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Abstract: The Constraint Satisfaction Problem (CSP) is a significant research area in artificial in-
telligence, and includes a large number of symmetric or asymmetric structures. A backtracking
search combined with constraint propagation is considered to be the best CSP-solving algorithm,
and the consistency algorithm is the main algorithm used in the process of constraint propagation,
which is the key factor in constraint-solving efficiency. Max-restricted path consistency (maxRPC) is
a well-known and efficient consistency algorithm, whereas the lmaxRPC3rm algorithm is a classic
lightweight algorithm for maxRPC. In this paper, we leverage the properties of symmetry to devise
an improved pruning strategy aimed at efficiently diminishing the problem’s search space, thus
enhancing the overall solving efficiency. Firstly, we propose the maxRPC3sim algorithm, which
abandons the two complex data structures used by lmaxRPC3rm. We can render the algorithm to be
more concise and competitive compared to the original algorithm while ensuring that it maintains the
same average performance. Secondly, inspired by the RCP3 algorithm, we propose the maxRPC3simR

algorithm, which uses the idea of residual support to cut down the redundant operation of the
lmaxRPC3rm algorithm. Finally, combining the domain/weighted degree (dom/wdeg) heuristic with
the activity-based search (ABS) heuristic, a new variable ordering heuristic, ADW, is proposed. Our
heuristic prioritizes the selection of variables with symmetry for pruning, further enhancing the algo-
rithm’s pruning capabilities. Experiments were conducted on both random and structural problems
separately. The results indicate that our two algorithms generally outperform other algorithms in
terms of performance on both problem classes. Moreover, the new heuristic algorithm demonstrates
enhanced robustness across different problem types when compared to various existing algorithms.

Keywords: CSP; path consistency; maxRPC; lmaxRPC3rm; variable ordering heuristic; symmetry and
asymmetry; artificial intelligence

1. Introduction

The Constraint Satisfaction Problem (CSP), as a classic problem of artificial intelli-
gence [1,2], has garnered significant attention from researchers since it was proposed, and
it encompasses numerous symmetric and asymmetric structures [3,4]. Related technologies
are widely used in the fields of configuration, scheduling, and combinatorial problem
solving. A CSP selects a value from a given finite domain for each variable involved
in the problem to satisfy the constraints among variables. Generally, CSPs are NP-hard
problems [5]. At present, a backtracking search combined with constraint propagation is a
classical algorithm used to solve CSPs [6]. This algorithm aims to reduce the symmetrical
structure within the problem and eliminate redundant operations. Identifying and locating
these symmetric structures are critical areas of focus. Constraint propagation is a common
technique that utilizes local consistency to eliminate a subset of inconsistent ethics. There
are several tried-and-tested consistency algorithms, including arc consistency (AC) [7],
singleton arc consistency (SAC) [8], path consistency (PC) [9], and maxRPC [10].

Symmetry 2023, 15, 2151. https://doi.org/10.3390/sym15122151 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15122151
https://doi.org/10.3390/sym15122151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0009-0006-4030-8394
https://orcid.org/0000-0002-5018-0519
https://doi.org/10.3390/sym15122151
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15122151?type=check_update&version=2


Symmetry 2023, 15, 2151 2 of 17

Enhancing the efficiency of the maxRPC algorithm has been a major focus of research
for decades since the development of the algorithm. MaxRPC was initially presented by
Debruyne et al. in 1997 [11], as one of the most important local consistencies, which extends
RPC, and a maxRPC algorithm maxRPC1 based on AC6 was proposed [11]. Grandoni
et al. proposed the maxRPC2 algorithm in 2003, which reduces the space complexity
without increasing the time complexity by not storing the found witness [12]. In 2009, Vion
and other scholars proposed a backtracking stable and efficient residual data structure,
which can achieve the maximum maxRPC domain filtering consistency with the minimum
memory consumption in the search process [13]. On the basis of the AC-3rm algorithm [14],
two algorithms maxRPCrm and lmaxRPCrm were proposed. Compared with the best
maxRPC algorithm at that time, they are competitive and easy to implement. In 2010,
Balafoutis et al. [15] proposed maxRPC3 and maxRPC3rm, and their lightweight versions
lmaxRPC3 and lmaxRPC3rm. By reducing some redundant constraint inspections, the
existing maxRPC algorithm was further improved. Compared with maxRPC, lmaxRPC
achieves a lower consistency level, but it is still stronger than AC. The experiment shows
that using lmaxRPC in the search process is more cost-effective than maxRPC. lmaxRPC3rm

competes with or surpasses the maintenance of AC (MAC) [16] on many problems. In
recent years, little work has been carried out on maxRPC. In 2017, a new algorithm was
proposed by Li et al. that utilizes light symmetry to approximate maxRPC and enhance
the residual support. The algorithm also weakens multi-directional use and narrows the
search scope [17].

Theoretical and experimental results demonstrate the strong pruning capability of
lmaxRPC3rm. However, the space–time cost does not always meet practical application
requirements. Furthermore, designing an effective heuristic function for the pruning
strategy is another challenge for the lmaxRPC3rm algorithm. In our work, we introduce
two innovative algorithms to overcome these limitations. This paper primarily leverages
the concept of symmetry to prune the variables with a symmetric nature, thereby reducing
redundant searches and repeated calculations and enhancing overall solving efficiency. To
enhance the selection of symmetrical variables for pruning, we developed an improved
variable ranking heuristic to enhance our pruning capabilities. Firstly, we propose the
maxRPC3sim, a concise maxRPC algorithm, which abandons the complex lastAC and lastPC
data structures used in the lmaxRPC3rm algorithm to store AC support and PC support. In
this way, some redundant search operations can be avoided, making the algorithm efficient
and easy to implement while reducing time and space costs. The experimental results
show that maxRPC3sim has certain competitiveness in most problem cases. Secondly, we
propose another lmaxRPC algorithm, maxRPC3simR. Inspired by rRPC3 [18], and unlike
the lmaxRPC3rm algorithm that supports storing AC and PC separately, maxRPC3simR uses
only one residual support to store AC and PC support. In this way, AC support, PC support,
and PC witness are stored and searched, and many redundant residual support accesses
are reduced, so that the algorithm can effectively reduce redundant consistent support
access and reduce the overhead of time and space. Additionally, we investigate variable
ordering heuristics to further enhance search performance. Dom/wdeg and ABS [19], as
classic variable sorting heuristics, have been widely used since they were proposed. We
propose an improved heuristic ADW (activity + dom/wdeg), which combines dom/wdeg
with the ABS heuristic. The improved heuristic can not only bring dom/wdeg into full
play but also keep the advantages of ABS. Experiments show that the combination of ADW
heuristic and different algorithms has good performance, which further shows that ADW
has strong robustness.

