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Abstract: The integration of advanced sensor technology and control technology has gradually
improved the operational efficiency of traditional power systems. Due to the undetectability of
these attacks using traditional chi-square detection techniques, the state estimation of power systems
is vulnerable to cyber–physical attacks, For this reason, this paper presents a novel detection and
identification framework for detecting malicious attacks in power systems from the perspective
of cyber–physical symmetry. To consider the undetectability of cyber–physical attacks, a physical
dynamics detection model using the unknown input observers (UIOs) and cosine similarity theorem
is proposed. Through the design of UIO parameters, the influence of attacks on state estimation
can be eliminated. A cosine similarity value-based detection criterion is proposed to replace the
traditional detection threshold. To further cut down the effects caused by malicious attacks, an
observer combination-based attack identification framework is established. Finally, simulations are
given to demonstrate that the proposed security method can detect and identify the injected malicious
attacks quickly and effectively.

Keywords: power system; unknown input observer; cosine similarity theorem; attack identification;
false data injection attack

1. Introduction

As the foundation of the national economy, power systems play an irreplaceable role.
In particular, the integration of advanced intelligent sensor fusion technology and robust
control technology has significantly improved the operational efficiency of smart grids [1,2].
Meanwhile, two kinds of uncertainties are symmetry and superimposition, which pose new
security challenges. In recent years, cyber-physical attacks have proven able to tamper with
the operational status of power generation systems [3,4]. By injecting a bank of false data,
the above attacks can deceive traditional detection methods. Thus, the above attacks bring
a tremendous security risk to power systems [5]. For instance, unknown cyber–physical
attacks occurred in Delta Montrose Electric Power Association (DMEA), USA, 2021; and a
malicious ransomware attack event occurred in Taiwan, 2022. For this reason, developing
an effective detection and identification mechanism is crucial to ensure the normal running
of power systems.

Different from traditional network attacks, such as Denial of service attacks (Dos) and
random attacks, the emerging cyber-physical attacks can fool the detection mechanism
of power systems. In particular, false data injection (FDI) attacks, as one type of cyber-
physical attack, were constructed firstly by Liu [6]. Furthermore, Yang et al. tested the
covert characteristic of FDI attacks on different IEEE standard bus systems [7]. Based on
this, a novel FDI attack that can disable a programmable logic controller without triggering
an alarm was constructed [8,9]. In summary, how we may quickly detect and identify FDI
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attacks is a security issue that the current power grid needs to solve from the perspective of
cyber–physical symmetry.

2. Related Works

Responding to the security risk posed by FDI attacks, various detection methods have
been studied. Existing detection methods for FDI attacks can be divided into two categories:
data-driven methods and model-based methods [10]. By analyzing the characteristics of the
history data in power systems, various data-driven detection methods are studied [11–18].
In [11], Raj et al., proposed a novel machine learning detection method for malicious attacks
based on threshold and aggregation. By analyzing the physical behavior, an anomaly
detection architecture using a neural network was constructed [12]. In [13], a threat
model against malicious attacks was established based on data analysis. A novel anomaly
detection strategy against malicious attacks was proposed in [14]. In [15], an innovative
detection algorithm against malicious attacks based on the Markov chain was proposed.
The proposed method can shed light on the security of smart grids. In [16], a detection
framework including generalized cumulative sum and relaxed generalized cumulative sum
was proposed. A linear regression-based three-network topology independent detection
technique for FDI attacks was developed [17]. In [18], a gradient-boosting theft detector
was proposed to improve detection performance against malicious attacks. By analyzing
the characteristics of power system transmission data, the above data-driven detection
methods can effectively judge abnormal data. Meanwhile, due to a lack of consideration
for the actual physical dynamic changes in the power system, the performance of these
detection methods can be limited. Furthermore, one can find that the effectiveness of the
above methods depends on the assumption that the attack sequence is known. Based on
this, model-based detection methods are proposed in [19–25]. In [19], a novel physical
dynamic detection architecture against malicious attacks was developed. To address the
problem of state estimation under cyber attacks, an adaptive cubature Kalman filter was
designed [20]. Considering the undetectability of FDI attacks using traditional chi-square
detection techniques, an unscented Kalman filter-based detection model was proposed [21].
In [22], Liu considered a two-step false data injection attack strategy and developed an
extended Kalman filter-based detection model. Taking multichannel cyber-attacks into
account, Xiahou et al. developed a decentralized detection model [23]. In [24], a hybrid
dynamic-state estimation method for FDI attacks was developed based on a physical
dynamics model. A novel detection model from the perspective of state estimation was
constructed to identify the injected FDI attacks in smart grids [25]. In a word, the above
model-based detection methods can effectively respond to injected cyber attacks. As shown
in Table 1, the pros and cons of the above detection works are summarized. From the
perspective of cyber–physical symmetry, the following issues need to be addressed:

• How to address the limitation caused by precomputed threshold;
• How to cut down the effect of model error and external disturbance.

