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Abstract: To alleviate the data imbalance problem caused by subjective and objective factors, scholars
have developed different data-preprocessing algorithms, among which undersampling algorithms are
widely used because of their fast and efficient performance. However, when the number of samples
of some categories in a multi-classification dataset is too small to be processed via sampling or the
number of minority class samples is only one or two, the traditional undersampling algorithms will
be less effective. In this study, we select nine multi-classification time series datasets with extremely
few samples as research objects, fully consider the characteristics of time series data, and use a
three-stage algorithm to alleviate the data imbalance problem. In stage one, random oversampling
with disturbance items is used to increase the number of sample points; in stage two, on the basis of
the latter operation, SMOTE (synthetic minority oversampling technique) oversampling is employed;
in stage three, the dynamic time-warping distance is used to calculate the distance between sample
points, identify the sample points of Tomek links at the boundary, and clean up the boundary
noise. This study proposes a new sampling algorithm. In the nine multi-classification time series
datasets with extremely few samples, the new sampling algorithm is compared with four classic
undersampling algorithms, namely, ENN (edited nearest neighbours), NCR (neighborhood cleaning
rule), OSS (one-side selection), and RENN (repeated edited nearest neighbors), based on the macro
accuracy, recall rate, and F1-score evaluation indicators. The results are as follows: of the nine
datasets selected, for the dataset with the most categories and the fewest minority class samples,
FiftyWords, the accuracy of the new sampling algorithm was 0.7156, far beyond that of ENN, RENN,
OSS, and NCR; its recall rate was also better than that of the four undersampling algorithms used for
comparison, corresponding to 0.7261; and its F1-score was 200.71%, 188.74%, 155.29%, and 85.61%
better than that of ENN, RENN, OSS, and NCR, respectively. For the other eight datasets, this new
sampling algorithm also showed good indicator scores. The new algorithm proposed in this study
can effectively alleviate the data imbalance problem of multi-classification time series datasets with
many categories and few minority class samples and, at the same time, clean up the boundary noise
data between classes.

Keywords: imbalanced data; data preprocessing; sampling; Tomek links; DTW

1. Introduction

Classification models can be widely used in real-life applications [1,2]. However, the
existence of imbalanced data will greatly affect the effectiveness of these classification mod-
els [3]. In the processing of methods affected by data imbalance, the sampling algorithm
used for data preprocessing plays an important role [4]. Developing effective sampling
techniques for imbalanced data thus bears great practical significance.

By obtaining balanced classes through sampling methods, the learning time can be
reduced, and an algorithm can be executed faster [5]. The core concept of oversampling is
to artificially synthesize data to increase the scale of the minority class so as to obtain two
balanced classes. The seminal work on oversampling is related to random oversampling,
which naively replicates minority samples. Although the sample scale of classes has
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increased, random oversampling has the main problem of overfitting due to repeated
sampling [6]. To solve this type of problem, SMOTE (the synthetic minority oversampling
technique) came into being, and SMOTE has since become one of the most representative
algorithms in oversampling [7]. Based on SMOTE, many new algorithms have been
extended, such as Borderline-SMOTE, DBSMOTE (density-based synthetic minority over-
sampling technique), etc. [8,9].

On the contrary, undersampling algorithms balance classes via extracting samples; the
remaining samples are ignored, and the training speed is faster [10,11]. Undersampling
can be traced back to Wilson’s nearest neighbor rule, the editing of which formed the basis
for many subsequent undersampling algorithms. Later undersampling algorithms include
Chawla’s NCR (neighborhood-cleaning rule), which focuses on retaining the instances
of the majority class, and Kubat’s OSS (one side selection) algorithm, which uses two
undersampling algorithms to balance classes while cleaning boundary noise [12].

Currently, more sampling algorithms are being used to seek targeted solutions to some
other problems, such as using multiple sampling algorithms to deal with the problem of
handling noise data and class data at the same time [13]. Developing sampling techniques
tailored to specific data characteristics remains an open field of study.