The paper is structured into multiple sections. In Section 2, we present an overview of recent
related work. Section 3 introduces the preliminaries associated with CSPs. Sections 4 and 5
present the improvements made to the lmaxRPC3rm algorithm and the variable ordering
heuristic, respectively. The outcomes of experiments conducted on different problem
classes are presented in Section 6. Finally, in Section 7, a summary of our work is provided
along with suggestions for potential avenues of future research.
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2. Related Work

Symmetry in CSP. When solving a problem with a Constraint Satisfaction Problem
(CSP) model, it is common to have multiple variables representing multiple instances of
the same object. For example, two variables xi and xj can represent two history courses that
a class must attend in a week. In the case where xi takes the value Monday at 8 a.m. and xj
takes the value Thursday at 9 a.m., or vice versa, it does not affect whether the instantiation
solves the problem or not. In such cases, xi and xj are said to be symmetrical. Symmetry
detection techniques are employed to prevent the search process from exploring symmetri-
cal subtrees, enabling the pruning of branches in the search tree that contain solutions only
if these solutions have a corresponding symmetrical solution elsewhere in the search tree.
The issue of symmetry in values was initially addressed by Freuder (1991) [20] through the
concept of value interchangeability, which was further extended by Cooper (1997) [21] to
include value substitutability. Subsequent studies have extensively investigated various
types of symmetries (Benhamou 1994; Gent et al., 2006) [22,23]. Another approach for
reducing symmetries when modeling a problem is utilizing set variables instead of integer
variables (Gervet and Van Hentenryck 2006) [24,25].

NSCs. Stergiou K. conducted a study to explore the balance between efficiency and
ease of implementation in consistency techniques. They focused on neighborhood singleton
consistencies (NSCs), which are an extension of the previously proposed neighborhood
SAC (NSAC). The study proposes multiple new NSC family members and analyzes them
theoretically and experimentally. Theoretical results indicate that the NSCs can provide
pruning power ranging between that of RPC and (3,1)-consistency. The study reveals that
specific members of the NSC exhibit exceptional competitiveness as versatile propaga-
tion techniques for binary constraints, surpassing existing methods in certain problem
domains [26].

Interleaved method. The algorithms investigated by Wallace R J employ AC repeat-
edly under stringent local assumptions to achieve higher levels of consistency. These
algorithms establish singleton arc consistency (SAC) in the neighborhood. Most of these
algorithms utilize a simple interleaving of AC with the basic SAC procedure. However,
the strategy of interleaving weaker and stronger forms of reasoning has not received suf-
ficient attention in its own right. This paper investigates the effects of interleaving and
presents novel methods based on this concept. It demonstrates that different problem types
exhibit significant variations in their responsiveness to AC interleaving, wherein it proves
beneficial in most cases but detrimental for certain algorithms and problem types. Incorpo-
rating this feature into SACQ algorithms enhances their consistent and decisive superiority
over other SAC algorithms. Additionally, an approach based on AC-4 is considered for
interleaving, along with the incorporation of stronger methods than AC [27].

EFCC. Li Z, Yu Z, and their colleagues took a different approach in their research
from what had been carried out before. Rather than focusing on strong consistencies, they
revisited the effectiveness of weak consistencies. To increase the efficiency of propagation,
they proposed algorithms based on bitwise operations. Additionally, they suggested an
enhanced version of forward checking consistency (EFCC), which has a stronger pruning
ability than FCCs but not as strong as ACs [28].

In recent years, most studies have primarily concentrated on enhancing AC and
SAC, while research has seldom been conducted on maxRPC. Nevertheless, maxRPC
has demonstrated strong pruning capabilities, as shown in Table 1. Table 1 shows the
related work of this paper in order of pruning capabilities (weak to strong) as provided
in Reference [29]. Additionally, its lightweight variant, lmaxRPC3rm, has been proven to
possess a strong pruning ability, but there is still a considerable amount of compressible
space in terms of the space–time cost. Therefore, we aim to leverage its pruning ability
as a foundation for optimization and improvement to enhance solution accuracy while
simultaneously reducing the space–time cost.
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Table 1. Related work in this paper order by algorithms’ pruning capability (weak to strong).

No. Authors Compatibility
Technology Algorithms Effectiveness Analyses

1 Alan K. et al. [25] AC Arc Consistency Propagating constraints using AC is the most widely and
traditional method.

2 Lecoutre C. et al.
(2005) [30] SAC Singleton Arc

Consistency
SAC is the most promising strong compatibility

algorithm capable of replacing AC.

3 Douglass C.
et al. [25] PC Path Consistency The idea of PC is to further eliminate illegitimate values

by checking the constraint paths.

4 Berlandier P.
(1995) [31] RPC Restricted Path

Consistency

The RPC algorithm determines whether or not to prune
by the constraint relationship between the

three variables.

5 Debruyne R. et al.
(1997) [11] maxRPC max-Restricted Path

Consistency
The maxRPC algorithm is more compatible than the RPC

algorithm and has better pruning capabilities.

6 Debruyne R. et al.
(2000) [32] PIC Path Inverse Consistency

The PIC algorithm focuses on inverse constraint
relationships to better understand constraints

between variables.

7 Freuder E C. et al.
(1996) [33] NIC Neighborhood Inverse

Consistency
The NIC algorithm focuses on regional constraints, i.e.,

constraint relationships within local neighborhoods.

8 Stergiou, K. et al.
(2019) [26] NSCs Neighborhood Singleton

Consistencies
NSC aims to eliminate values that are inconsistent with

individual constraints by focusing on them.

9 Li Z, Yu Z. et al.
(2021) [27] EFCC Enhanced Forward

Checking Consistency
EFCC strategically selects variables and values and uses

advanced techniques such as domain segmentation.

3. Preliminaries

In this paper, we aim to address the issue of binary constraint satisfaction. A binary
CSP is defined as a triple p = 〈X, D, C〉 where X = {x1, x2, . . . , xn} represents a set of n
variables, D = {D(x1), D(x2), . . . , D(xn)} represents a set of domains, D(xi) denotes a discrete
finite value domain of variable xi, and C = {c1, c2, c3, . . . , ce} represents a set of e binary
constraints. A binary constraint ci,j is made up of two parts: var(c) and rel(c), where
var(c) = {xi, xj} is an ordered set of two variables of X, and rel(c) is a subset of the Cartesian
product D(x1) ×. . .× D(xm) of the finite value domain of these variables. The tuples in this
subset represent the value combination of variables that satisfy the constraint. A binary CSP
is typically represented as a constrained graph. The nodes in the graph denote variables,
while the edges represent constraints between two adjacent nodes.

Definition 1 (arc consistency, AC). If a value ai belongs to D(xi), it will be considered an attribute
of AC only if it satisfies all constraints ci,j. For each constraint ci,j, there must be a value aj in D(xj)
that satisfies the constraint ci,j when combined with value ai. This value aj is called an AC support
of value ai. A variable xi is considered AC if all values in D(xi) are AC. A problem is attributed to
an AC problem if there are no empty domains in D and all variables in X are AC.