Table 1. Analysis of detection methods against FDI attacks.

Category Approach Advantages Disadvantages

Data-driven
methods [11–18]

(1) System models are
not required

(2) Known attack
detection is fast

(1) Lots of historical data
needed

(2) Selection of detection
threshold

(3) Effect of model error
and external
disturbance

Model-based
methods [19–25]

(1) No training required
(2) Reduced memory

need
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Motivated by the above challenges, this paper develops a detection and identification
architecture for use against FDI attacks. Taking the changes in the voltage of physical
systems into account, a discrete power grid model is constructed. Considering the covert
characteristics of FDI attacks, a novel detection model is developed based on the designed
unknown input observers (UIOs) and cosine similarity theorem. Uusing the principle of
cosine similarity matching, the proposed detection criterion can address the limitation
caused by the precomputed detection threshold. Furthermore, an observer combination-
based attack identification framework is proposed, using which the influence caused by
FDI attacks can be cut down. The main works of this paper are summarized as follows.

1. A novel detection model is developed based on the UIOs and cosine similarity the-
orem. By designing the UIOs to handle the effect of model error and external dis-
turbance, the accuracy of state estimation can be improved. By using the principle
of cosine similarity matching, the limitation caused by the precomputed detection
threshold can be addressed.

2. An observer combination-based attack identification framework is proposed. By
introducing the observer combination strategy, the influence caused by the injected
FDI attacks can quickly be identified and eliminated.

The outline of this paper is given as follows. In Section 3, we construct a discrete
power grid model by considering the three-phase sinusoidal voltage equations. In Section 4,
a detection and identification framework is proposed. Section 5 presents the effectiveness of
the proposed detection and identification framework. Finally, the conclusion and discussion
are given in Section 6.

3. Problem Description
3.1. Three-Phase Voltage-Based Power State Model

According to the work in [26], one can find that attackers try to destroy the stability of
power systems by tampering with state variables. As shown in Figure 1, there exist three
generators and six buses in the power system. In this paper, we only consider the change
in voltage signal caused by FDI attacks. Therefore, a voltage signal-based grid state model
is given as follows [26].

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. IEEE 6-bus power system. 

( ) ( )1 cosV k A wkι θ= +  (1) 

( )2
2cos
3

V t A wtι θ π = + − 
 

 (2) 

( )3
4cos
3

V k A wkι θ π = + − 
 

 (3) 

By using Equations (1)–(3), one can obtain 

( ) ( ) ( ) ( ) ( )* cos cos * sin sinV t A wt A wtι ιθ θ= −  (4) 

Since this paper only studies the change in three-phase voltage, it is assumed that 
tω  is relatively constant over time. Then, the state–space grid model in Equation (4) can 

be rewritten as 

1k k k kx Ax Bu+ = + +Δ  (5)

k ky Cx=  (6)

where [ ]1 2
T

kx x x= , 1 cosx Aι θ= × , and 2 sinx Aι θ= ×  are state variables at epoch 

k, 
1 0
0 1

A  
=  
 

, ( )cos sinC k kω ω= − . 

3.2. Problem Formulation 
As usual, the commonly used detection methods are based on chi-square detectors. 

By comparing the measurement residual and measurement output, the operator can de-
termine if there are any abnormalities in the power system. As shown in [27], the detection 
criterion for abnormal data is given as follows. 

ˆ o attack
ˆ Attack

k k k

k k k

Cx N

Cx

λ τ
λ τ
 = − <


= − ≥

z

z
 (7) 

According to the work in [28], the τ  is set to three times the size of the noise, which 
can then meet a false alarm rate of less than 5%. According to the work in [16], the detec-
tion process of chi-square detector is given as follows. Firstly, the residual 

ˆk k kCxλ = −z  can be obtained using the Kalman filter. Secondly, the computation of 

Figure 1. IEEE 6-bus power system.

V1(k) = Aι cos(wk + θ) (1)

V2(t) = Aι cos
(

wt + θ − 2
3

π

)
(2)

V3(k) = Aι cos
(

wk + θ − 4
3

π

)
(3)
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By using Equations (1)–(3), one can obtain

V(t) = Aι ∗ cos(wt) cos(θ)− Aι ∗ sin(wt) sin(θ) (4)

Since this paper only studies the change in three-phase voltage, it is assumed that ωt
is relatively constant over time. Then, the state–space grid model in Equation (4) can be
rewritten as

xk+1 = Axk + Buk + ∆k (5)

yk = Cxk (6)

where xk =
[
x1 x2

]T , x1 = Aι × cos θ, and x2 = Aι × sin θ are state variables at epoch k,

A =

[
1 0
0 1

]
, C =

(
cos ωk − sin ωk

)
.

