackers. Our main contributions are as follows:

• We propose an end-to-end graph convolutional tracking framework combining tra-
ditional cross-correlation operations which has a symmetrical structure. To the best
of our knowledge, this is the first work to combine them directly without complex
operations or other strategies.

• We propose a graph attention fusion (GAF) method to realize both part-to-part match-
ing and global matching for information embedding. Compared with traditional
graph attention trackers, which ignore the integrity of the object, our tracker can
greatly improve the anti-interference and accuracy.

• Extensive experiments on several challenging benchmarks, including the VOT2016,
GOT-10k, and LaSOT datasets, show that our proposed model achieves leading
performance compared to state-of-the-art trackers, which means our CFGC is accurate
and robust.

2. Related Work
2.1. Object Tracking and Siamese Networks

In recent years, the object tracker based on Siamese networks has received extensive
attention for its robust tracking performance, which transforms the target tracking problem
into an image block matching problem and calculates the similarity of the template and the
search region by training a similarity function, thus determining the location of the target.
This end-to-end offline training method makes the tracking problem greatly simplified.
However, it still has a good balance between tracking accuracy and efficiency. Siamese
network-based architectures have a template branch and search branch, and the information
embedding between them to obtain informative response maps is the key to accurate
object localization.

The method SiamFC [3] constructs two symmetrical branches with shared weights
for feature extraction. It feeds the generated feature map into the cross-correlation layer
to generate a heatmap or response map, which takes the template features as kernels to
perform a convolution operation for the first time. However, it has a problem in that the
tracking box is not flexible enough. SiamRPN [4] proposes a Siamese region proposal
network (RPN). It extracts candidate regions on the cross-correlation feature map, and then
encodes the target appearance information on the template branch into the RPN feature to
identify the foreground and background. During tracking, it treats this task as a one-shot
detection task. SiamRPN makes the tracking box more accurate and saves time spent on
multi-scale testing. Based on SiamRPN, DaSiamRPN [5] analyzes the features extracted
by the existing Siamese network methods and their shortcomings, and then focuses on
training distractor-aware Siamese networks for accurate and long-term tracking, mainly
improving SiamRPN in terms of dataset expansion, training methods, and local-to-global
search strategies. To make better deep networks, SiamRPN++ [6] proposes a simple and
effective sampling method that breaks the spatial limitation of the deep network in depth
and uses multi-layer fusion and depth-wise cross-correlation to optimize performance.
However, these anchor-based trackers are sensitive to the number, scale, and aspect ratio
of anchors.

To eliminate the limitations of anchors, SiamFC++ [7] adds positional regression
and a quality score to SiamFC while using a variety of losses combined with training.
SiamBAN [8] classifies the foreground and background by fully convolutional networks
and returns to the target box. It uses multi-level information to extract the last three layers
of features for feature fusion. SiamCAR [9] proposes a new tracking head, which has a
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centrality branch to improve tracking accuracy. However, the regression branch and the
classification branch are updated independently of optimization.

To resolve the classification and regression mismatches, SiamRN [18] proposes a
relation detector and a refinement module to remove interference and integrate outputs.
SiamRCR [19] proposes to establish a bidirectional connection between classification and
regression, which can dynamically reweight the loss of each positive sample. RBO [20]
also proposes a sorting-based optimization method to solve this problem, which uses
the classification loss and the IoU-guided loss as optimization constraints. Furthermore,
ATOM [21] and DiMP [22], which add the update algorithm, obtain excellent performance,
but their tracking speed is slow. However, Siamese networks based on cross-correlation
operations cause the information embedding between the template and search region
to become a global information propagating process, ignoring part-level information.
Therefore, the tracker performance is negatively affected, especially if objects are deformed
or occluded.