Definition 2 (path consistency, PC). In order for a pair of values (ai, aj) to be attributed to PC, it
must be the case that for any third variable xk, there exists a value ak ∈ D(xk) such that ak is an AC
support of both values ai and aj. When these conditions are met, we say that ai is a PC support of the
value ai in the variable xj, and that ak is a PC witness for the pair of values (ai, aj) in the variable xk.

Definition 3 (max-restricted path consistency, maxRPC). To clarify, in a given problem, a
value is considered a maxRPC value if it is an AC value and meets the following condition: for every
constraint ci,j, there exists a value aj, which is an AC support of the value ai, making the pair (ai,
aj) PC. Similarly, a variable is considered maxRPC if all the values in its domain meet the above
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criterion. Finally, a problem is considered a maxRPC problem if there are no empty domains in D(x)
and all variables in X are maxRPC.

Definition 4 (lightweight max-restricted path consistency, lmaxRPC). The lmaxRPC algo-
rithm is a simplified version of the maxRPC algorithm that only focuses on the loss of AC supports
and ignores the loss of PC witnesses. In other words, when removing a variable xj from Q, for each
ai ∈ D(xi), the lmaxRPC algorithm only checks if ai has PC support in D(xj), without taking into
consideration the value in xj as witnesses of the PCs affected by other values. This results in a faster
algorithm than AC but slower than maxRPC. lmaxRPC3 and lmaxRPC3rm are lightweight versions
of maxRPC3 and maxRPC3rm, respectively, that further simplify the process of inspecting missing
PC witnesses.

4. New Algorithms for maxRPC

4.1. maxRPC3sim

The first improvement algorithm discards the two data structures LastAC and LastPC
of the lmaxRPC3rm algorithm. By selecting symmetric variables for removal at each step,
the algorithm’s efficiency and ease of implementation are enhanced by effectively reducing
the search space and eliminating redundant operations. We named the new algorithm as
maxRPC3sim. Algorithm 1 is the main component of maxRPC3sim, and the propagation list
Q stores the variables of the filtering domain. Adding variables to list Q may occur during
initialization or when a PC support is detected. Algorithm 1 goes through every variable in
Q. When variable xj is removed from Q (line 2), it is necessary to identify its related variable
xi to ensure that they are maxRPC. For every value ai in D(xi), the function findPCsup
(line 5) is called to verify whether each ai value has PC support in D(xj). Below, we provide
a detailed explanation of the function findPCsup. If the function returns FALSE, it means
that there is no new PC support in D(xj) for ai. In such a scenario, Algorithm 1 eliminates
ai from D(xi) (line 6) and adds xi to Q (line 7). After checking all ai values in D(xi), the
algorithm decides whether D(xi) is empty or not. If it is, the algorithm returns FAILURE.

Algorithm 1 maxRPC3sim

1: while Q 6= ∅ do
2: Q⇐ Q− {xj}
3: for each xi ∈ X s.t. ci,j ∈ C do
4: for each ai ∈ D(xi) do
5: if ¬ findPCsup(xi, ai, xj) then
6: remove ai
7: Q⇐Q ∪ {xi}
8: if D(xi) = ∅ then
9: return FAILURE

10: return SUCCESS

The function of Algorithm 2 FindPCsup is used to determine if there is PC support
between two variables. The function first checks the arc consistency of (ai, aj) by calling
isTruecon at line 3 for each variable xj and value aj in D(xj). If isTruecon returns TRUE, then
it means that (ai, aj) satisfies the constraint, indicating that aj supports ai for arc consistency.
If the result of isTruecon is TRUE, function 1 then checks whether there is a PC witness ak
for (ai, aj) by calling the findPCwit function. The findPCwit function is explained below. If
there is a new PC witness in D(xj) for ai, then the function returns TRUE, meaning that aj
provides a PC support for ai.
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Algorithm 2 Function 1 findPCsup(xi, ai, xj)

1: for each xj ∈ X do
2: for each aj ∈ D(xj) do
3: if isTruecon(xi, ai, xj, aj) then
4: if findPCwit(ai, aj) then
5: return TRUE
6: return FALSE

To verify the existence of a PC witness ak for the pair (ai, aj), we use the function of
Algorithm 3 findPCwit. First, we check whether there exists a value ak on the third variable
xk that satisfies the constraints between (xi, xk) and (xj, xk) for both (ai, ak) and (aj, ak). To
do this, we use the isTruecon function. If such a value ak exists, it confirms that there is a
PC witness between ai and aj.

Algorithm 3 Function 2 findPCwit(ai, aj)

1: for each xk ∈ X s.t. ci,k and cj,k ∈ C do
2: thePCwit⇐ FALSE
3: for each xk ∈ X s.t. ci,k and cj,k ∈ C do
4: if isTruecon(xi, ai, xk, ak) and isTruecon(xj, aj, xk, ak) then
5: thePCwit⇐ TRUE
6: break
7: if ¬ thePCwit then
8: return FALSE
9: return TRUE

4.2. maxRPC3simR

The second improved algorithm is also based on lmaxRPC3rm. In this enhancement,
we use a residual support S to store recently discovered compatibility support. Inspired
by the concept of the residual support data structure in the rRPC3 algorithm, we name
this new algorithm as maxRPC3simR. The residue is a support used to prove that a given
value is PC or AC, located or stored during program execution. Unlike lmaxRPC3rm, which
stores AC and PC support separately, maxRPC3simR only adopts one residual support S to
reduce some redundant access. Furthermore, we do not initialize S in the initialization step.
Instead, we judge first and then assign values during the algorithm’s propagation process.
This targeted assignment strategy effectively minimizes redundant operations.

We omit the detailed introduction of maxRPC3simR in Algorithm 4 because it is the
same as Algorithm 1; the only difference is that we use findPCsupR rather than findPCsup.

Algorithm 4 maxRPC3simR

1: while Q 6= ∅ do
2: Q⇐ Q− {xj}
3: for each xi ∈ X s.t. ci,j ∈ C do
4: for each ai ∈ D(xi) do
5: if ¬ findPCsupR(xi, ai, xj) then
6: remove ai
7: Q⇐Q ∪ {xi}
8: if D(xi) = ∅ then
9: return FAILURE

10: return SUCCESS

We also omit the findPCsupR function of Algorithm 5 for maxRPC3simR as it is the same
as the findPCsup function with the two differences being that we call it findPCwitR instead
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of findPCwit and we store the PC support values in the corresponding data structure S to
facilitate the subsequent search.