Current algorithms mostly target binary class imbalance, whereas multi-class problems
with an extreme scarcity of minority samples have been relatively ignored, thus warranting
further investigation. If traditional undersampling algorithms are used for extremely few
samples, the imbalanced dataset will be undersampled to only 1 to 2, which can negatively
impact classifier performance. Therefore, the best method to employ will depend on the
specific characteristics of a dataset [14,15]. A representative multi-stage sampling algorithm
is the combination of SMOTE and Tomek links, which can effectively alleviate boundary
noise and has been widely applied [16]. However, for categories with extremely scarce
samples, additional processing is needed before SMOTE oversampling; otherwise, the
sample size would be insufficient. Moreover, this sampling algorithm does not optimize
for specific dataset characteristics. Considering that the conventional undersampling of
multi-class data with extremely few samples can greatly reduce the sample size and lead
to information loss, while extreme scarcity also precludes effective SMOTE oversampling,
traditional algorithms also do not account for the unique traits of time series data.

This study proposes a three-stage sampling algorithm for highly skewed multi-class
time series data. (1) First, random oversampling with disturbance items is used to increase
the number of sample points in the minority class via repeatedly replicating minority class
samples; (2) next, the traditional SMOTE algorithm is used to generate more minority
class samples; (3) finally, to clean up the fuzzy boundary data that may be generated by
these newly generated minority class samples, the dynamic time warping DTW (dynamic
time warping) method is used to calculate the distance between the data, and Tomek links
are used to clean up the boundary noise. The proposed algorithm is designed to address
the limitations of prevailing techniques when applied to in datasets with extreme class
imbalance. The efficacy of the proposed algorithm is demonstrated through comparative
experiments considering multiple evaluation metrics. This three-stage algorithm signifi-
cantly enhances the class balance even for minority categories with just 1–2 samples. This
work contributes new insights into handling data scarcity in complex real-world scenarios.

The paper is divided into the following sections. The Application section introduces
how to use the three stages in the targeted ending problem. Section 3 illustrates the
experimental process. The results of the five sampling algorithms with respect to three
metrics are displayed in the Section 4. The Section 5 summarizes the main findings of this
paper and discusses the implications of our work.

2. Application

For extremely imbalanced time sequence multi-class classification datasets, this three-
stage sampling algorithm is combined with border noise cleaning via DTW and Tomek
Links after random oversampling and SMOTE. The three-stage sampling algorithm pro-
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posed in this study has targeted advantages in each stage: the use of random oversampling
with perturbation can solve the problem of an extremely sparse number of sample points in
the minority class that, in turn, makes it difficult to generate sample points; SMOTE can cre-
ate a balance between subsets; and the bilateral cleaning of TLDTW (Tomek links combined
with dynamic time warping) maximizes the removal of noise caused by oversampling. The
details of the three stages are described below.

2.1. Step One: Increase the Number of Minority Class Sample Points

By randomly oversampling an insufficient number of minority class samples for
the K value, the number of minority class samples insufficient for further sampling can
be increased. Random oversampling (ROS) is a method of randomly replicating minor-
ity class samples for sample generation, and this repetition of minority class samples
may render the classifier prone to overfitting in a given dataset. Set the training set as
S = {(xi, yi), i = 1, 2, . . . , N, yiε{+,−}}, defining the number of samples of instances
belonging to the majority class as N− and the number of samples of instances belonging to
the minority class as N+, where N = N+ + N−. Also, define the sampling ratio as f and
the imbalance ratio as IR = N−

N+ .
When the oversampling algorithm is implemented, the number of samples of in-

stances belonging to the minority category is generated as follows: N+ × f . When the
undersampling algorithm is implemented, the number of samples of instances belonging
to the majority category is deleted in the following manner, i.e., N− × f

f+1 , f ∈ (0, IR− 1],
and the number of samples in the training set of over- or undersampling when f = IR− 1
is N+ = N−.

In ordinary random oversampling, when too many synthetic samples are introduced
in the majority class samples, the main solution is to copy some random samples from
the minority class, which does not add any new information and may render the classifier
overfitted. As shown in Figure 1a, “0” and “1” represent the sample category labels, i.e.,
minority class and majority class, respectively. The repeated generation of samples causes
the newly generated minority class samples to overlap with each other, and the color of the
example sample points in Figure 1b deepens. To mitigate this problem, we generate random
noise at each randomly generated sample point using a smoothed Bootstrap, i.e., sampling
from the kernel density estimate of the data points [17]. Assuming that K is a symmetric
kernel density function with a variance of 1, the standard kernel density estimate of f(x) is

f̂n(x) =
1

nh

n

∑
i=1

K(
x− Xi

h
)

where h is the smoothing parameter. The corresponding distribution function is as follows:

F̂n(x) =
∫ X

(−∞)
f̂n(t)dt

2 0 2

2

1
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1

2

0
1
0
1

(a) Before ROS.
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1

2

0
1
0
1

(b) After ROS.