2.2. Graph Neural Networks

With the development of graph convolution networks [10–12], using the flexibility
and scalability of graph nodes to embed information has also become popular in research.
Graph neural networks (GNNs) [10] use neural networks in graph structures. For each
node in a positional graph, the position of the neighbor can be implicitly used for storing
useful information. It includes two parts: propagation and output. The propagation
part combines the information of neighbor nodes and edges to obtain the state vector
of the current node. The output section converts the characteristics and state vectors
of the node into output vectors. To apply convolution operations to graph structures,
gGraph convolutional networks (GCNs) [11] take the convolution of a node as a weighted
sum of neighbors around it. Through multi-layer GCN convolutions, we can extract the
information needed by each node for various classifications or analyses. However, GCNs
cannot handle dynamic graphs. Furthermore, GCNs rely on specific graph structures
during training, are tested on the same graph, and cannot assign different weights to each
neighbor. To address this issue, graph attention networks (GATs) [12] adopt an attention
mechanism, which can assign different weights to different nodes, and rely on paired
neighboring nodes instead of a specific network structure when training.

Due to the flexibility of node and network structures, graph convolutional networks are
widely used for object tracking [23–25] to obtain information embedding. GCT [13] trains
GCNs for visual tracking for the first time. It proposes an end-to-end graph convolution
tracking (GCT) method based on the Siamese framework, which can consider the time and
space target information of the historical frame at the same time. SiamGAT [14] uses GATs to
propose a graph attention module that establishes the part-to-part correspondence between
the Siamese branches. It enables each part of the search area to aggregate the target’s
information. Furthermore, the algorithm proposes a target-aware template region that
can adapt to different object scales and aspect ratios. However, this part-level information
matching ignores the integrity of the object and associativity of object nodes, which causes
a high rate of incorrect responses when the environment is similar to the parts of the object.

3. Method

As the appearance of the target continues to change and the surrounding environment
becomes more complex, the traditional graph attention networks or Siamese networks
that simply rely on local feature matching or global feature matching can no longer meet
tracking needs. The goal of our method is to learn a more robust and accurate tracker
which combines the cross-correlation operation with a graph attention network for the first
time. In this section, we will describe in detail a new graph attention convolution module
based on cross-correlation feature fusion. An overview of our framework is illustrated in
Figure 2.
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Figure 2. Overview of our proposed method. The architecture of the proposed CFGC, which
consists of three core modules: a Siamese network, a cross-correlation layer, and a graph attention
fusion model.

3.1. Cross-Graph Attention Convolution

Traditional graph attention networks are based on nodes and their neighbors, generally,
in the same graph. The cross-graph convolution idea is used in [26], which calculates the
similarity of any two node vectors between the two graphs to obtain the information
interaction characteristics, but it depends on the specific graph structure during training,
and the test should also be carried out on the same graph, which makes it unsuitable for
the tracking of flexible targets. To optimize information embedding between the template
and search region, we use cross-graph node embedding to aggregate cross-graph features.

Figure 3 shows the attention mechanism of graph attention networks. The input to it is
a set of node features, h =

{
~h1,~h2, · · · ,~hN

}
,~hi ∈ RF, where N is the number of nodes, and

F is the number of features in each node. One or more learnable linear transformations are
required to adaptively learn a better representation between the nodes. Here, W ∈ RF′×F,
where F′ is the number of dimensions to which the node feature needs to be transformed.
Then, self-attention is performed on the node.

eij = a
(

W~hi, W~hj

)
, (1)

where, eij indicates the importance of the features of node j to node i. a is an attention-
sharing mechanism, a ∈ RF′×F′ → R.

Figure 3. (a) is graph attention part. (b) is an attention by node 1 on its neighborhood. The aggregated
features are~h

′
1.
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For each j corresponding to node i, graph attention networks use the softmax function
to normalize the importance of all of j’s feature nodes to node i and obtain the normalized
attention coefficients αij.

αij = so f tmax
(
eij
)
=

exp
(
eij
)

∑
k∈Ni

exp
(
eij
) . (2)

Then, the normalized attention coefficients are used to compute a linear combination of
the features corresponding to them to serve as the final output features for every node~h

′
i.

~h
′
i = σ

(
∑

j∈Ni

αijW~hj

)
, (3)

where σ is nonlinearity.
Finally, a powerful feature representation with information transferring and interac-

tions,~h
′
i, will be obtained, which is shown in Figure 4.