3.2. Problem Formulation

As usual, the commonly used detection methods are based on chi-square detectors. By
comparing the measurement residual and measurement output, the operator can determine
if there are any abnormalities in the power system. As shown in [27], the detection criterion
for abnormal data is given as follows.{

λk = ‖zk − Cx̂k‖ < τ No attack
λk = ‖zk − Cx̂k‖ ≥ τ Attack

(7)

According to the work in [28], the τ is set to three times the size of the noise, which can
then meet a false alarm rate of less than 5%. According to the work in [16], the detection
process of chi-square detector is given as follows. Firstly, the residual λk = ‖zk − Cx̂k‖ can
be obtained using the Kalman filter. Secondly, the computation of precomputed threshold
τ is based on noise. Thirdly, operators can judge the injected attacks by comparing the
residual and precomputed threshold. The above computation process can be seen in [27].

Making full use of the above detection mechanism, hackers can design a special set of
attack sequence f a

k , which needs to satisfy the following constraint.

} f
k =

∥∥∥z f
k − Cx̂a

k

∥∥∥
=
∥∥∥(zk + y f

k )− (Cx̂k + `)
∥∥∥

=
∥∥∥(zk − Cx̂k) + (y f

k − `)
∥∥∥

≤ ‖zk − Cx̂k‖+
∥∥∥y f

k − `
∥∥∥

(8)

From Equation (8), one can find that the output residual } f
k has not changed if

y f
k = `. In other words, the output residual } f

k under FDI attacks still is smaller than
the precomputed detection threshold τ. It is obvious that the injected FDI attacks can fool
the above detection methods by using the chi-square detector. Based on this, the malicious
attackers can successfully tamper with the operating status of the power system without
triggering system alerts.

To sum up, the emergence of attacks poses a huge challenge to existing security
mechanisms in power systems. To address this problem, this paper develops a novel
detection and identification method based on actual physical state changes. Taking a
large-scale power grid, the lth state–space grid model can be described as follows:{

xl
k+1 = Al xl

k + Blul
k + ∆l

k + Fl f l
k

yl
k = Cl xl

k
(9)
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where f l
k denotes the attack vector in Equation (8). The above parameter definitions

are given in Nomenclature. Based on the established problem, a novel detection and
identification framework including three steps is proposed from the perspective of cyber–
physical symmetry.

4. Detection and Identification Mechanism for FDI Attacks

In this section, a detection and identification framework for FDI attacks is established.
Taking the model error and external disturbance into account, we design UIOs to obtain the
physical dynamics accurately. Then, a novel detection criterion based on a cosine matching
theorem is proposed to address the limitations of the precomputed detection threshold.
Finally, an observer combination-based identification method against multiple FDI attacks
is developed. The detailed steps are given as follows from the perspective of cyber–physical
symmetry.

Step 1: To obtain the accurate state estimation, a bank of UIOs is established to deal
with the model error and external disturbance.

Step 2: A cosine theorem-based detection criterion is proposed to replace the precom-
puted detection threshold.

Step 3: An observer combination-based method is developed to identify the injected
FDI attacks.

4.1. UIO-Based State Estimation

Without the injected FDI attacks, the lth state–space grid model can be rewritten as{
xl

k+1 = Al xl
kk + Blul

k + ∆l
k

yl
k = Cl xl

k
(10)

To ensure the accuracy of state estimation, this paper designs the UIO to handle model
error and external disturbance. Before designing the proposed UIO, some assumptions and
lemmas are given as follows.

Assumption 1 ([29]).
(

Cl , Ãl
)

is a detectable, where Ãl =
(

I − KlCl
)

.

Lemma 1 ([30]). Consider a discrete system as{
ξκ+1 = Pξκ + Zυκ

ψκ = Xξκ + Θυκ
(11)

which meets the following robust performance:∥∥Gyu(s)
∥∥
− > η (12)

where Gyu(s) = X(σI− P)−1Z + Θ, if there exist positive definite matrices ℵ and = meeting the
following constraint [

P Z
I 0

]T

∂

[
P Z
I 0

]
+

[
X Θ
I 0

]T

℘

[
X Θ
I 0

]
< 0 (13)

where

∂ =

[
−I 0
0 λ2 I

]
,℘ =

[
−ℵ =
= ℵ− 2 cos(ω1)=

]
for the low-frequency range |ω| ≤ ω1.
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Lemma 2 ([31]). If there exists a matrix Ω meeting the following constraint:[
−Ω Ω(∑−ωI)

Ω(∑−ωI) −`2Ω

]
< 0, (14)

then the eigenvalues of matrix ∑ belong to the circular region 0(ω, `).