Figure 1. Comparison of before and after random oversampling.
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The sample points generated after adding a perturbation factor to the random over-
sampling process to allow for small perturbations in the randomly generated samples are
shown in Figure 2, representing two degrees of perturbation. After the parameter has
been perturbed by adding a small amount of noise, the randomly generated samples no
longer overlap.

2 0 2
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1

0

1

2

0
1
0
1

(a) Low level of perturbation.

2 0 2

4

3

2

1

0

1

2

3

4

0
1
0
1

(b) High level of perturbation.

Figure 2. Two-degree perturbation of ROS.

2.2. Step Two: Balanced Data Subset

Because of its convenience and robustness in the sampling process, SMOTE is widely
used to deal with imbalanced data. SMOTE has had a profound impact on supervised
learning, unsupervised learning, and multi-class categorization, and it is an important
benchmark with respect to algorithms for imbalanced data [18]. SMOTE creates interpo-
lation between the samples of the minority class instances in the defined neighborhood
via obtaining K-nearest neighbors of sample X in the minority class, randomly selecting
one of the samples in the set of nearest neighbors, denoted as Xi, and the newly generated
minority class samples are

Xnew = Xorigin + rand×
(
Xi − Xorigin

)
, i = 1, 2, . . . , n

where rand is a randomly selected number in (0, 1) that generates minority class sam-
ples at a rate of approximately 1

R − 1, R = positive samples
negative samples . The process of SMOTE can be

summarized as follows:

1 Find the minority class C with the lowest class distribution in the datasets.
2 Randomly select a data point x from class C, which is xorigin.
3 Calculate the distance d from point xorigin to its K-nearest neighbors that belong to the

minority class.
4 Randomly generate a number (rand) between [0, 1] and multiply it by distance d to

generate a new sample point xnew centered at xorigin. This process is performed based
on the above formula.

5 Add xnew to class C.
6 Repeat steps 2–5 until the number of samples in each class is balanced.

This process is summarized in Figure 3.
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Find the minority class C with the least class distribution

Randomly select sample point x from C

Calculate the sample distance D from x to k nearest neighbor minority

Generate the random number R

Generate the sample point x'= x + r*d

Add x to class C

Balance of samples?

No

End

Yes

Figure 3. The SMOTE flowchart.

2.3. Step Three: Clear Boundary Noise

Random oversampling and SMOTE, with the addition of perturbation, ensure that
sufficient minority class samples are generated, while undersampling the majority class
corrects for the excess noise generated during both oversampling processes. Stage three
involves the use of Tomek links, which can be defined as follows:

(xi, xj) denote Tomek Links⇔ yi 6= yj ∀xk, d(xi, xk) ≥ d(xi, xj) ∀xk, d(xj, xk) ≥ d(xi, xj)

Above, d represents the distance between two samples; xi, xj are two samples of
different categories; and xk is any third sample in the dataset.

If the instance samples are labeled as Tomek links, then the pair of instance samples
are either located near the classification boundary or are noisy instance samples. The
characteristics of Tomek links allow for the deletion of samples that retain more sample
points relative to those retained through other forms of deletion in undersampling. In
Figure 4, three algorithms for selecting deleted sample points for undersampling are
compared, and the undersampling algorithms used from top to bottom are Tomek links,
ENN (edited nearest neighbors), and RENN (repeated edited nearest neighbors).

As can be seen in Figure 4, Tomek links have the shallowest degree of undersampling
of the sample set compared to the two types of undersampling, ENN and RENN. In
order to ensure the greatest sample size possible and remove useless samples, after random
oversampling and SMOTE, we employ a Tomek links algorithm that uses dynamic temporal
distance warping as a distance metric. Dynamic temporal warping (DTW) is an algorithm
used to measure the similarity of two time series. DTW allows for a certain amount of
deformation of a time series in the temporal dimension and is therefore more suitable than
the traditional Euclidean distance for measuring the similarity of time series [12,19]. The
algorithm for DTW is as follows:
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1 Construct a matrix in which each element represents the distance between two time
series at the corresponding position.