However, this traditional graph attention network cannot be used directly for object
tracking because the input is the node and its neighbor in the same graph. If we directly use
image pixels as nodes, this leads to increased network costs and information redundancy.
However, this idea of attention mechanisms remains key to information embedding.

We use cross-graph attention convolution to aggregate features. Its architecture is
shown in Figure 4. We propose a graph attention convolution module based on cross-
correlation feature fusion. This module integrates the features of the cross-correlation
operation between the template feature map and the search feature map with the features
produced by cross-graph attention features, so that the template map has both local in-
formation and global information for the information embedding of the search map. It is
more robust to similar objects and complex environmental interference, and this powerful
representation of information can greatly optimize tracker performance.

Figure 4. The architecture of GAF model, which combines graph attention network with cross-
correlation feature. The representation of each search node is reconstructed by template target nodes
with attention mechanism. Then, it fuses the cross-correlation similarity map. The final new node is
fed into the tracking head for target location prediction.
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Given two images of template patch T and search S, two feature maps Ft and Fs are
first obtained using the Siamese feature extraction network. We consider each 1 × 1 × c
grid of the feature map as a node (part), where c represents the number of feature channels.
Next, the boundless weightless graph is generated.

Based on the graph, we carry out cross-graph attention convolution operations on
nodes in the template and search regions. Vt is the node set of Gt, and Vs is the node
set of Gs. hj

t is the j node of the template feature map, and hi
s is the i node of the search

feature map.
The input features are transformed into higher-level features through two learnable

linear transformations, ws and wt , ws, wt ∈ R256×256. Self-attention is then performed on
the node, and we simply use the inner product between features as a measure of similarity.
eij shows the importance of the features of node j to node i.

eij = f
(

wshi
s, wth

j
t

)
. (4)

f
(

hi
s, hj

t

)
=
(

wshi
s

)T(
wth

j
t

)
. (5)

Then, we obtain the attention coefficients aij according to Equation (2), which measures
how much attention or weight the tracker should pay to part j in the template graph based
on the i nodes in the search graph.

Information interaction between template nodes and search region nodes is carried
out according to the attention coefficient. vi is an aggregated representation of node i that
uses the attention weight of all nodes in Gt to the i node in Gs. With the learned attention
coefficient, each search node can effectively aggregate the target information from the
template. We use Equation (3) to obtain vi.

Finally, through cross-graph attention convolution, the information part-to-part in-
formation propagation of template graph and search graph node features is effectively
realized. We obtain vi as Figure 4 shows. The representation of each search node vi is
reconstructed by aggregating information and attention mechanisms from all neighboring
target nodes.

Using the cross-graph attention convolution, the part-to-part correspondence is es-
tablished, and each part of the search region aggregates the target information so as to
obtain a very effective information embedding mapping. vi will be concatenated with the
cross-correlation feature as a part of feature fusion.

3.2. Cross-Correlation Features and Feature Fusion

Due to the complex environment, simply relying on part-level features can no longer meet
tracking needs. Although each part of the search region aggregates the target information
in the cross-graph attention convolution, it has the disadvantage of ignoring the overall
information of the object, causing tracking errors in occlusion and environmental interference.

Inspired by the cross-correlation layer, we use the whole template as a convolution
kernel to make cross-correlation operations in search region for each channel, which
evaluates and calculates the similarity of all translational subwindows (candidate regions)
on the dense mesh. Additionally, it obtains the matching degree of each position in a large
search area with a target in the template. This information embedding based on the cross-
correlation layer realizes the global information propagation between the template and
the search region. We use this global information to improve the limitations of part-level
information in graph attention networks.

Given the two images of template patch T and search S, we use the cross-correlation
layer to obtain a similar map that has a global information embedding.
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This similar map is upsampled to the same shape as Gs. Then, each pixel of the graph is
treated as a node, and the node information is the feature information of the multi-channel
of the pixel. Gr is a boundless and weightless graph.

vir = hi
r , (6)

where vir contains the information interaction between the corresponding area of the node
and the whole target.