Based on this, the proposed UIO can be established as follows.{
zl

k+1 = Hlzl
k + Gl Blul

k + Ulyl
k

x̂l
k = zl

k + Klyl
k

(15)

Defining estimation error as
el

k = xl
k − x̂l

k, (16)

From Equations (9) and (15), one can obtain

el
k+1 = xl

k+1 − x̂l
k+1

=
(

Il − KlCl
)

xl
k+1 − zl

k+1

=
(

Al − KlCl Al −Ul
1Cl
)

el
k +

(
Al − KlCl Al −Ul

1Cl − Hl
1

)
zl

k

+
[(

Al − KlCl Al − KL
1 Cl
)

Kl −Ul
2

]
yl

k +
[(

Il − KlCl
)

Bl − Gl Bl
]
ul

k

+
(

Il − KlCl
)

∆l +
(

Il − KlCl
)

Fl f l

(17)

Based on the design of UIO, one can obtain
(

Il − KlCl
)

Bl − Gl Bl = 0

Al − KlCl Al −Ul
1Cl − Hl

1 = 0
Ul

2 = HlKl

(18)

Then, Equation (17) can be rewritten as follows:

el
k+1 = Hlel

k + Gl∆l + Gl Fl fk (19)

Without FDI attacks, the state residual can be obtained:

rl
k = rl

k − Cl xl
k = Clel

k = Hlel
k + Gl∆l (20)

By designing the UIOs, the effect of model error and external disturbance can be re-
duced. The corresponding UIOs-based state estimation framework is presented in Figure 2.
Then, the following theorem is given to ensure the stability of UIOs.
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 
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 
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Theorem 1. Under Lemma 1 and Lemma 2, there exist matrices Pl
1 =

(
Pl

1

)T
> 0,

Pl
2 =

(
Pl

2

)T
> 0, Pl

3 and Pl
4 meeting the following constraint.

−κ1Pl
5 − κ1

(
Pl

3

)T
ρ1 ρ2

∗ ρ3 ρ4
∗ ∗ −(I − ϑ)I

 < 0 (21)

−(1− σ)Pl
1 0

(
Cl
)T

∗ −(µ− ϑ)I 0
∗ ∗ −µI

 < 0 (22)

[
Pl

2 − κ3Pl
3 − κ3

(
Pl

3

)T
ρ5

∗ −`l
2

]
< 0 (23)

where
ρ1 =

(
Pl

3

)T
+ Pl

1 + κ1Pl
3 Ãl − κ1Pl

4Cl

ρ2 = κ1Pl
3

(
Il − KlCl

)
Fl

ρ3 = −σPl
1 + Pl

3 Ãl − Pl
4Cl +

(
Ãl
)T(

Pl
3

)T
−
(

Cl
)T(

Pl
4

)T

ρ4 = Pl
3

(
Il − KlCl

)
ρ5 = −κ3Pl

3 Ãl + κ3Pl
4Cl + κ3wPl

3

and κ3, κ3, κ3 and w1 > 0.

Proof. Without FDI attacks, we can obtain{
el

k+1 = Hlel
k + Gl∆l

rl
k = Clel

k
(24)

The Lyapunov function is selected as

V l
k =

(
el

k

)T
Ψlel

k (25)

Based on the work in [32], one can obtain the L∞ performance as

index
∥∥∥rl

k

∥∥∥ <
√

µ(1− σ)σV l
0 + µ(1− σ + µ− ϑ)

∥∥∆l
∥∥2

∞ (26)

Vk+1 < σVk + (1− σ)
(

∆l
)T

∆l (27)

(
rl

k

)T
rl

k < µ(1− σ)Vk + µ(µ− ϑ)
(

∆l
)T

∆l (28)

Based on Equation (25), one can obtain

V l
k+1 =

(
el

k

)T
(

Pl
1

(
Ãl −Ul

1Cl
)
+
(

Ãl −Ul
1Cl
)T

Pl
1

)
el

k + 2
(

el
k

)T
Pl

1

(
Il − KlCl

)
∆l (29)

From Equations (25)–(29), one can obtain[
ek
∆l

]T

Γ
[

ek
∆l

]
< 0 (30)
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where

Γ =

Pl
1

(
Ãl −Ul

1Cl
)
+
(

Ãl −Ul
1Cl
)T

Pl
1 − σPl

1 Pl
1

(
Il − KlCl

)
Pl

1

(
Il − KlCl

)
−(1− σ)I

 (31)

Since matrix Γ is not a LMI, Equation (31) can be rewritten as

χ1 + φT
1 ϕT

2 + φ1 ϕ2 < 0 (32)

where
φ1 =

[
Ãl −Ul

1Cl Il − KlCl
]

ϕ2 =

[(
Pl

1

)T
0
]T

χ =

[
σPl

1 0
0 −(1− σ)I

]
Then, Equation (32) can be equivalent to[

−κ1Pl
3 −

(
κ1Pl

3

)T
−φT

2 + ϕT
2 + κ1Pl

3φ1

∗ χ1 + φ2φ1 + φT
1 φT

2

]
< 0 (33)

Multiplying the left and right sides of Equation (30) by
[
φ1 I

]
, and its transposition,

we can obtain Equation (21).
Based on Equation (27), one can obtain

Vk < σkVk(0) + (1− σ)
k−1
∑

i=0
σi
∥∥∥∆l

∥∥∥2

< σkVk(0) +
∥∥∥∆l

∥∥∥2
(34)

Taking Equation (34) into Equation (28), one can obtain

[
ek
∆l

]T
[

ε−1
(

Cl
)T

Cl − (1− σ)Pl
1 0

0 −(1− σ)I

][
ek
∆l

]
< 0 (35)

By using the Schur complement lemma [33], Equation (22) can be obtained based on
Equation (35).

