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Abstract: Many scientific publications that affect machine learning have set the basis for pattern
recognition and symmetry. In this paper, we revisit the concept of “Mind-life continuity” published
by the authors, testing the symmetry between cognitive and electrophoretic strata. We opted for
machine learning to analyze and understand the total protein profile of neurotypical subjects acquired
by capillary electrophoresis. Capillary electrophoresis permits a cost-wise solution but lacks modern
proteomic techniques’ discriminative and quantification power. To compensate for this problem, we
developed tools for better data visualization and exploration in this work. These tools permitted us to
examine better the total protein profile of 92 young adults, from 19 to 25 years old, healthy university
students at the University of Lisbon, with no serious, uncontrolled, or chronic diseases affecting the
nervous system. As a result, we created a graphical user interface toolbox named MODeLING.Vis,
which showed specific expected protein profiles present in saliva in our neurotypical sample. The
developed toolbox permitted data exploration and hypothesis testing of the biomolecular data. In
conclusion, this analysis offered the data mining of the acquired neuroproteomics data in the molecu-
lar weight range from 9.1 to 30 kDa. This molecular weight range, obtained by pattern recognition of
our dataset, is characteristic of the small neuroimmune molecules and neuropeptides. Consequently,
MODeLING.Vis offers a machine-learning solution for probing into the neurocognitive response.

Keywords: cognition; data-mining; data exploration; data visualization; GUI toolbox; machine

learning; molecular stratification; pattern recognition; symmetry

1. Introduction

The total protein profile acquired by capillary electrophoresis offers a practical and cost-
wise solution for obtaining a simple proteome with significant sensibility and specificity [1].
However, this classical technique lacks the discriminative and quantification power of
modern proteomic methods, i.e., mass spectrometry (not used in this experiment due to
financial matters) or simultaneous immune detection.

Hereafter and to propose salivary protein profiles [2] with a higher sensibility, bioin-
formatics applications, i.e., toolboxes, offer an integrated software environment for better
proteome analysis. They provide access to proteomic data formats, analysis techniques,
and specialized visualizations for proteograms [3]. Experion™ Automated Electrophoresis
System, i.e., the system offered straightforwardly by the manufacturer, has been used for
multiple clinical applications because of its usefulness in quickly offering a graphical visu-
alization of proteomic bands [4]. It can be used as an out-of-the-box feature for biomarker
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research. However, it lacks better tools for data visualization and exploration. Contrastingly,
high-level computing platforms allow a cost-effective and tailored data analysis.

Various application tools have been developed to enable interactive data mining and
visual analytics. Examples include RapidMiner [5] and Tableau [6]. The readiness and the
limited coding efforts are significant advantages underlining these software applications.
The preference of the present study preference is to directly implement the computing
code for a more effective software adaptation to the specific experimental data processing
requirements. Different programming languages can be used to this end. For instance,
Python has received a remarkably growing interest in ML-related applications. Our choice
was to rely on MATLAB, a programming language specifically designed to analyze matrix-
based data sets, which is typically applied in the automation and standardization of image
analysis routines.

The preference for using MATLAB in the present study is to take advantage of the
functions for pattern recognition compiled in the Netlab toolbox [7,8]. This interface is a
valuable tool that can aid in the exploration, interpretation, and visualization of data in
molecular biology, i.e., proteome, transcriptome, or genome [9]. Ottman and colleagues [10]
recently used Experion™ Automated Electrophoresis System, which is an automated
platform for protein analysis that incorporates LabChip technology into an integrated
system that performs multiple electrophoresis steps in one. In this study [10], Experion™
was used to access RNA quality in combination with MATLAB numerical code for data
processing. Those tools, working together, permitted the simulation and construction
of proteomic models. Likewise, Hou and colleagues [11] have used Cytoscape™, a data
visualization bioinformatics tool combined with MATLAB scripts, for data mining and to
analyze interactome networks, i.e., the interaction between proteins. Similarly, to optimize
the analysis of the numerous data generated by the Experion™ system, we wrote an
algorithm using the programming platform MATLAB for data visualization, exploration,
and hypothesis-driven biomarker research. Researchers at SalivaTec Laboratory, have
recently proposed bioinformatics solutions [12,13] to address the main problem of this
study. Hence, this approach aims (i) to complement the already published results and
(ii) to address other specific difficulties, i.e., profiling mental health. The use of total protein
profile electropherogram has been scarcely used in the study of mental health due to their
limitative discriminative and quantification power. Indeed, only a few investigations
propose it, e.g., Sultana and colleagues [14].