2 Start at the top left corner of the matrix and traverse the matrix along the diagonal to
the bottom right corner.

3 At each position, select the distance at which d is minimized.
4 Repeat steps 2–3 until you reach the lower right corner of the matrix.
5 The element in the lower right corner of the matrix is the DTW distance between the

two time series.

The TLDTW undersampling algorithm extended to time series data removes boundary
noise from time series data to more efficiently create balanced classes. Like Tomek links,
TLDTW also has the option of unilateral or bilateral undersampling, and bilateral TLDTW
undersampling is used in SMOTE TLDTW.
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TomekLinks's boundary
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TomekLinks

2 0 2 4

3

2

1

0

1

2

3

EditedNearestNeighbours's boundary
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1
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1

2
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1 0 1

2

1

0

1

2

3
RepeatedEditedNearestNeighbours

Figure 4. Three undersampling algorithms.
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Using SMOTE and TLDTW will output the data matrix X f ; the corresponding flow
is shown in Algorithm 1. In the Experiments section, the three-stage sampling algorithm
proposed in this paper is analyzed.

Algorithm 1 Undersampling after SMOTE algorithm

Require: X: Initialize dataset, K: number of nearest neighbors
Ensure: DTWmatrix: Dynamic time warping distance matrix, DTW: Dynamic time warp-

ing distance
if Min ≤ K then

Random Oversampling X
3: end if

T: Minority class sample number
Sample[][]: The original array of minority class samples

6: Synthetic[][]: Synthetic samples array
numattrs = Number of attributes
for i=1 to T do // Loop through all minority class samples

9: Calculate i’s K nearest neighbors, add category tags to array Nnarray
Randomly select nn from i’s K nearest neighbors
for attr = 1, 2, . . . , numattrs do Calculate

12: di f = Sample[nnarray[nn]][attr]− Sample[i][attr]
gap = rand between 0 and 1
Synthetic[new][attr] = Sample[i][attr] + gap× di f : Generate new samples

15: end for
end for
X f = Synthetic

18: if y! = target sample then
Record the Tomek Links
Record the sample indices

21: end if
Delete the samples with Tomek Links
Return X f

Decomposing a multi-class classification problem into a binary classification problem
is a common approach [20–22].

When dealing with multi-classified data, SMOTE TLDTW is consistent with the
TLDTW algorithm in its decomposition approach, using OVR (one vs. rest) decomposition,
where a few classes are randomly oversampled with respect to the set K value of SMOTE
at each decomposition. To improve the generation of samples, SMOTE is then used to
generate the sample size of the minority classes up to the number of the maximum number
of classes in the datasets.

3. Experiments

Throughout the Experiments section, this paper employs imbalanced time series
datasets, some of which have extremely scarce minority class samples. The datasets used,
evaluation metrics employed, and other benchmark algorithms used for comparison will
be elaborated upon. The experimental procedure is illustrated in the following flowchart
(Figure 5).
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multi-classification time series datasets 
with extremely few samples

Three-stage sampling algorithm

ROS with disturbance items;
 SMOTE;

 clean up the boundary noise

ENN NCR OCR RENN

metrics: Precision, Recall, F-1 score

Result  comparision

Figure 5. A research flow diagram including the data and the SMOTE TLDTW algorithm and other
comparison groups with metrics.

3.1. Data Description

Nine datasets from the UCR dataset were used in this study, and their visualizations
are shown in Figure 6 [23]. The horizontal axis in Figure 6 represents the sequence, and
the vertical axis represents the values taken from the time series. The nine multicategorical
datasets have different numbers of categories as well as disparate majority-to-minority
ratios, and the degree of data imbalance in these multicategorical time series datasets ranges
from slight to severe. Table 1 shows the imbalance rate of the multicategorical imbalanced
time series dataset. The imbalance rate (IR) was calculated using the number of samples of

the maximum and minimum majority classes IR =
Nmaj
Nmin

, where Nmaj denotes the number
of samples in the maximum majority class, and Nmin indicates the number of samples in the
minimum minority class. This formula can reflect the degree of imbalance in the dataset. Of
the nine datasets used for experiments in this study, FiftyWords has the largest number of
sample classes, 49, and the smallest number of samples, only 1. In addition to FiftyWords,
there are some minority classes in the ECG5000 dataset that have very few samples, with
the smallest minority class having a sample size of two. Their data distributions are shown
in Figure 7.