Algorithm 5 Function 3 findPCsupR(xi, ai, xj)

1: for each xj ∈ X do
2: for each aj ∈ D(xj) do
3: if isTruecon(xi, ai, xj, aj) then
4: if findPCwitR(ai, aj) then
5: S(xi ,ai ,xj)

⇐ aj
6: return TRUE
7: return FALSE

Next we explain the findPCwitR function of Algorithm 6 in detail. The findPCwitR
function checks each value of xk in two steps. First, it looks for a value S(xi ,ai ,xk)

and then
checks if the pair (S(xi ,ai ,xk)

, aj) is arc consistent. If the pair is not arc consistent, it moves to
the second step. In the second step, it checks for a valued S(xj ,aj ,xk)

and verifies whether
the pair (S(xj ,aj ,xk)

, ai) is arc consistent. This process is performed at line 2. If a PC witness
exists, the above condition returns TRUE and findPCwitR can jump out of this cycle ahead
of time. If S does not contain a PC witness for (ai, aj) that includes ak, then there is no such
ak, and then findPCwitR starts a search similar to the findPCwit function and findPCwitR
also stores the PC support values into the corresponding data structure S.

Algorithm 6 Function 4 findPCwitR(ai, xj)

1: for each xk ∈ X s.t. ci,k and cj,k ∈ C do
2: if (S(xi ,ai ,xk)

and isTruecon(xk, S(xi ,ai ,xk)
, xj, aj)) or (S(xj ,aj ,xk)

and
3: isTruecon(xk, S(xj ,aj ,xk)

, xi, ai)) then
4: thePCwit⇐ TRUE
5: continue
6: for each ak ∈ D(Xk) do
7: if isTruecon(xi, ai, xk, ak) and isTruecon(xj, aj, xk, ak) then
8: thePCwit⇐ TRUE
9: S(xi ,ai ,xk)

⇐ ak
10: S(xj ,aj ,xk)

⇐ ak

11: break
12: if ¬ thePCwit then
13: return FALSE
14: return TRUE

Upon analyzing the previously presented pseudocode, it becomes clear that our
proposed algorithm as well as the lmaxRPC3rm and maxRPC3rm algorithms all have a
time complexity of O(n2). However, our algorithms, maxRPC3sim and maxRPC3simR,
are designed to eliminate redundant structures. maxRPC3sim does not use the original
algorithm to store AC- and PC-supported LastAC and LastPC data structures, while
maxRPC3simR only retains residual support to store compatibility support. We also adjusted
the overall data structure of the two new algorithms. As a result, our algorithm has fewer
loops and iterations, which makes it less time-consuming. Moreover, the reduction in
the number of redundant accesses leads to less space consumption. Furthermore, our
experiments show that our algorithm is more efficient in solving the problem as it takes
less time.

5. Heuristics for maxRPC Algorithms

Mainstream constraint solvers speed up the solution by using heuristics to order
variables or constraint priorities. At present, many AC algorithms use variable ordering
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heuristics to select the first deleted variables from the propagation list to improve search
efficiency [34,35]. The heuristic algorithm used by the AC algorithm can also be applied to
the maxRPC algorithm. Although heuristics require extra computation, it is insignificant to
the overall cost of the algorithm.

The variable ordering heuristic is responsible for assigning priority to the variables in-
volved, the variables with higher priority are assigned first, while those with lower priority
are assigned later. A good variable ordering can often accelerate the process of finding the
solution. Classic variable ordering heuristics include dom/ddeg, dom/wdeg, ABS (activity-
based Search), etc. After the ABS variable ordering heuristic was proposed, the algorithm-
solving efficiency greatly improved. In this section, we employ the concept of symmetry
to devise a novel variable ordering heuristic known as ADW (ABS+Dom/wdeg). ADW
prioritizes variables with symmetry by sorting them, thereby enhancing the algorithm’s
pruning capabilities. Our experimental results demonstrated significant improvements.

(1) Dom/ddeg heuristic

Dom/ddeg heuristic is a dynamic variable ordering heuristic that combines variable
domain size and variable degree. In optimization problems, Dom refers to possible variable
values, while ddeg is the number of variable constraints. The dom/ddeg heuristic algorithm
works by prioritizing the variable with the smallest ratio of current domain size to dynamic
degree in each step. This variable is given the highest priority to be processed next.

(2) Dom/wdeg heuristic

The Dom/wdeg heuristic is a variable ordering strategy that integrates domain size
and weighting, enhancing the professionalism and academic rigor of this research paper in
accordance with the requirements of the journal Nature. Wdeg only considers constraints
that contain two uninstantiated variables. There is a certain connection between wdeg and
ddeg. When the weight counter of all variables is set to 1, wdeg becomes ddeg.

Wdeg maintains a counter for each constraint that indicates the number of constraint
failures, i.e., the number of times a value from the domain of a variable has been removed
throughout the propagation process. The wdeg expression of variable xi is

αwdeg(xi) = ∑
c∈C

weight[c]s.t.xi ∈ vars(c)xi ∧ |(FutVars(c))| > 1 (1)

where the expression “FutVar(c)” refers to the set of uninitialized variables that are in-
volved in the constraint “c”. During initialization, the weight counter of all variables is set
to 1. If the constraint does not meet the requirement, its weight is incremented by 1. It is
worth noting that once restarting, to keep learning all the time, the weight will not reset
to one. In each step, the dom/wdeg heuristic selects the variable with the minimum ratio
|D(xi)|

αwdeg(xi)
as the highest priority.

(3) ABS heuristic

The ABS heuristic algorithm is a dynamic variable ordering heuristic algorithm, which
uses the activities of variables in the process of propagation to guide the search. Inspired
by the VSIDS algorithm, ABS gradually forgets the oldest statistics based on a sum of
attenuation. Each variable xi is associated with a counter to measure how often the domain
of xi is reduced in the propagation process. This measure is initialized by probing the
search space, which does not add any space requirements [36].

The variable activity value is initialized to 0 and given a CSP p = 〈X, D, C〉. After
an assignment decision, a constraint propagation algorithm F is applied; F produces a
new field D′ ⊆ D, continuing to perform compatibly. To define the subset of variables X′

that are affected, apply F to P. The formulas for the definitions are as follows: Formula (2)
represents the domain change of the affected variable, while Formula (3) represents the
domain change of the unaffected variable.

∀x ∈ X′ : D′(x) ⊂ D(x) (2)
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∀x ∈ X/X′ : D′(x) = D(x) (3)

The activity of variable x, denoted as A(xi), updates at each search tree node after
constraint propagation. The update rules are shown in Formulas (4) and (5). Formula (4)
corresponds to the unpruned variable, and Formula (5) corresponds to the pruned variable.

The activity of xi (represented by A(xi)) is updated as follows:

∀x ∈ Xs.t.|D(x)| > 1 : A(x) = A(x) ∗ γ (4)

∀x ∈ X′ : A(x) = A(x) + 1 (5)

where X′ is the set of the affected variables and γ is the attenuation constant acceptable
0 ≤ γ ≤ 1. Attenuation only affects free variables, thus slowing down the activity of delet-
ing previously marked variables. In each step, the ABS heuristic selects the variable with
the highest ratio of A(xi) to D(xi) as the highest priority.