Based on Lemma 2, one can obtain[
−Pl

2 Pl
2

(
Ãl −Ul

1Cl −ωI
)

∗ −`2Pl
2

]
< 0 (36)

By using the Schur complement lemma [28], one can obtain(
Ãl −Ul

1Cl −ωI
)T

Pl
2

(
Ãl −Ul

1Cl −ωI
)
− `2Pl

2 < 0 (37)

Equation (37) can be equivalent to[
Pl

2 − κ3Pl
3 −

(
κ1Pl

3

)T
−κ3Pl

3

(
Ãl −Ul

1Cl −ωI
)

∗ `2Pl
2

]
< 0 (38)

Multiplying the left and right sides of in Equation (38) by
[(

Ãl −Ul
1Cl −ωI

)
I
]

and its transposition, we can obtain Equation (23).
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Remark 1. In general, the shortcomings of model-based detection methods, such as model error and
external disturbance, will affect the accuracy of state estimation. For this reason, this paper proposes
to design the UIOs to attenuate the effects caused by model error and external disturbance.

4.2. Cosine Similarity Theorem-Based Detection Method

In this section, a cosine similarity theorem-based detection criterion is developed.
Cosine similarity is a method of calculating correlation, which maps individual indicator
data to a vector space and calculates the cosine value of the angle between two vectors as a
measure of similarity between two variables. In other words, the value of cosine similarity
tends to be 0 if two values are similar. If two values are not similar, the value of cosine
similarity tends to be 1.

Using the above cosine similarity theorem, a cosine similarity value (CSV)-based attack
detection criterion is proposed as follows. lim

k→∞
cos(|xk − x̂k|) = Ξk = 0 Normal

lim
k→∞

cos(|xk − x̂k|) = Ξk = 1 Abnormal
(39)

Based on the designed UIOs, a cosine similarity theorem-based attack detection process
is developed as follows.

Step 1: Establish the proposed voltage signal-based grid state model in Equations (2) and (3).
Step 2: Design a bank of the proposed UIOs in Equation (15) to obtain the estima-

tion state.
Step 3: Compute the cosine similarity value based on the cosine similarity theorem.
Step 4: Apply the detection criterion in Equation (39) to detect the injected FDI attacks.
Based on the proposed detection process, the corresponding pseudo-code of the attack

detection method is given in Algorithm 1.

Algorithm 1: Cosine similarity theorem-based detection algorithm against FDI attacks

1. GCM→ Grid state model ;
2. UIOs→ Unknown input observers ;
3. ES→ Estimation state ;
4. CSV → cosine similarity value
5. UIOs← GCM ;
6. ES← UIOs ;
7. CSV ← ES
8. IF 0← CSV, No attacks
9. ELSEIF attacks

4.3. Observer Combination-Based Identification Method

To ensure the stable operation of power systems, an observer combination-based
attack identification framework is proposed to minimize the influence of FDI attacks, as
shown in Figure 3.

By applying the method of bisection, the proposed identification method can detect
and identify multiple attacked nodes. The detailed identification processes are given
as follows.

Step 1: Assuming all y1 · · · yN outputs are driven by one bank of UIOs, the CSV
detector is designed to detect attack nodes.

Step 2: If there exist attack nodes, all y1 · · · yN outputs are divided into two parts,
which are driven by two banks of UIOs.

Step 3: If there exist attack nodes in y1 · · · yN/2, all y1 · · · yN/2 outputs are divided into
two parts, which are driven by two banks of UIOs.

Step 4: If there exist attack nodes in yN/2 · · · yN , all yN/2 · · · yN outputs are divided into
two parts, which are driven by two banks of UIOs.
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Step 5: This process is repeated iteratively for each half of the y1 · · · yN/2 or yN/2 · · · yN ,
if there exist attack nodes.

Step 6: Repeating the above Steps 2–4, the attacked nodes can be detected and identified.
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Based on the above the detection and identification framework, operators can quickly
respond to the attacked nodes. Then, the corresponding pseudo-code of attack identification
method is given in Algorithm 2.

Algorithm 2: Observer combination-based attack identification

1. y1 · · · yN → All outputs
2. RIFEH → repeated iteratively f or each hal f o f the attacked ouputs
3. UIOs→ Unknown input observers ;
4. CSV → cosine similarity value
5. UIOs← y1 · · · yN
6. IF 1← CSV, attacks ;
7. RIFEH ← y1 · · · yN/2 and RIFEH ← yN/2 · · · yN
8. Else no attacks;
9. Repeat steps 5–7;
10. Output: the attacked nodes.