To obtain deeper information, we apply linear transformations to the node features.

vis = wvhi
s , (7)

where vis is the linear transformations in the search region.
The fusion of local feature information and global feature information is the key

to our tracker. The cross-graph attention convolution features are fused with node fea-
tures of search features and cross-correlation features to obtain a more powerful feature
representation, ĥi

s.
ĥi

s = ReLu(vi||vis||vir) . (8)

This feature fusion operation realizes the local information embedding and global
information embedding of the template graph for the search graph, which greatly improves
the tracking performance in occlusion and similar interference situations.

The fused feature map, which is the response map obtained by the information finally
embedded in the template branch and the search branch, will be fed into the tracking
head [9] for target localization. The tracking head contains a classification branch and a
regression branch. Both branches share the same response mapping from GAF.

4. Experiments
4.1. Implementation Details

We trained and tested our tracker using RTX-3090 cards with Python version 3.6
and Pytorch version 1.2. We used GoogLeNet [27] as our backbone, which allows for the
learning of multiscale feature representations with fewer parameters and faster inference
speed. The training process of the tracker involved two stages: in the first stage, we froze
the parameters in the backbone network and trained the GAF model and the tracking head
network. After several epochs, we moved on to the second stage, where we thawed the
parameters in the backbone network and adjusted them.

Our experiments used COCO [28], ImageNet [29], and YouTube-BB [30] for the training
in VOT2016 [15]. For the fairness of experiments, we only used the official training and
testing sets to evaluate our tracker on the GOT-10k [16] and LaSOT [17] datasets. During
training, the template patch size was set to 127 × 127 pixels, and the search region size was
287 × 287 pixels. The interval epoch was set to 10. The template frame was the initial frame
of the sequence and was fixed.

4.2. Ablation Study

In this section, we perform extensive analysis of our proposed model on the LaSOT
dataset. The AUC score is adopted for evaluation.

Cross-graph attention. We evaluated the importance of the part-level information
embedding. Table 1 shows the performance of only using global feature embedding
under the same Siamese network architecture. By replacing the cross-correlation operation
with graph attention networks, the success is improved by 1.4% from 51.6% to 53.0%.
This is because the graph attention networks treat the feature map pixels as independent
nodes, which realizes part-to-part information propagating instead of global information
propagating using the whole template as a convolution kernel. Learning the part-level
relations can better adapt to deformation and occlusion. However, too scattered of matching
of information can also lead to tracking errors and poor robustness to similar interference.
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Cross-correlation. We also evaluated the importance of cross-correlation operations
to improve performance. As can be seen in Table 1, the success performance of this
module is improved by 1.6% from 53.0% to 54.6%, and the precision is improved by 2.2%
when compared to only a simple graph attention layer. These results demonstrate that
the supplement of global information can better enrich node information, which makes
trackers more robust to occlusion, deformation, and similar interference. We concatenate
the node features together and reduce dimensionality through convolution neural networks
to fuse features. However, the balance of global and local information is also key.

Table 1. Ablation analysis of the proposed ranking-based optimization, consisting of cross-graph
attention and cross-correlation layer, on LaSOT.

Dataset Cross-Graph
Attention

Cross-
Correlation Success Precision

8 4 0.516 0.524
LaSOT 4 8 0.530 0.524

4 4 0.546 0.546

4.3. Experiments on LaSOT

To evaluate the generalization of our trackers, we used the official LaSOT [17] dataset
for training and testing. LaSOT is a high-quality benchmark for large-scale single-object
tracking. It contains 1400 video sequences and includes different object collections from
70 categories, each containing the same number of videos. Its video sequence attributes
include 14 attributes, including full occlusion, partial occlusion, and deformation. The
LaSOT dataset is by far the largest tracking benchmark with high-quality annotations.