Symmetry between Psychological and Total Protein Profiles

Symmetry is still a central concept in natural sciences [15,16]; furthermore, its impor-
tance for translational neuroscience is similarly essential. In a conceptual framework, this
paper tends to provide a parallel between the “Mind-life continuity” concept published
by the authors [17] and symmetry. As published by Hipdlito and Martins [17], there are
two fundamental models for understanding the phenomenon of natural life, which may
be considered theoretically asymmetrical, i.e., the symbolic thinking paradigm and the
biological organism model. One of the possible reasons for this hypothesis is that the tools
used by these paradigms allow the phenomenological aspects of experience to remain
hidden by behavioral tests and neuroimaging. With this paper, we propose a symmetrical
correlation between cognitive and electrophoretic profiles, providing a nonreductive type
of investigation of mind and life, i.e., of brain and proteins. To assess the symmetry between
the previously obtained cognitive data [17-19] and the biomolecular data published in this
paper, we advanced with a machine learning approach to perform pattern recognition of
the extensive and complex electrophoretic data.

2. Materials and Methods

This publication involves a molecular analysis through a data mining solution to
better overcome the lack of the discriminative and quantification power offered by a simple
molecular biology method, i.e., capillary electrophoresis. The data obtained by capillary
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electrophoresis is usually expressed in kDa and refers to the molecular weight (MW) of
proteins that migrate in the electrophoretic gel. In the International System of Units, kDa
(1000 Daltons) is the unified atomic mass unit, and Da is defined as 1/12 of the mass of
an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at
rest [20]. The notation MW corresponds to the sum of the atomic weight values of the
atoms in a molecule and is used in chemistry to determine stoichiometry (quantitative data)
in chemical reactions [21]. In our study, the MW is expressed in terms of kDa.

The protein MW is the sum of all protein amino acid MWs. The calculation for the MW
is based on the molecular formula of a compound, i.e., the number of each type of atom is
multiplied by its atomic weight and then added to the weights of the other atoms. In our
experiment, the electrophoretic data are presented in MW of a protein, which depends on
the size of the protein in question. MW is frequently used interchangeably with molecular
mass in electrophoresis, though technically, there is a significant definition difference.
Molecular mass is a measure of mass, and the MW is a measure of force acting on the
molecular mass. This assessment aimed to find specific and characteristic molecular profiles
in four previously determined subgroups [17]. Thus, it investigated the molecular strata of
the mental health subphenomes formerly identified and comprised a sample of 92 young
adults, from 19 to 25 years old, healthy university students at the University of Lisbon,
with no serious, uncontrolled, or chronic diseases affecting the nervous system. This study
comprises the same methodology that led to the establishment of the Neuro.SalivaPrint [12].
However, it advanced with the methods used to create a graphical user interface (GUI) for
data visualization and mining the total protein profile, named MODeLING.Vis.

The molecular data published in this study respect the principles for scientific data
management referred to as the FAIR data principles [22], i.e., Findability, Accessibility,
Interoperability, and Reusability. Henceforth, (i) the metadata unequivocally includes
the identifier of the data it designates and is registered in a searchable resource; (ii) the
GUI MATLAB code and MODeLING.Vis protocol is open, accessible, and universally
implementable, and the metadata are permanently accessible; (iii) the metadata uses
a shared language for knowledge representation and a vocabulary that follows FAIR
principles, including qualified references; and (iv) the metadata are described with accurate
attributes and released with an accessible data usage license including detailed provenance.