Table 1. The imbalanced rates of datasets.

Datasets Imbalance Rate

ChlorineConcentration 2.88
DistalPhalanxOutlineAgeGroup 8.57
DistalPhalanxTW 11.83
ECG5000 146.00
FiftyWords 52.00
MedicalImages 33.83
MiddlePhalanxOutlineAgeGroup 4.31
MiddlePhalanxTW 6.40
ProximalPhalanxTW 11.25
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Figure 6. Visualization of multi-classification time series data.
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Figure 7. The distribution maps of ECG500 and FiftyWords.

3.2. Metrics

In order to calculate precision, recall, and F1-score for multi-classification, the macro
average precision, recall, and F1-score shown below were used correspondingly [24]:

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

F1− score =
2× Precision× Recall

Precision + Recall
, (3)

Macro Precision =
1
N

(
N

∑
i=1

Precisionclass=i

)
, (4)

Macro Recall =
1
N

(
N

∑
i=1

Recallclass=i

)
, (5)

Macro F1− score =
1
N

(
N

∑
i=1

F1− scoreclass=i

)
. (6)
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3.3. Other Undersampling Algorithms, Classifiers, and Parameters

The four most representative undersampling algorithms, ENN, RENN, OSS, and NCR,
were selected for comparison. OSS and NCR combine the ideas of selecting deleted samples
and selecting retained samples. OSS selects retained samples through the CNN algorithm
and deleted samples through Tomek links; NCR selects the retained samples through the
CNN algorithm and deleted samples through the ENN; and NCR selects retained samples
via the CNN algorithm and deleted samples via ENN. The undersampling algorithm
selected in this paper is an algorithm in which undersampling is performed via selecting
the deleted samples. In the three-stage sampling algorithm of this paper, TLDTW is the
third step of SMOTE TLDTW, so TLDTW was also used to make comparisons.

The parameters were set according to the most stable and commonly used values for
each type of algorithm. TLDTW uses one-sided undersampling, and only the majority class
is censored. OSS uses the nearest neighbor of K = 1, K = 5 is set in SMOTE TLDTW, and the
insufficient minority class samples are randomly oversampled up to the level of K = 5; then,
SMOTE oversampling is performed, and the noisy data are cleaned using the two-sided
TLDTW. The number of nearest neighbors of NCR is set to K = 3. The ROCKET (random
convolutional kernel transform) classifier has a neural network structure but only one
hyperparameter K. Compared to the other classifiers, the impact of this hyperparameter
is relatively small; thus, it was chosen as the predictive model, with the parameter set to
500 [25].

4. Results and Discussion

Table 2 shows that the performance values of SMOTE TLDTW for the minority classes
of imbalanced time series multiclassification datasets with very small sample sizes were all
improved, with the highest precision, recall, and F1-score obtained for the MedicalImages
dataset at 0.7507, 0.7397, and 0.7311, respectively.

Table 2. The performance of SMOTE TLDTW.

Datasets Precision Recall F1-Score

ChlorineConcentration 0.6577 0.6633 0.6602
DistalPhalanxOutlineAgeGroup 0.6576 0.7178 0.6739
DistalPhalanxTW 0.4803 0.4622 0.4680
MedicalImages 0.7507 0.7397 0.7311
MiddlePhalanxOutlineAgeGroup 0.4351 0.4064 0.4070
MiddlePhalanxTW 0.4004 0.4052 0.4010
ProximalPhalanxTW 0.5583 0.5075 0.5170
ECG5000 0.6998 0.5904 0.6171
FiftyWords 0.7156 0.7261 0.6901

The F1-score of the two sampling algorithms, TLDTW and SMOTE TLDTW, for the
imbalanced multiclassified time series datasets is shown in Figure 8. Regarding the nine
imbalanced time series multiclassification datasets, TLDTW outperformed SMOTE TLDTW
with respect to two datasets, namely, DistalPhalanxOutlineAgeGroup and MiddlePhalanx-
OutlineAgeGroup, with more samples from a few classes, yielding F1-scores of 0.7746 and
0.4922, respectively; SMOTE TLDTW had higher F1-score for the remaining seven datasets.
It can be seen that TLDTW had better F1-score than SMOTE TLDTW for a few datasets
with large sample sizes, but for a few datasets with severely insufficient sample sizes, such
as ProximalPhalanxTW, ECG5000, and FiftyWords, which have only 16, 2, 1, and 6 samples,
in a few categories, such as MedicalImages and other datasets, the F1-score of SMOTE
TLDTW was better than that of TLDTW; these scores were 0.5170, 0.6171, 0.6901, and 0.7311
for the above datasets, respectively.
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Figure 8. The F1-score of the SMOTE TLDTW and TLDTW.