We used the official training set and test set to train or test our proposed model on the
LaSOT dataset. We evaluated our tracker by the success rate and precision, and the success
plot and precision plot are drawn in Figures 5 and 6. Compared to the state-of-the-art track-
ers, including SiamFC, ATOM, SiamDW [31], SiamRPN++, SiamBAN, SiamCAR, CLNet
[32], SiamGAT, USOT [33], SiamRN [18], and RBO [20], our tracker ranks first in both
success rate and precision. Our proposed method especially has significant performance
improvements in partial occlusion, full occlusion, and out-of-view, which is beneficial
to the complementation of the overall cross-correlation feature of the object to the dis-
persed part-level features. For these factors, we demonstrate improvements of 1.5%, 1.9%,
and 3.5% compared to baseline. Compared to the baseline SiamGAT, our model’s perfor-
mance improves by 1.6%, 2.2%, and 1.6% in terms of success, precision, and normalized
precision overall.

Figure 5. Comparison with the state-of-the-art trackers on the LaSOT dataset in terms of the normal-
ized precision and precision plots of OPE.
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Figure 6. Comparison with the state-of-the-art trackers on the LaSOT dataset in terms of success plot
of OPE including all attributes and three individual attributes.

Compared with RBO, which is a recent tracker, our tracker surpasses it by 0.7% in
precision and 1.4% in success. The results show that the preposed tracker still has excellent
performance in long-term tracking tasks, and the fusion of part-level information and
global information is effective.

We also performed a qualitative experimental analysis of the proposed tracker. As
shown in Figure 7, the four video sequences are Motorcycle-3, Pool-7, Elephant-12, and
Volleyball-18. This sequence group contains complex scenes such as deformation, occlusion,
background clutter, motion blur, illumination variation, and so on. Figure 7a,c shows
that SiamRPN++, CLNet, and SiamRPN++-RBO have poor tracking when the target is
occluded and violently deformed. Figure 7b,d show that SiamGAT has a reduction in
tracking performance in an environment that is similar to the part of object. Compared
with other trackers, our CFGC is able to produce more accurate target bounding boxes
due to the proper integration of part-level and global information between the template
and search regions. The part-to-part similarity matching in the graph network improves
the accuracy of the tracker, and the extraction of cross-correlation features can weaken the
interference of the surrounding environment. Therefore, the proposed CFGC is robust
and efficient.
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GroundTruth CFGC SiamGAT SiamRPN++ CLNet SiamRPN++-RBO

（a）

（b）

（c）

（d）

Figure 7. Comparison of our CFGC with state-of-the-art trackers on the four challenging sequences
from LaSOT. (a): Motorcycle-3, (b): Pool-7, (c): Elephant-12, (d): Volleyball-18. Our tracker is able
to handle occlusion, similar interference, and deformation due to the embedding of part-level and
global information. As shown in the graph, our tracker (in red) significantly outperforms the baseline
SiamGAT (in blue), SiamRPN++ (in yellow), ClNet (in purple), SiamRPN++-RBO (in orange), and
GroundTruth (in green). Please zoom in for a better view.

4.4. Evaluation on GOT-10k

We validated our proposed trackers on the GOT-10k dataset [16], which consists of
more than 10,000 fully annotated sequences. The training and test classes of the GOT-10k
have zero overlap. This avoids the bias of evaluation results towards familiar objects
and promotes the generalization of tracker development. Furthermore, GOT-10k offers a
wide range of object types and forms of motion, providing a wider coverage of real-world
moving objects, and the scale and diversity of data of data significantly increases the
reliability of assessments.

We followed the GOT-10k protocol and trained our proposed model using only a
subset of its training set. We evaluated our tracker on the GOT-10k dataset and compared
it with state-of-the-art trackers, including SiamFC, ATOM, DiMP, SiamFC++, Ocean [34],
D3S [35], SiamCAR, SiamGAT, PACNet [36], SiamRCR [19], SAOT [37], LightTrack [38],
STARK [39], ViTCRT [40], and RBO. We selected the widely used average overlap (AO)
and success rate (SR) as evaluation metrics. As shown in Table 2, our proposed tracker
performs well, and compared to the baseline SiamGAT, its performance improves by 1.3%,
1.2% and 1.9% in terms of AO, SR0.5, and SR0.75, respectively. The results demonstrate the
robustness and stability of our tracker. Furthermore, we make a comparison about the
speed, flops and params in our CFGC, SiamGAT, and STARK. As Table 3 shows, our CFGC
has a smaller number of parameters than STARK, which means less hardware requirements.
In comparison with the baseline SiamGAT, our CFGC improves tracking performance at a
small cost. However, the information redundancy remains a challenge.
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Table 2. Comparison of our tracker with state-of-the-art trackers on the GOT-10k dataset.