(4) ADW heuristic

dom/wdeg is the variable that picks the smallest value for dom(x)/wdeg(x) and ABS
is the variable that picks the largest value for A(x)/D(x). By leveraging the strengths of
both dom/wdeg and ABS, we propose a novel variable ordering heuristic called ADW
(activity + dom/wdeg), which is expected to achieve better results in more cases. ADW
considers the domain size, variable weighting, and activity. ADW maintains a counter
for each constraint similar to wdeg, and a counter for each variable similar to ABS. Our
proposed ADW heuristic selects the variable that is most likely to cause failure and is most
active. In each step, the heuristic sets the variable xi with the highest ratio of (A(xi) × wdeg
(xi))/dom(xi) as the maximum priority. This improved heuristic not only fully utilizes the
potential of dom/wdeg but also retains the advantages of ABS. The experimental results
demonstrate that the new heuristic exhibits excellent performance and strong robustness.

6. Experiments and Analysis

All experiments were carried out in the environment of the Ubuntu 17.04 system, Intel
i7-6700 processor, and 8 g RAM. We evaluated our proposed algorithms and heuristics on
structured and stochastic CSP problems selected from C. Lecoutre’s XCSP repository. A lot
of the details of the problems can be found at https://www.movingai.com/benchmarks/
(accessed on 6 April 2023).

In this paper, the branching scheme of our algorithms is two-way (also known as
binary). The two-way branching technique involves creating two branches: one where a
variable is assigned a value and propagation is triggered, and another where the variable is
left unassigned and propagation is triggered. In another branch, a value is removed from
the variable’s domain, triggering propagation again. If the left branch propagation fails,
the right branch propagation succeeds, and the next variable can be selected. Algorithm
backtracking occurs when both branches fail to propagate [18].

In all the tables below, the number of instances tested in the problem is shown in
parentheses after the problem. The solution result is expressed as the average solution
time of multiple instances. The best-performing algorithms are highlighted in bold and
underlined. Timeout is set to 600 s, indicated by the symbol “**”.

6.1. Performance Comparison of Improved Algorithms

In this section, all algorithms use dom/wdeg heuristics to order variables. For example,
for Algorithm 1 maxRPC3sim described in Section 4, when a value ai is deleted due to a
constraint, the heuristic changes the weight of the constraint ci,j.

Tables 2 and 3 present the experimental outcomes of algorithm enhancement. The
algorithms tested include maxRPC3sim, maxRPC3simR, lmaxRPC3rm, and maxRPC3rm. The
“time” column represents the duration in seconds taken to solve the problems, while the

https://www.movingai.com/benchmarks/
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“node” column indicates the number of nodes. Table 2 displays the test results on 23 prob-
lems, which altogether amount to 244 structured problems. On the other hand, Table 3
illustrates the test results of 8 problem categories, summing 71 random problem instances.

From Table 2, we can see that among the 23 structured problems, a total of 10 problems
took maxRPC3sim the shortest time on average, maxRPC3simR took the shortest time for
5 problems, and lmaxRPC3rm and maxRPC3rm both took the shortest time for 3 problems.
However, due to the limitation of the initialization cost of the data structure, all algorithms
had a high cost in large instances. Specifically, all algorithms timed out on the qcp-25 and
qwh-25 (4) problem class; that is, the data items in the table with the “**” symbol in the
table. In particular, lmaxRPC3rm timed out on the qcp-20 problem class. In contrast, the
new algorithms maxRPC3sim and maxRPC3simR can be used without timeout, indicating
that our new algorithms perform slightly better in large instance problems. Overall, the
average performance of algorithms maxRPC3sim and maxRPC3simR is better than that of
algorithm lmaxRPC3rm on 76.2% and 66.7% of problem classes, respectively.

Table 2. Mean standalone performance in structured problems.

Problem Class/Algorithms maxRPC3sim maxRPC3simR lmaxRPC3rm maxRPC3rm

Time Node Time Node Time Node Time Node

qcp-10 (14) 0.112 99 0.135 99 0.291 99 0.496 103
qcp-15 (15) 123.388 17,076 107.425 21,044 147.175 12,752 142.999 7021
qcp-20 (4) 588.884 21,436 545.688 34710 ** ** 471.537 7303
qcp-25 (4) ** ** ** ** ** ** ** **

qwh-10 (10) 0.066 107 0.0814 107 0.143 106 0.261 108
qwh-15 (10) 2.948 589 2.192 589 4.45 589 5.252 419
qwh-20 (10) 348.211 15,348 305.712 20,604 372.424 9390 454.338 5765
qwh-25 (4) ** ** ** ** ** ** ** **

rlfapgraphs (14) 0.115 548 0.192 548 0.18 548 0.122 548
rlfapscens (11) 0.118 559 0.199 559 0.186 559 0.132 559
rlfapGraphsMod (12) 0.137 751 0.234 751 0.242 751 0.144 751
rlfapScens11 (12) 0.134 680 0.232 673 0.249 680 0.165 680

subs (9) 0.0026 35 0.0032 35 0.00189 35 0.00181 35
coloring (19) 12.129 118,686 11.401 118,686 24.063 118,686 34.343 115,067
hos (14) 0.08 1248 0.13 1248 0.147 1248 0.086 1248
myciel (16) 0.00333 97 0.00354 97 0.00215 97 0.00268 97

bqwh-15-106 (10) 0.17 230 0.196 230 0.478 267 0.975 224
bqwh-18-141_glb (10) 0.0026 106 0.00711 141 0.0024 141 0.00181 106

jobShop-e0ddr1 (10) 0.00523 50 0.00607 50 0.00405 50 0.00458 50
queens (14) 0.011 70 0.0188 70 0.0226 70 0.014 70
largequeens (2) 0.275 350 0.555 350 0.963 350 0.457 350
queensKnights (10) 0.00183 18 0.00151 18 0.00097 18 0.00106 18
queenAttacking (10) 0.00705 66 0.00669 66 0.014 66 0.00836 66

CPU times (in secs) and nodes for the two different branching schemes. The best-performing algorithms are
highlighted in bold and underlined. Timeout is set to 600 s, indicated by the symbol “**”.

maxRPC3sim has approximately three times the number of problems with the shortest
time spent on them compared to maxRPC3rm and lmaxRPC3rm. maxRPC3sim algorithms
takes the shortest time on average in the qcp-10, qwh-10, rlfapgraphs, rlfapscens, rlfap-
GraphsMod, rlfapScens11, hos, bqwh-15-106, queens, and largequeens problems. Among
them, the lmaxRPC3rm and maxRPC3rm algorithms spend on average more than twice
and four times as long as maxRPC3sim on the qcp-10 problem, respectively. maxRPC3sim

has almost absolute dominance in the rlfap problem, and has the shortest time spent in
rlfapgraphs, the rlfapscens, rlfapGraphsMod, and rlfapScens11, which are the four best
problems, while lmaxRPC3rm takes about twice as long as maxRPC3sim in these prob-
lems. In the bqwh-15-106 problem, lmaxRPC3rm and maxRPC3rm take about two and
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five times as long as maxRPC3sim, respectively. lmaxRPC3rm takes about two times as
long as maxRPC3sim on average in the Queens problem, and in the largequeens problem,
lmaxRPC3rm and maxRPC3rm take about three and two times as long as maxRPC3sim.