5. Results

In this section, experiments are carried out to verify the effectiveness of the proposed
detection and identification framework on IEEE 6-bus, 39-bus (as shown in Figure 4), and
118-bus power systems. Partial experimental parameters are set as follows: a frequency of
60 Hz and an amplitude of 0.5 V,

∥∥∥∆l
k

∥∥∥ ≤ 0.05. In addition, the model matrix parameters
and attack sequence can be seen in [26]. In the following, case 1 is used to test the detection
of one FDI attack on an IEEE 6-bus power system. Case 2 is used to verify the effectiveness
of multiple FDI attacks on an IEEE 39-bus power system. Case 3 is used to verify the
effectiveness of multiple FDI attacks on an IEEE 118-bus power system. The simulation
environment is simulated using MATLAB 2020b software on a Lenovo Y7000 computer
(i7-10875H CPU,16GB, RTX2060).
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Figure 4. IEEE 39-bus power system.

5.1. Case 1: Detection of One FDI Attack on an IEEE 6-Bus Power System

It is assumed that the first generator is an injected FDI attack by hacker at t = 160 s. By
tampering with sensor data, the hacker can fool the detection technique using a Chi-square
detector. Based on this, the proposed detection algorithm is applied to obtain the estimated
state under FDI attacks, as shown in Figure 5.
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Figure 5. The change in voltage under FDI attacks. (a) The first generator; (b) The second generator;
(c) The third generator.
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As shown in Figure 5, it is obvious that only the state estimation of the first generator
has been changed. Compared to first generator, there does not exist the change for other
generators. In other words, the hacker has successfully injected false data and changed the
voltage state of the first generator. To detect the injected FDI attacks, a traditional chi-square
detection technique and the proposed CSV-based attack detection criterion are applied. As
shown in Figures 6 and 7, the corresponding detection results for the above two methods
are given.
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Figure 6. The detection results under the chi-square detection technique. (a) First generator; (b) sec-
ond generator; (c) third generator.
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Obviously, one can find that all the detection residuals do not exceed the precomputed
threshold, as shown in Figure 6. Namely, the designed FDI attack can deceive the existing
chi-square detection technique methods without triggering alerts. Meanwhile, the proposed
CSV-based attack detection criterion can judge that the CSV of first generator is 1 at t = 160 s,
as shown in Figure 7a. In other words, the proposed detection algorithm can successfully
detect the change in voltage on the first generator caused by FDI attack. In summary, the
developed CSV-based detection Algorithm 1 can effectively detect the injected FDI attacks
in the power system.

5.2. Case 2: Detection and Identification of Multiple FDI Attacks on an IEEE 39-Bus
Power System

In this section, we consider the detection and identification of multiple FDI attacks
on an IEEE 39-bus power system. As shown in Figure 4, the IEEE 39-bus power system
consists of three grid subareas. Of note, the method for dividing power grid areas can be
seen in [34]. In addition, the calculation of extended model parameters can be seen in [28].
It is assumed that hacker can inject multiple FDI attacks, such as the first generator bus
at t ∈ (100 s− 160 s), sixth generator bus at t = 260 s, and thirteenth generator bus at
t = 380 s. By designing a bank of UIOs for three subareas, the corresponding change in the
estimated state can be obtained, as shown in Figure 8. Obviously, one can find that there
exist changes on the first and third grid subareas. To identify the attacked generator buses,
the proposed Algorithm 2 is applied. Then, the corresponding detection and identification
results against FDI attacks are obtained, as shown in Figures 9 and 10.
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Figure 9. Detection and identification results against multiple FDI attacks in the first subarea.
(a) 1–6 generator buses; (b) 1–3 generator buses; (c) 4–6 generator buses; (d) 1–2 generator buses;
(e) 3 generator bus; (f) 4–5 generator buses; (g) 6 generator buses; (h) 1 generator bus; (i) 2 generator bus.

As shown in Figure 9a, the corresponding detection and identification results indicate
that there may exist one or multiple FDI attacks in the first grid subarea. By applying the
proposed Algorithm 2, one can find that there may exist one or multiple FDI attacks on
the first to third generator buses, as shown in Figure 9b. Similarly, there may exist one or
multiple FDI attacks on the fourth to sixth generator buses, as shown in Figure 9c. By using
the detection and identification algorithm, we can obtain that there exists one FDI attack
in the first and sixth generator bus, as shown in Figure 9d–i. Using a similar process as
above, one can find that there may exist attack in the 10th–13th generator buses, as shown
in Figure 10a. Through further detection and identification, we can find that the injected
FDI attack is on the 12th or 13th generator bus, as shown in Figure 10c. Namely, there
does not exist injected FDI attack on the 10th or 11st generator bus, as shown in Figure 10b.
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Based on the proposed Algorithm 2, we can detect and identify that the injected FDI attack
is on the 13th generator bus, as shown in Figure 10d,e.
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Figure 10. The detection and identification results against multiple FDI attacks in the third subarea.
(a) 10–13 generator buses; (b) 10–11 generator buses; (c) 12–13 generator buses; (d) 12 generator bus;
(e) 13 generator bus.