2.1. Data Acquisition (Experion™ Automated Electrophoresis System (Biorad®)

Once protein separation was complete, the software subtracted background noise,
identified and integrated peaks, and assigned their sizes and concentrations. Experion™
software displays all three forms of data simultaneously: Virtual gel, Electropherogram, and
Results table. SalivaTec has already validated this software for salivary protein profiling [1].
Raw data were thus analyzed with Experion™ software, which had already been used in
several profiling studies [23-25].

The data analysis workflow, starting with the raw data, included noise filtering,
baseline correction, peak detection, and integration of the peak area from sliced electro-
pherograms. Such functions are commonly used by data processing software, such as
MassHunter from Agilent Technologies or XCMS [26]. The width of each electropherogram
was defined as 0.02 m/z. On average, ExperionTM detected 1000 peaks in each saliva
sample, rounded to a decimal of a kDa. The standard deviation of the relative peak areas of
the protein-derived peaks was treated automatically by Experion™ software algorithms
and defined to 0.5 kDa. This allowed the best peak acquisition for our data. All peak
areas were divided by the area of the internal standard (relative area) to normalize the
signal intensities and to avoid capillary electrophoresis detector sensitivity bias among
multiple measurements.

2.2. Data Analysis and Processing (MATLAB Toolbox)

Once the full protein profile was acquired, we used a GUI developed in MATLAB
as a data processing and exploration tool. The accurate m/z value for each peak detected
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within the time domain was calculated with a Gaussian curve-fitting m/z domain peak. The
alignment of peaks in multiple measurements was done using an expectation-maximization
(EM) algorithm to detect representative peaks and MW range intervals. In summary,
Gaussian mixture modeling (GMM) is designed to model the data distribution with a
set of Gaussian “bell curves”. The mean and the standard deviation of each Gaussian
mixture component express the location and the width of these bell curves. Each “bell
curve” weight is an additional GMM parameter set. The fit to the data is done iteratively
by (1) tuning the weights based on the mean and the standard deviation values of each
Gaussian (Expectation step, initialization can be performed with a K-means algorithm) and
(2) relying on the computed weights to update the mean and the standard deviation values
(Maximization step); hence, the name of the EM optimization method.

Other techniques and software have been used for the same purpose [27,28] with slight
modifications. Other authors have used, for instance, the Douglas-Peucker algorithm [29].
From unit m/z electropherograms, our EM algorithm found corresponding peaks across
multiple samples and optimized the numerical parameters of the normalization function,
as already proposed by Reijenga and colleagues [30].

2.3. Software

The following pieces of software were used:

(i) Experion Imaging software (Biorad®, Hercules, CA, USA) for proteomic data
acquisition, quantification, and treatment;

(ii) MATLAB™ for data visualization and data exploration of the protein profiles. A
specific GUI was created in MATLAB™ for that purpose: MODeLING.Vis (https://doi.
org/10.5281/zenodo.7041477, accessed on 30 November 2022). The NETLAB toolbox for
MATLAB was also incorporated in MODeLING.Vis to address pattern recognition tasks [8]
and can be consulted at https://www.mathworks.com/matlabcentral/fileexchange /2654
-netlab (accessed on 30 November 2022).

3. Results and Discussion

The results and their discussion include and analyze the data acquired in:

(1) MODeLING.Vis;

(2) Neuroinflammatory and neuropeptide panel choice.

The variables analyzed are both quantitative/continuous and qualitative /nominal.

3.1. MODeLING.Vis: Development of A Protein Visualization Tool

Are there categorical differences in the protein profiles matching our mental health strata?

Could an unsupervised learning analysis find corresponding electrophoretic signatures?