In the problems qcp-15, qwh-15, qwh-20, coloring, and queenAttacking, maxRPC3sim

takes the shortest time except for maxRPC3simR. In the qwh-15 problem, maxRPC3rm and
lmaxRPC3rm take about twice as long as maxRPC3sim. In the coloring problem, maxRPC3rm

and lmaxRPC3rm take about three and two times as long as maxRPC3simR. In the queenAt-
tacking problem, the lmaxRPC3rm algorithm takes about twice as long as maxRPC3sim.
Overall, the maxRPC3sim algorithm has the best results in most problems.

The number of problems where maxRPC3simR works best compared to maxRPC3rm and
lmaxRPC3rm is close to twice the number of problems of maxRPC3rm and lmaxRPC3rm. The
maxRPC3simR algorithm takes the least amount of time on average in the qcp-15, qwh-15,
qwh-20, coloring, and queenAttacking problems. In the qwh-15 problem, the lmaxRPC3rm and
maxRPC3rm algorithms take about twice as long as the maxRPC3simR algorithm on average.
In qwh-20, the maxRPC3rm algorithm takes about 1.5 times as long as maxRPC3simR. In the
coloring problem, the maxRPC3rm algorithm and the lmaxRPC3rm algorithm take on average
more than two and three times as long as maxRPC3simR, respectively.

The maxRPC3simR algorithm is the most effective algorithm except for the maxRPC3sim

algorithm in the qcp-10, qwh-10, and bqwh-15-106 problems. In the qcp-10 problem, the
lmaxRPC3rm and maxRPC3rm algorithms take about two and four times as long as the
maxRPC3simR algorithm. In problem qwh-10, the lmaxRPC3rm and maxRPC3rm algorithms
take on average nearly twice and three times as long as maxRPC3simR, respectively. On
the bqwh-15-106 problem, the lmaxRPC3rm algorithm and the maxRPC3rm algorithm take
approximately two and five times as long as the maxRPC3simR algorithm. Moreover,
we can also see that in the qcp-10, subs, myciel, bqwh-18-141_glb, jobShop-e0ddr1, and
queensKnights problems, lmaxRPC3rm and maxRPC3rm perform better. We speculate that it
is because our algorithm is modified based on the symmetry property, and these problems
have fewer symmetric structures and are more dependent on the redundant data structures
we abandoned. However, the solving time is actually quite similar, and our algorithm saves
more storage space because of the reduction in redundant operations.

In the rlfap problem, the maxRPC3sim algorithm is absolutely dominant, the maxRPC3simR

algorithm is not dominant, and the number of nodes is close. The maxRPC3sim algo-
rithm has the best result in the Hos problem, and in qcp-15, qwh-20, and coloring, the
maxRPC3simR algorithm has outstanding performance. Side by side, the maxRPC3sim

algorithm has an advantage in solving smaller-scale problems, while maxRPC3simR has an
advantage in many large-scale problems. It can be seen that out of the seven problems with
an average time of more than 1 s, the maxRPC3simR algorithm has the least amount of time
spent in four problems, while there are two problems where all four algorithms time out,
and one problem where the best performer is the maxRPC3rm algorithm. It shows that our
proposed maxRPC3simR algorithm has good pruning ability, and at the same time, saves
time with simplicity and efficiency.

Table 3 shows the average performance of the algorithms for random instances from
the geometric, Ehi-85, composed, random, and frb problems. The average performance of
algorithms maxRPC3sim and maxRPC3simR are both better than that of lmaxRPC3rm, except
for the Ehi-85 problem. That is, the new algorithms are better than lmaxRPC3rm in 85%
of problem classes. Moreover, the maxRPC3rm algorithm times out in the rand-2-23 and
rand-2-24 problems, while none of the other three algorithms time out. Thus, the algorithm
maxRPC3simR works best on the randomized problem.
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Table 3. Mean standalone performance in random problems.

Problem Class/Algorithms maxRPC3sim maxRPC3simR lmaxRPC3rm maxRPC3rm

Time Node Time Node Time Node Time Node

geom (15) 121.873 10,811 104.604 11,205 144.821 7415 145.832 4478

ehi-85 (10) 0.0819 0 0.0975 0 0.037 0 0.0272 0

composed-25-1-2 (10) 0.0131 104.604 0.021 0 0.0289 0 0.0882 4478
composed-25-10-20 (10) 0.189 247 0.267 247 0.547 247 0.959 276

rand-2-23 (3) 515.318 83,494 497.493 96,784 538.527 46,365 ** 52,126
rand-2-24 (3) 465.905 66,527 434.952 74,865 557.8 42,295 ** 25,947

frb30-15 (10) 5.142 1255 4.392 1179 14.325 1690 17.172 1148
frb35-17 (10) 47.966 8902 30.74 6348 82.116 8078 119.022 6722

CPU times (in secs) and nodes for the two different branching schemes. The best-performing algorithms are
highlighted in bold and underlined. Timeout is set to 600 s, indicated by the symbol “**”.

Comparing the maxRPC3sim, lmaxRPC3rm, and maxRPC3rm algorithms, the number
of best-performing problems in the maxRPC3sim algorithm is two, while there are none
for lmaxRPC3rm and only one for maxRPC3rm. In the composed-25-1-2 and composed-
25-10-20 problems, maxRPC3sim took the least time. In the composed-25-1-2 problem, the
lmaxRPC3rm and maxRPC3rm algorithms took twice and nearly seven times as long as the
maxRPC3sim algorithm, respectively. In the composed-25-10-20 problem, the lmaxRPC3rm al-
gorithm and the maxRPC3rm algorithm took three and five times longer than the maxRPC3sim

algorithm, respectively.
The maxRPC3sim algorithm is the most effective algorithm except for the maxRPC3simR

algorithm in the geom, rand-2-23, rand-2-24, frb30-15, and frb35-17 problems. In particu-
lar, the lmaxRPC3rm algorithm and the maxRPC3rm algorithm took about three times
as long as the maxRPC3rm algorithm in problem frb30-15. In problem frb35-17, the
lmaxRPC3rm algorithm and the maxRPC3rm algorithm took about twice as long as the
maxRPC3sim algorithm and about three times as long as the maxRPC3sim algorithm, respec-
tively. Algorithm maxRPC3sim works much better than the maxRPC3rm algorithm and the
lmaxRPC3rm algorithm.