5.3. Case 3: Detection and Identification of Multiple FDI Attacks on IEEE 118-Bus Power System

In this case, the effectiveness of the proposed method on a large-scale 118-bus system
(Figure 11) is demonstrated. It is assumed that hacker can inject multiple FDI attacks, such
as the 8th generator bus at t = 120 s and 14th generator bus at t = 180 s. Applying the
proposed UIO-based state estimation method, one can find that there exist one or multiple
FDI attacks in the second grid subarea, as shown in Figure 12. By using the proposed
Algorithm 2, the corresponding detection and identification results against FDI attacks are
obtained, as shown in Figure 13.
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Figure 13. The detection and identification results against multiple FDI attacks in the second subarea.
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(e) 10–11 generator buses; (f) 12–13 generator buses; (g) 14–16 generator buses; (h) 8 generator bus;
(i) 9 generator bus; (j) 14 generator bus; (k) 15–16 generator buses.

The simulation results indicate that there exist one or multiple FDI attacks on the
IEEE 118-bus grid system. Obviously, it is difficult to identify the injected FDI attacks.
By applying the proposed method, we can obtain that there may exist FDI attacks in
the 8–16th generator buses, as shown in Figure 13a–c. Repeat the Algorithm 2, we can
identify the injected FDI attacks on the 8th–9th and 14th–16th generator buses, as shown
in Figure 13d–g. Using a similar process as above, the injected FDI attacks on the 8th
and 14th generator buses can be identified, as shown in Figure 13h–k. In summary, the
simulation results demonstrate that the injected malicious attacks can be detected and
identified quickly using the proposed detection and identification algorithm. In addition,
the detection and identification time are given, as shown in Table 2. Compared with the
data-driven methods, the proposed method can cut down the time of training data. As
the power network grows, the corresponding system parameter dimensions also increase.
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Thus, the detection time of FDI attacks will increase, as shown in Table 2. Meanwhile, the
identification time will increase in comparison with the detection time. In addition, the
identification time will be affected by the number of the injected FDI attacks, as shown in
Table 2.

Table 2. Detection and identification times.

System Detection Time (s) Identification Time (s)

6-bus 0.8 1.2
39-bus 1.5 3.8
118-bus 2.2 4.5

6. Conclusions and Discussion

This paper proposes a novel detection and identification mechanism for countering
FDI attacks in power systems. A novel detection model using UIOs and a cosine similar-
ity theorem is constructed, using which FDI attacks can be detected. Furthermore, the
developed CSV-based attack detection criterion can replace the design of a precomputed
threshold. To lessen the impact of attacks on the system, an attack identification method
is developed. Through the combination of UIOs, the influence of FDI attacks can mini-
mized quickly. Finally, simulation experiments are carried out to verify the effectiveness of
the proposed detection and identification framework on IEEE 6-bus, 39-bus and 118-bus
power systems.

It is notable that the proposed method is only applicable to balanced power systems.
For unbalanced power systems, operators can predict the state of electricity load using
data-driven methods. Future works will further consider this problem by introducing
artificial intelligence methods.
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Nomenclature

Definition of all parameters
Aι amplitude of the three-phase voltage
ωt angular frequency
θ angular phase
V1(k) voltage signal of the 1st generator
V2(k) voltage signal of the 2nd generator
V3(k) voltage signal of the 3rd generator

∆k
model error and external disturbance, which is
norm-bounded

C observation matrix of appropriate dimensions
B constant matrix of appropriate dimensions
λk output residual
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zk measurement output
τ the precomputed detection threshold
} f

k
output residual under FDI attacks

z f
k

measurement output under FDI attacks
x̂a

k state estimation under FDI attacks
` increment of state caused by the attack

F
attack-selected matrix of appropriate
dimensions

Ãl constant matrix of appropriate dimensions
Kl constant matrix of appropriate dimensions
zl

k+1 state vector of UIO
x̂l

k estimation value of xl
k

HlGlUlKl designed system parameter matrix
Pl

6 constant matrix of appropriate dimensions

References
1. Oyewole, P.A.; Jayaweera, D. Power System Security with Cyber-Physical Power System Operation. IEEE Access 2020, 8,

179970–179982. [CrossRef]
2. Wang, C.; Jiang, C.; Wang, J.; Shen, S.; Guo, S.; Zhang, P. Blockchain-aided network resource orchestration in intelligent Internet

of Things. IEEE Internet Things J. 2023, 10, 6151–6163. [CrossRef]
3. Lau, P.; Wang, L.; Liu, Z.; Wei, W.; Ten, C.-W. A Coalitional Cyber-Insurance Design Considering Power System Reliability and

Cyber Vulnerability. IEEE Trans. Power Syst. 2021, 36, 5512–5524. [CrossRef]
4. Ashok, A.; Govindarasu, M.; Wang, J. Cyber-Physical Attack-Resilient Wide-Area Monitoring, Protection, and Control for the

Power Grid. Proc. IEEE 2017, 105, 1389–1407. [CrossRef]
5. Das, L.; Munikoti, S.; Natarajan, B.; Srinivasan, B. Measuring smart grid resilience: Methods challenges and opportunities. Renew.