As shown in Figure 9, in the multiclassified datasets, the precision of SMOTE TLDTW
in the FiftyWords dataset, which has many categories and a small number of minority
classes, was much better than that of ENN, RENN, OSS, and NCR, with a precision of 0.7156.

0 0.25 0.50 0.75 1

ChlorineConcentration

DistalPhalanxOutlineAgeGroup

DistalPhalanxTW

ECG5000

FiftyWords

MedicalImages

MiddlePhalanxOutlineAgeGroup

MiddlePhalanxTW

ProximalPhalanxTW

Precision

Na
m

e

Algorithm
ENN NCR OSS RENN SMOTE TLDTW

Figure 9. The precision of 9 imbalanced time series multiple-sample datasets.

Figure 10 summarizes the recall performance of the five sampling algorithms. In the
multiclassified dataset, SMOTE TLDTW still significantly outperformed the other four
undersampling algorithms with respect to FiftyWords and MedicalImages, which have a
large number of categories and a sparse minority of categories, respectively. The F1-score
comparison results of the five sampling algorithms are shown in Figure 11, summarizing
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the results of the nine imbalanced time series datasets. SMOTE TLDTW outperformed the
other four undersampling algorithms for five datasets, namely, MedicalImages, FiftyWords,
ChlorineConcentration, ProximalPhalanxTW, and MiddlePhalanxTW. The F1-scores of the
SMOTE TLDTW algorithm for these five datasets are 0.7311, 0.6901, 0.6602, 0.5170, and
0.4010, respectively. For the nine imbalanced time series multiclassified datasets, for the
most categorized dataset FiftyWords, SMOTE TLDTW facilitated increases of 200.71%,
188.74%, 155.29%, and 85.61% relative to ENN, RENN, OSS, and NCR, respectively.

0 0.25 0.50 0.75 1

ChlorineConcentration

DistalPhalanxOutlineAgeGroup

DistalPhalanxTW

ECG5000

FiftyWords

MedicalImages

MiddlePhalanxOutlineAgeGroup

MiddlePhalanxTW
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Na
m

e

Algorithm
ENN NCR OSS RENN SMOTE TLDTW

Figure 10. The recall of 9 imbalanced time-series multiclassified datasets.

0 0.25 0.50 0.75 1

ChlorineConcentration

DistalPhalanxOutlineAgeGroup

DistalPhalanxTW

ECG5000

FiftyWords

MedicalImages

MiddlePhalanxOutlineAgeGroup

MiddlePhalanxTW

ProximalPhalanxTW
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Algorithm
ENN NCR OSS RENN SMOTE TLDTW

Figure 11. The F1-score of 9 imbalanced time-series multiclassified datasets.

5. Conclusions

In this study, we proposed a three-stage sampling approach to alleviate the imbalance
issue in multi-class time series data with extremely scarce minority samples. In the first
stage, random oversampling with disturbances was performed to increase sample size. On
this basis, in the second stage, SMOTE was employed to generate synthetic samples. The
third stage involved the identification and removal of boundary noise, retaining clearer
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boundaries without losing too much information. The combination of these three stages
provided an effective solution for these specific datasets. The experiments conducted on
nine highly skewed datasets demonstrate that our three-stage approach achieves significant
performance gains over other undersampling methods. For the FiftyWords dataset with
the most categories and fewest minority samples, our method improved macro accuracy by
200.71% and F1-score by 155.29% compared to benchmark algorithms. The results highlight
the synergistic effects of random oversampling, SMOTE synthesis, and boundary noise
removal in tackling the imbalance problem. This three-stage sampling scheme provides a
new direction for alleviating data scarcity and class imbalance in multi-class time series.

Funding: This study was partially supported by the excellent Ph.D. start-up grant of the Guangdong
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