Comparing the maxRPC3simR, lmaxRPC3rm, and maxRPC3rm algorithms, the maxRPC3simR

algorithm works best on all five problems, whereas the maxRPC3rm algorithm works well
on only one problem and the lmaxRPC3rm algorithm does not. The maxRPC3simR algorithm
works best in the geom, rand-2-23, rand-2-24, frb30-15, and frb35-17 problems. In the frb30-
15 problem, the lmaxRPC3rm algorithm and the maxRPC3rm algorithm took more than
three and four times as long as the maxRPC3simR algorithm, respectively. In the frb35-17
algorithm, the lmaxRPC3rm algorithm and the maxRPC3rm algorithm took more than twice
and three times as long as the maxRPC3simR algorithm, respectively.

The maxRPC3simR algorithm is the most effective algorithm except for the maxRPC3sim

algorithm in both problem classes of the composed problem. In particular, the maxRPC3rm

algorithm takes approximately four times longer than the maxRPC3simR algorithm in
the composed-25-1-2 problem, and in the composed-25-10-20 algorithm, the lmaxRPC3rm

algorithm and the maxRPC3rm algorithm take about two and four times longer than
the maxRPC3simR algorithm, respectively. Overall, the maxRPC3simR algorithm has the
best results in stochastic problems. We can see from the time that is similar to the struc-
tured problems, the maxRPC3sim algorithm works well for small-scale problems, and the
maxRPC3simR algorithm works well for larger-scale problems.

In recent years, very little work has been conducted on the maxRPC algorithm. In
Reference [17], only 15 kinds of problems were tested, while we carried out experiments on
31 kinds of structured problems and random problems. In addition, Reference [17] showed
that the best average performance improved by 65%, while the average performance of
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algorithm maxRPC3sim improved by 82.5% on problem bqwh-15-106, and the average
performance of algorithm maxRPC3simR improved by 74.4% on problem frb30-15.

6.2. Performance Comparison of Improved Algorithms with Heuristics.

Tables 4 and 5 compare the performance of algorithms maxRPC3sim, maxRPC3simR,
lmaxRPC3rm, and AC3 using different heuristics on nine problem classes, which are ran-
domly selected examples of structured and randomized problems. We include results from
dom/ddeg, dom/wdeg, ABS, and our proposed ADW heuristic.

Table 4. Algorithms maxRPC3sim and maxRPC3simR use different heuristic results.

Problem Class/Algorithms maxRPC3sim maxRPC3simR

dom/ddeg dom/wdeg ABS ADW dom/ddeg dom/wdeg ABS ADW

qcp-10 (12) 47.056 0.122 5.145 0.072 96.339 0.15 5.437 0.079
qcp-20 (2) 600 577.768 600 484.339 600 491.376 600 433.382

qwh-15 (10) 5.458 0.066 5.578 2.181 4.034 0.0814 3.968 1.551

queens (14) 0.303 0.011 0.298 0.297 0.019 0.0188 0.012 0.013

rlfapGraphs (11) 0.129 0.079 0.082 0.116 0.128 0.13 0.052 0.099
rlfapScens (11) 0.128 0.118 0.163 0.178 0.201 0.199 0.079 0.137

coloring (11) 18.833 0.023 61.832 0.025 23.644 0.022 62.883 0.025

rand-2-24 (3) 346.82 465.905 549.067 569.309 319.769 434.952 522.267 536.487

frb30-15 (10) 5.498 5.142 13.777 6.569 5.209 4.392 14.246 6.55

geom (9) 15.406 62.514 50.028 32.084 16.065 46.909 42.627 28.967

composed-25-10-20 (4) 600 0.216 0.062 0.056 600 0.277 0.07 0.063

total time 1639.631 1111.964 1286.032 1095.226 1665.408 978.5072 1251.641 1007.353

CPU times (in secs) and nodes for the two different branching schemes. The best-performing algorithms are
highlighted in bold and underlined.

From Table 4 we can conclude that the ADW heuristic performs best in the structured
problems qcp-10 and qcp-20, and the stochastic problem composed-25-10-20 under the
execution of the maxRPC3sim algorithm. In the qcp-10 problem, the algorithm takes
hundreds of times longer to apply dom/ddeg than to apply the ADW heuristic, dom/wdeg
takes close to twice as long as ADW, and ABS takes tens of times longer than ADW. In the
qcp-20 problem, only the dom/wdeg heuristic and the ADW heuristic did not time out,
whereas the other two heuristics did. In the COMPOSED problem, dom/wdeg timed out,
while dom/wdeg took about four times as long as ADW. Dom/wdeg worked best in the
qwh-15, queens, rlfapgraphs, rlfapScens, coloring, and frb30-15 problems, and dom/ddeg
worked best in the rand-2-24 and geom problems, which shows that applying the ADW
heuristic to the maxRPC3sim algorithm has a good bootstrap ordering of the algorithmic
variables, and works better than applying the dom/wdeg heuristic in some problems, and
better than applying the dom/ddeg and ABS heuristics in many problems.

In the maxRPC3simR algorithm, the application of the ADW heuristic works best in
the qcp-10, qcp-20, and composed-25-10-20 problems, the application of the dom/wdeg
heuristic works best in the qwh-15, coloring, and frb30-15 problems, the application of
the ABS heuristic works best in the queens, rlfapGraphs, and rlfapScens problems, and
the Dom/Wdeg heuristic yields the best results in stochastic problems Rand-2-24 and
Geom. Taken together, applying dom/wdeg, ABS and ADW can have the best results in a
larger number of problems, while applying dom/ddeg has the best results in the stochastic
problems rand and geom. Therefore, the application of the improved variable ordering
heuristic ADW also works well for variable ordering of the maxRPC3simR algorithm and is
more efficient than using other heuristics in many problems.
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Table 5. Algorithms lmaxRPC3rm and AC3 use different heuristic results.

Problem Class/Algorithms lmaxRPC3rm AC3

dom/ddeg dom/wdeg ABS ADW dom/ddeg dom/wdeg ABS ADW

qcp-10 (12) 68.809 0.328 19.138 0.258 22.38 0.014 0.566 0.004
qcp-20 (2) ** ** ** ** 600 168.203 600 308.703

qwh-15 (10) 12.861 0.143 15.266 5.269 0.744 0.0115 0.28 0.088

queens (14) 0.018 0.0226 0.015 0.005 58.43 0.00136 0.0008 0.005

rlfapGraphs (11) 0.173 0.128 0.094 0.086 0.007 0.007 0.004 0.004
rlfapScens (11) 0.199 0.186 0.133 0.191 0.008 0.00925 0.005 0.005

coloring (11) 54.614 0.037 85.92 0.197 5.559 0.005 56.732 0.007

rand-2-24 (3) 580.35 529.666 600 600 15.151 29.139 21.562 21.866

frb30-15 (10) 22.315 14.325 80.083 25.504 0.203 0.209 0.331 0.154

geom (9) 58.91 96.637 90.744 147.326 0.66 1.857 0.824 0.603

composed-25-10-20 (4) 600 0.652 0.327 0.281 600 0.029 0.012 0.005

total time 1398.249 642.1246 891.72 779.117 703.142 31.28211 680.3168 22.732

CPU times (in secs) and nodes for the two different branching schemes. The best-performing algorithms are
highlighted in bold and underlined. Timeout is set to 600 s, indicated by the symbol “**”.

