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Abstract: Within the scope of the Symmetry journal special issue on: “The Nuclear Physics of Neutron
Stars”, we complemented the nuclear equation of state (EoS) with a hypothetical 17 MeV boson
and observed that only instances with an admixture of 30%–40% satisfy all of the constraints. The
successful EoS resulted in a radius of around 13 km for a neutron star with mass MNS ≈ 1.4M�
and in a maximum mass of around MNS ≈ 2.5M�. The value of the radius is in agreement with
the recent measurement by NICER. The maximum mass is also in agreement with the mass of the
remnant of the gravitational wave event GW190814. Thus, it appears that these EoSs satisfy all of the
existing experimental constraints and can be considered as universal nuclear equations of state.
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1. Introduction

In 2016, Krasznahorkay et al. [1] reported an anomaly in the angular correlation
of the electron–positron decay of the 1+ excited level of a 8Be nucleus at 18.15 MeV. An
enhancement at a folding angle close to 140 degrees was interpreted as a signature of decay
via the emission of a neutral boson with a mass of around mX = 17 MeV. Subsequently,
a similar effect was reported by the same group in the decay of the lower 1+ excited
state of 8Be at 17.6 MeV [2] and later in the 0− excited state of 4He at 21.01 MeV [3], at a
folding angle close to 115 degrees. Also recently, the same group investigated the 17.2 MeV
1− → 0+ transition of the 12C nucleus, resulting in an excess in the folding angle of around
155 degrees [4]. These reported observations placed the hypothetical X17 boson as a dark
matter candidate, and, in that spirit, since then, several theoretical works pursued this
claim [5,6].

However, an explanation relating this particle to the QCD vacuum was also pro-
posed [7]. In this picture, the 17 MeV particle mediates nucleon–nucleon interactions
at large distances between nucleons in the otherwise unbound cluster configuration. A
corresponding equation of state was obtained, which was also applied to neutron stars [8].

Since the assumption that the 17 MeV boson is the only carrier of nuclear interactions
is somewhat extreme, we explored the possibility of constructing a nuclear equation of
state (EoS), introducing both an ω meson with mass 782.5 MeV and a 17 MeV boson in
an admixture, which were then tested using experimental constraints on nuclear matter,
finite nuclei and heavy ion collisions. The presented analysis falls within the scope of the
Symmetry journal special issue on: “The Nuclear Physics of Neutron Stars”.

The paper is organized as follows: in Section 2, we introduce the universal nuclear
EoS, in Section 3 we present our findings and in Section 4, we discuss the results.
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2. Tolman–Oppenheimer–Volkoff Equations and the Equation of State

The structure of a neutron star is usually described using the Tolman–Oppenheimer–
Volkoff (TOV) equations (Equations (1) and (2)) based on general relativity:
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where m(r) is the total mass contained within radius r and pressure P. The only model-
dependent input is the EoS of nuclear matter, which is what makes the neutron star
an ideal laboratory for nuclear physics. The EoS of nuclear matter can be described by
relativistic mean field theory [9]. The corresponding equations for infinite symmetric
nuclear matter are:
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where ε is the energy density, P is the pressure for pure neutron matter, gs and gv are the
couplings of the scalar and vector boson, respectively, ms and mv are the rest masses of
scalar and vector bosons, κ and λ are the couplings of the cubic and quartic self-interaction
of the scalar boson, mN and m∗N are the rest mass and the effective mass of the nucleon,
ρN is the nucleonic density, kF is the Fermi momentum of nucleons at zero temperature
and γ is the degeneracy (with value γ = 4 for symmetric nuclear matter and γ = 2 for
neutron matter).

The EoSs (Equations (3) and (4)), which are regularly used with the ω-meson in the
role of the vector boson, were used in [8] for TOV calculations under the assumption that
the nuclear force is being mediated by a 17 MeV boson, as reported in the study of the
anomalous electron–positron pair production in the excited states of 8Be [1,2], 4He [3]
and 12C [4]. Here, we extended our previous work by using the assumption that both the
ω-meson and the 17 MeV boson mediate the nuclear force as vector bosons.

After writing the corresponding relativistic mean field (RMF) Lagrangian:
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with duplicate vector boson terms, we conclude that the resulting EoS will be identical to
the above, with “effective” vector boson mass:

m∗2v = q2m2
X + (1− q)2m2

ω (6)

where q is the admixture coefficient of the mX = 17 MeV boson to the total vector potential.
Depending on the value of q, the effective mass can range from mω = 782.5 MeV to 17 MeV.
We decided to test this theory using various available constraints, ranging from properties
of finite nuclei, through heavy ion collisions all the way to the neutron stars.
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3. Analysis Results

As a first step, we generated the EoS of infinite symmetric nuclear matter using values
of the vector boson effective mass corresponding to an admixture of a 17 MeV boson
ranging between 20% to 50% and choosing the values of couplings within corresponding
ranges depicted in Table 1. Each set of parameters was tested for binding energy (16 MeV)
and saturation density ρ0 = 0.15–0.16 fm−3. Successful sets of parameters were further
tested for incompressibility within the range: K0 = 250 ± 20 MeV.