Tracker AO (%) SR0.5(%) SR0.75(%)

ATOM 55.6 63.4 40.2
SiamCAR 56.9 67 41.5
PACNet 58.2 68.5 44.3

SiamFC++ 59.5 69.5 47.9
D3S 59.7 67.6 47.2

SiamRPN++-RBO 60.2 71.8 44.6
Ocean-online 61.1 72.1 47.3

DiMP-50 61.1 71.7 49.2
LightTrack 62.3 72.6 -
SiamRCR 62.3 75.2 46
SiamGAT 62.7 74.4 48.8

STARK 67.2 76.1 61.2
ViTCRT 65.6 75.0 59.8
CFGC 64.0 75.6 50.7

Table 3. Comparison of the speed, FLOPs, and Params.

Tracker Speed (fps) FLOPs (G) Params (M)

STARK 31.7 20.4 47.2
SiamGAT 37.5 19.57 14.23

CFGC 37.03 19.61 14.29

4.5. Evaluation on VOT2016

We also compared our tracker on VOT2016 [15] in Table 4. VOT2016 contains 60 chal-
lenging sequences. We used three metrics, accuracy (Acc), robustness ((Rob), and expected
average overlap rate (EAO), to report tracking performance. The higher the accuracy and
expected average overlap rate, the lower the robustness score and the tracker performance.
As Figure 8 shows, our proposed tracker outperforms the state-of-the-art trackers, including
SiamDW [31], ASRCF [41], ROAM [42], ULAST [43], USOT [33], S2SiamFC [44], SiamMask-
box [45], SiamFP [46], SiamFC-ACM [47], MetaRTT [48], and others. The proposed tracker
achieves 0.438 in EAO and 0.646 in Acc, which ranks first. Furthermore, the robustness
score ranks third. Benefiting from the rich information embedding of nodes, our tracker
achieves a better robustness score than SiamFC-ACM. The results show that our tracker is
more accurate and robust. However, the balance between robustness and accuracy remains
a challenge.

Table 4. Comparison of our tracker with the state-of-the-art trackers on the VOT2016 dataset.

Tracker EAO (%) ↑ Acc (%) ↑ Rob (%) ↓
S2SiamFC 21.5 49.3 63.9

SiamFC 23.5 53.2 46.1
SiamFP 33.5 53.7 38.1

SiamRPN 33.7 57.8 31.2
SiamFC-ACM 33.8 53.5 29.4

MetaRTT 34.6 - -
SiamDW 37.1 58.0 24.0
ROAM 38.4 55.6 13.8
ASRCF 39.1 56.0 18.7
USOT 40.2 60.0 23.3

SiamMASK-box 41.2 62.3 23.3
ULAST 41.7 60.3 21.4
CFGC 43.8 64.6 19.6
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Figure 8. Expected averaged overlap performance on VOT2016.

5. Conclusions

In this paper, we have presented a novel graph attention network-based object tracking
with cross-correlation feature fusion, termed CFGC. The symmetry of the template branch
and search branch ensures the uniformity and representativeness of feature extraction. Our
CFGC combines the graph attention network with a cross-correlation layer. The part-to-
part similarity matching in graph networks improves the accuracy of the tracker, and the
extraction of cross-correlation features can weaken the interference of the surrounding
environment. Instead of only local or global information, the information embedding
between the template and search region has both global information and part-level infor-
mation on GAF, which greatly alleviates the problems of similar interference, occlusion,
and deformation. Our CFGC enables more generalizable visual tracking. The proposed
tracker outperforms state-of-the-art trackers on the VOT2016, GOT-10k and LaSOT datasets,
proving that our tracker has better robustness and accuracy. However, a large amount
of information fusion easily leads to redundant information. In the future, we intend to
explore feature filtering strategies to improve the information redundancy of local and
global feature fusion. Furthermore, a dynamic template update strategy is also a good way
to explore.
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