Sustain. Energy Rev. 2021, 130, 109918. [CrossRef]
6. Liu, S.; Mashayekh, S.; Kundur, D.; Zourntos, T.; Butler-Purry, K. A framework for modeling cyber physical switching attacks in

smart grid. IEEE Trans. Emerg. Top. Comput. 2014, 1, 273–285. [CrossRef]
7. Saini, A.; Bhui, P.; Singh, A.K.; Haq, F.U.; Kotakonda, C. Impact of False Data Injection Attacks in Wide Area Damping Control. In

Proceedings of the 2022 22nd National Power Systems Conference (NPSC), New Delhi, India, 17–19 December 2022; pp. 218–223.
8. Xiao, M.; Wu, J.; Long, C.; Li, S. Construction of false sequence attack against PLC based power control system. In Proceedings of

the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; pp. 10090–10095.
9. Yu, X.; Xue, Y. Smart grids: A cyber-physical systems perspective. Proc. IEEE 2016, 104, 1058–1070. [CrossRef]
10. Du, D.; Zhu, M.; Li, X.; Fei, M.; Bu, S.; Wu, L.; Li, K. A Review on Cybersecurity Analysis, Attack Detection, and Attack Defense

Methods in Cyber-physical Power Systems. J. Mod. Power Syst. Clean Energy 2023, 11, 727–743. [CrossRef]
11. Shukla, R.M.; Sengupta, S. A novel machine learning pipeline to detect malicious anomalies for the Internet of Things. Internet

Things 2022, 20, 100603. [CrossRef]
12. Gaggero, G.B.; Caviglia, R.; Armellin, A.; Rossi, M.; Girdinio, P.; Marchese, M. Detecting Cyberattacks on Electrical Storage

Systems through Neural Network Based Anomaly Detection Algorithm. Sensors 2022, 22, 3933. [CrossRef]
13. Mashima, D.; Cárdenas, A.A. Evaluating Electricity Theft Detectors in Smart Grid Networks. In Research in Attacks, Intrusions, and

Defenses. RAID 2012; Balzarotti, D., Stolfo, S.J., Cova, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2012; Volume 7462. [CrossRef]

14. Gaggero, G.B.; Rossi, M.; Girdinio, P.; Marchese, M. Detecting System Fault/Cyberattack within a Photovoltaic System Connected
to the Grid: A Neural Network-Based Solution. J. Sens. Actuator Netw. 2020, 9, 20. [CrossRef]

15. Gunduz, H.; Jayaweera, D. Modern power system reliability assessment with cyber-intrusion on heat pump systems. IET Smart
Grid 2020, 3, 561–571. [CrossRef]

16. Zhang, J.; Wang, X. Low-complexity quickest change detection in linear systems with unknown time-varying pre- and post-change
distributions. IEEE Trans. Inf. Theory 2021, 67, 1804–1824. [CrossRef]

17. Nawaz, R.; Akhtar, R.; Shahid, M.A.; Qureshi, I.M.; Mahmood, M.H. Machine learning based false data injection in smart grid.
Int. J. Electr. Power Energy Syst. 2021, 130, 106819. [CrossRef]

18. Punmiya, R.; Choe, S. Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing.
IEEE Trans. Smart Grid 2019, 10, 2326–2329. [CrossRef]

19. Gallo, A.J.; Turan, M.S.; Boem, F.; Parisini, T.; Ferrari-Trecate, G. A Distributed Cyber-Attack Detection Scheme with Application
to DC Microgrids. IEEE Trans. Autom. Control 2020, 65, 3800–3815. [CrossRef]

20. Lv, Y.W.; Yang, G.H. An adaptive cubature Kalman filter for nonlinear systems against randomly occurring injection attacks. Appl.
Math. Comput. 2022, 418, 126834. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.3028222
https://doi.org/10.1109/JIOT.2022.3222911
https://doi.org/10.1109/TPWRS.2021.3078730
https://doi.org/10.1109/JPROC.2017.2686394
https://doi.org/10.1016/j.rser.2020.109918
https://doi.org/10.1109/TETC.2013.2296440
https://doi.org/10.1109/JPROC.2015.2503119
https://doi.org/10.35833/MPCE.2021.000604
https://doi.org/10.1016/j.iot.2022.100603
https://doi.org/10.3390/s22103933
https://doi.org/10.1007/978-3-642-33338-5_11
https://doi.org/10.3390/jsan9020020
https://doi.org/10.1049/iet-stg.2020.0094
https://doi.org/10.1109/TIT.2021.3049468
https://doi.org/10.1016/j.ijepes.2021.106819
https://doi.org/10.1109/TSG.2019.2892595
https://doi.org/10.1109/TAC.2020.2982577
https://doi.org/10.1016/j.amc.2021.126834


Symmetry 2023, 15, 2104 20 of 20
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