Table 1. Constrained parameter sets for three EoSs with three admixtures q and incompressibility
K0 = 250 ± 20 MeV.

K0 q κ λ gv gs m∗
v [MeV] mσ [MeV]

235.95 0.3 21.50 −163.33 8.38 9.20 547.77 482.16
269.14 0.4(A) 11.00 −50.00 6.85 7.23 469.55 391.44
257.50 0.4(B) 11.50 −60.00 6.85 7.23 469.55 391.44

The parameter sets that passed the first step were used to calculate properties of
the finite nucleus 208Pb; in particular, its binding energy (1636 MeV) and neutron skin
∆RPREX2 = 0.283± 0.071 fm. The latter value is of special interest since recent measure-
ments [10] reported a value larger than the predictions of theory. The RMF code of Ring,
Gambhir and Lalazissis from CPC [11] was used for calculation. The code also uses the ρ-
meson as a mediator of the isovector interaction and thus a measure of the symmetry energy.
We kept the ρ-meson coupling identical to the NL3 EoS [12]. The NL3 EoS can reproduce
the values of the binding energy and neutron skin of 208Pb; however, the incompressibility
is unrealistically high and constraints from nuclear reactions are not satisfied.

A typical picture is shown in Figure 1, where the values of the binding energy and
the neutron skin ∆R = Rn − Rp are plotted. The main sequence does not seem to fulfill
both constraints; nevertheless, several combinations of parameters appeared to satisfy both
constraints. These were parameter sets with the 17 MeV boson admixture ranging between
20% and 40%. However, the parameter sets with a 20% admixture fail to satisfy constraints
from heavy ion collisions [13], and thus only parameter sets with an admixture of 30%
to 40% remain, signalling that there is some range of admixtures that satisfies all of the
constraints. Such an observation can have physical meaning.

Figure 1. (Color online). Binding energy (BE) of the 208Pb versus its neutron skin using 30% admixture
of the 17 MeV boson in an EoS.

For the TOV calculations, the equation of state P(ρ) needed to be expressed in
the form of polytropes. For that reason, three transition densities were defined—ρ1 =
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2.8 × 1014 g/cm3, ρ2 = 1014.7 g/cm3 and ρ3 = 1015 g/cm3—and four parameters were
calculated: three exponents of the power law polytropes Γ1, Γ2, Γ3, respectively, and the
value a0 (where a0 = log(p(ρ1)) + Γ1(log(ρ2)− log(ρ1)). In the last step, the remaining
equations of state, specifically their versions for pure neutron matter, were used as an input
to the TOV equation, and the resulting mass–radius plot is shown in Figures 2 and 3. The
three EoSs listed in Table 2 result in a radius of the neutron star of 1.4 solar masses around
13 km and a maximum mass of the neutron star of around 2.5 solar masses. The value of
the radius is in agreement with the recent measurement by NICER [14,15], and the value of
the maximum mass is in agreement with the recently reported mass of pulsar 2.35 solar
masses [16] and potentially also with the mass of the remnant of the gravitational wave
event GW190814 [17]. Thus, it appears that these three EoSs satisfy all of the existing exper-
imental constraints and can be considered as universal equations of state of nuclear matter.
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Figure 2. (Color online). The pressure as function of nuclear density for three EoSs with admixtures
of 30% and 40% of the 17 MeV boson plus the NL3 EoS. The parameters are defined in Table 2.
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Figure 3. (Color online). The mass–radius relation for three EoSs plus the NL3 with admixtures of
30% and 40% of the 17 MeV boson plus the NL3 EoS.
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Table 2. Polytropes for three EoSs plus the NL3 EoS used for the Tolman–Oppenheimer–Volkoff
calculations. The 0.3 EoS represents a 30% admixture of the X17 boson and the 0.4A and 0.4B EoSs
represent a 40% admixture with different values of parameters κ and λ.

EoS q-Admixture (%) a0 Γ1 Γ2 Γ3 K0 (MeV)

0.3 (30%) 34.703 3.741 3.118 2.497 235.95
0.4(A) (40%) 34.673 3.744 3.036 2.517 269.14
0.4(B) (40%) 34.653 3.643 3.095 2.540 257.50
NL3 (0%) 34.846 3.872 2.925 2.394 332

4. Conclusions

In summary, within the scope of the Symmetry journal special issue on: “The Nuclear
Physics of Neutron Stars”, we implemented a hypothetical 17 MeV boson to a nuclear EoS
complementing the ω meson and observed that only instances with an admixture of 30–40%
satisfy all of the experimental constraints. When applied to TOV equations, the successful
EoSs result in a radius of around 13 km for a neutron star with a mass of MNS ≈ 1.4M�
and in a maximum mass of around MNS ≈ 2.5M�. The values of our results are in good
agreement with the recent measurement reported by NICER [14,15]. The obtained value of
the maximum mass is also in agreement with the recently reported mass of a pulsar [16]
and potentially also with the mass remnant of the gravitational wave event GW190814 [17].
Thus, it appears that these EoSs satisfy all of the existing experimental constraints and can
be considered as universal EoSs of nuclear matter.
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