Could MODeLING.Vis cluster proteins with a high discriminative power?
MODeLING.Vis is a GUI toolbox created to analyze electrophoretic data. MODeL-
ING.Vis data input/output is based on local storage, nonetheless enhancing the reusability
of our electrophoretic data. Respecting the FAIR principles [31], we emphasize improving
the ability of machines, in this case, a GUI toolbox, to automatically find and use the
electrophoretic data, in addition to supporting its reuse by individuals. Henceforth, with
the analysis proposed by this study, we supported data discovery through sound data

management and maximized the added value by formal scholarly digital publishing.

Firstly, the full raw electropherogram of the Expected Protein Profiles of the 92 neu-
rotypical young adults was obtained. Then Experion™ Imaging software exported it to
a comma-separated values file, “.csv”. This exported raw profile was treated with the
same preliminary strategy as in the pipeline oral proteome study, with the raw data of the
22 control subjects (T-1). The pipeline oral proteome study is a preliminary exploratory
study that had already been completed and published [18] and justified the rationale for this
work. This biomedical analysis methodology [18] was conducted by SalivaTec laboratory
and generated preliminary data with a sample size of 22 control subjects (T-1) and five
preliminary subjects (T-1 (before and after the experimental procedure)), for which the
total protein profiles were characterized by capillary electrophoresis. These raw data, a
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preliminary Expected Protein Profile workbook, were published as “EPPStrategyDataEx-
port” (https:/ /doi.org/10.5281/zenodo.7054406, accessed on 28 November 2022) and can
be consulted at: https:/ /tinyurl.com/EPPStrategyDataExport (accessed on 21 July 2022).
This workbook consists of six worksheets demonstrating the preliminary strategy applied
to the database—six stages were executed.

The first worksheet (first stage: Total) shows the total raw data of the 12 electrophoretic
runs performed for all the samples of neurotypical young adults.

The second worksheet (second stage: Total Reviewed) reviewed the previous one,
showing only the MW (shown in kDa) and Concentration (ng/uL) for each sample.

The third worksheet (third stage: Total Rounded) rounded the previous variables
into decimals, as we did in the Pipeline Oral Proteome Study, and added the new variable
“Order” to help sort the samples.

The fourth worksheet (fourth stage: Total Subgroups Sorted) added the following
variables: Subphenome and molecular weight’s Color and Molecular Band. A Subphenome
is a variable used to define which subgroup the sample belonged to ES = (i), the top
phenome of the Experimental group; CS = (ii) the top phenome of the Control group;
EI = (iii) the bottom phenome of the Experimental group; and CI = (iv) the bottom phenome
of the Control group. Molecular weight’s Color is a variable showing the respective RGB
color corresponding to each group. Molecular Bands is a variable that (i) sorted the rounded
MW (shown in kDa) according to a crescent kDa and (ii) showed the respective RGB color
correspondent, from which an electrophoretic run was executed.

In the fifth worksheet (fifth stage: Total Clustered), in the first part, the variable
MolecularBands was repeated according to the number of electrophoretic runs detected
(MolecularBandsRep). Then, in the second part, the variable MolecularBandsRep was col-
ored according to the sample’s subgroup using the algorithm “Excel VLOOKUP Function”.
This fifth stage originated the variable MolecularBandsSubgroups.

In the sixth worksheet (sixth stage, named “EPPStrategyDataForMOdeLINGVis”),
the preliminary final database is shown, which is a triple-entry table. This worksheet
used the previously acquired variables (Sample Number; Molecular Bands Subgroups;
Concentration (ng/pL)) to create the final table.

Subsequently, this preliminary final database, the “EPPStrategyDataExport” database,
was treated to be imported to MATLAB.

First, the section: “Present in the following subphenomes” was added, which com-
prised binary variables (present/absent) to identify in which subgroup the Molecular Bands
were present. Secondly, the preliminary triple entry table was added to the Molecular
Bands Summary for each Subject (ex: D01309).