Table 5 shows the results of applying the four heuristics on the lmaxRPC3rm algorithm
and the AC3 algorithm. When using the lmaxRPC3rm algorithm, applying the ADW
heuristic worked best in the qcp-10, queens, rlfapGraphs, and composed-25-10-20 problems,
the dom/wdeg heuristic was best when applied to the qwh-15, coloring, rand-2-24, and
frb30-15 problems, the ABS heuristic was best when applied to the rlfapScens problem,
and the dom/wdeg application was best when applied to the geom stochastic problem.
Therefore applying the ADW heuristic and dom/wdeg heuristic works best.

When utilizing the AC3 algorithm, the application of the ADW heuristic yielded opti-
mal results in solving the qcp-10, rlfapGraphs, rlfapScens, frb30-15, geom, and composed-
25-10-20 problems. Conversely, employing the dom/wdeg heuristic proved to be most
effective in addressing the rand-2-24 problem. Furthermore, for resolving the qcp-20,
qwh-15, and coloring problems, implementing the dom/wdeg heuristic produced supe-
rior outcomes. Notably, when dealing with the queens as well as the rlfapGraphs and
rlfapScens problems that required equal time allocation between ADW and ABS heuristics,
applying the ABS heuristic demonstrated better performance. In summary, ADW exhibited
optimal efficacy when combined with the AC3 algorithm, while both dom/wdeg and ADW
heuristics showcased promising results when employed alongside lmaxRPC3rm.

The overall results show that the total time of algorithms maxRPC3sim and AC3 using
ADW heuristics is the best, and algorithms maxRPC3simR and lmaxRPC3rm using ADW
heuristics are in second place, but compared with other heuristics, ADW is close to the
first heuristics, which means that ADW heuristics have strong robustness. This advantage
makes ADW very useful in the case of uncertainty and many kinds of problems. From the
industrial point of view, it has great practical significance in practical problems.

7. Conclusions

Symmetrical structures are ubiquitous in the CSP. It is crucial to identify and character-
ize these structures to apply effective pruning strategies, thus reducing redundant searches
and improving solving efficiency. In light of this, we propose a simplified and more effi-
cient pruning strategy based on lmaxRPC3rm, which minimizes symmetry and eliminates
redundant operations with less space–time cost. The paper presents the following main
contributions: Firstly, we focus on the recent classic algorithm, lmaxRPC3rm, and enhance
its performance through simplification and optimization of the data structure. This leads to
the development of two new maxRPC algorithms: maxRPC3sim and maxRPC3simR. These
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algorithms demonstrate improved performance compared to the original lmaxRPC3rm. Ad-
ditionally, we introduce an enhanced variable ordering heuristic called ADW. This heuristic
aids in the selection of more appropriate variables, optimizing the pruning strategy.

The algorithm maxRPC3sim does not use residual records, discards the LastAC and
LastPC data structures in lmaxRPC3rm, and starts each search for support from the mini-
mum value. The maxRPC3simR changes the way the two data structures are used to store
residual support in the lmaxRPC3rm algorithm, respectively, and uses one data structure
to store support. Thus the two improved algorithms avoid some redundant compatibil-
ity support and PC witness access, making the algorithms more efficient. Experimental
results show that the new algorithm outperforms the original maxRPC algorithm in a
large number of arithmetic cases. Specifically, the maxRPC3simR algorithm shows superior
performance in stochastic problems, while the maxRPC3sim algorithm shows superior
performance in structured problems. Additionally, from the experimental data, we found
that the maxRPC3simR algorithm generally works better for problems with larger problem
sizes, while the maxRPC3sim algorithm works better for problems with smaller problem
sizes. In the timeout case, the maxRPC3simR algorithm has the least number of timeout
problems, and the maxRPC3sim algorithm is second only to the maxRPC3simR algorithm.
Our two proposed algorithms demonstrate outstanding performance in the majority of
stochastic and structural problems.

In addition, incorporating variable ranking heuristics into algorithms can serve as
a valuable guide for variable selection during the algorithmic process. We combine the
classic efficient dom/wdeg heuristic and ABS heuristic to generate the improved heuristic
ADW. We apply several classic heuristics and our ADW heuristic in our proposed algo-
rithms as well as in the comparison algorithm, and evaluate their effectiveness through
experimental analysis. The experimental results show that the ADW heuristic’s overall
performance is in the top two, which is highly significant for practical problem solving.
This implies that we can use ADW in the case of unknown or complex problem types
without artificial prediction.

Although our algorithm performs well in most problems, there are still some limi-
tations in the research. For example, the proposed pruning strategy is very effective in
eliminating symmetric structures and reducing redundant searches, but it is not necessarily
suitable for all types of constraint satisfaction problems. In addition, there is still room for
improving algorithm optimization and combining technologies to enhance problem-solving
efficiency. Additionally, the performance of the algorithm seems to be affected by the prob-
lem’s size, and it is observed that maxRPC3simR performs better on larger problems, while
maxRPC3sim is more effective on smaller problems, which indicates that the scalability of
the algorithm is limited.

In future work, we will consider the study of a bitwise version of the maxRPC3sim and
maxRPC3simR algorithms. The process of finding AC support, PC support, and PC witness
is performed frequently and consumes a substantial amount of time in the algorithm. To
address this, we aim to leverage bit operations to accelerate the process of identifying
and storing AC support, PC support, and PC witness. This enhancement is expected to
significantly improve the efficiency of lmaxRPC3rm. Additionally, we intend to explore
the integration of machine learning techniques into our algorithm [37]. The objective
is to train constraint networks capable of solving more complex and diverse problems,
thereby enhancing the algorithm’s generalization ability. Furthermore, to better identify
and eliminate symmetric structures in CSPs, we are investigating the potential of combining
the symmetry-breaking group-theoretic representation [38].
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Abbreviations
The following abbreviations are used in this manuscript:

ABS activity-based search heuristic
AC arc consistency
CSP Constraint Satisfaction Problem
dom/wdeg domain/weighted degree heuristic
RPC restricted path consistency
lmaxRPC3rm classic lightweight algorithm for maxRPC
maxRPC Max-restricted path consistency
PC path consistency
SAC singleton arc consistency
PIC path inverse consistency
NIC neighborhood inverse consistency
NSCs neighborhood singleton consistencies
EFCC enhanced forward checking consistency
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