This final full raw electropherogram was published as “ExportForMOdeLINGVis”
(https://doi.org/10.5281/zenodo.7054551, accessed on 26 November 2022) and can be
consulted at: https:/ /tinyurl.com/ExportForMOdeLINGVis (accessed on 8 August 2022).
Lastly, the database was implemented in the MODeLING.Vis toolbox and the variables
were imported into arrays. Those arrays indexed a linear matrix of the variables: Molecular
Bands Subgroups (kDa) and Concentration (ng/pL) of each sample (subject).

One of the limitations of exploring the data with Experion Imaging software (Biorad®,
Hercules, CA, USA) was its incapacity for generating MW intervals and clustering the sub-
jects according to them. Therefore, we developed a toolbox for unsupervised /supervised
machine learning, MODeLING.Vis, and assigned it a https://doi.org/10.5281/zenodo.70
41477 (accessed on 24 November 2022). The GUI MATLAB code, used in our toolbox, is
accessible online (https://www.limmit.org/uploads/2/6/8/4/26841837 /modeling.vis.zip
(accessed on 8 August 2022)), in the LIMMIT laboratory, Faculty of Medicine, University of
Lisbon website, as a fr)ee and open-source MATLAB toolbox.

To start the GUI MATLAB code, follow the instructions provided by the video tutorial
(https:/ /doi.org/10.5281/zenodo.7337428, accessed on 30 November 2022) and use the
provided electrophoretic dataset “ExportForMOdeLINGVis”, i.e., protLabled.xls on the
video tutorial.
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On the MATLAB prompt, write:

>> cd C:\...\code (i.e., where the code is unzipped)

>> addpath(genpath(’./"))

>> limmitGui

MODeLING.Vis includes three separate phases: (i) Data Visualization, (ii) Data Explo-
ration, and (iii) Data Mining.

The first objective of (i) Data Visualization is to transform the independent continuous
variable of MWs into molecular intervals through an algorithm based on the EM scheme
to fit a Gaussian mixture model to the data in a maximum likelihood framework. The
soundness of this computational method acknowledges various bioinformatics applications,
with specific reference under the hypothesis of hidden variables underlying the observed
features [32].

The algorithm comprises not only the EM component but a definition of other func-
tions to set concentration (ng/uL) thresholds and the quantity of MW intervals (kernels)
of interest.

The number of kernels can be set to the number of isolated local maxima from visual
data inspection. MODeLING.Vis permits overlaying the GMM fitting curve with the data
distribution. If a local maximum has not been captured by a Gaussian component, then a
new kernel can be added to the mixture. The mixture can be so defined within a few trials as
part of the interactive data processing capabilities of MODeLING.Vis. It can also be possible
to terminate the inclusion of new Gaussians once the data likelihood reaches a saturation
point. It is, however, noted that the mixture definition through the visual identification of
local maxima has been found very effective in the scope of the present work.

As shown in Figure 1, the number of kernels (Gaussian components) was set to 13
because it was the best algorithm to treat our protein profile and the dispersion in our MW.
Furthermore, this application was designed to import from other databases other than
human salivary electropherograms and had already been positively tested.

The possibility of defining the number of kernels gives the researcher control over the
data exploration of his specific dataset. It does not limit it to the constraints of restricted
unsupervised machine learning.

We wanted to find and compare among the four subgroups for our specific data and
the number of fixed intervals; thus, we defined it as 13 kernels. This decision provided us
with the following significant (p < 0.05) intervals of MW:

(A) [9.1,9.8] kDa;

(B) [9.8;10.3] kDa;

(C) [10.3;13.7] kDa;

(D) [13.7;17.5] kDa;

(E) [17.5;21.1] kDa;

(F) [21.1;24.7] kDa;

(G) [24.7;36] kDa;

(H) [36;42.6] kDa;

(I) [42.6;51.5] kDa;

(J) [51.5;65] kDa,;

(K) [65;77] kDa;

(L) [77;149.7] kDa.

Similarly, these intervals are consistent with the ones discovered by the visual analysis
of the capillary gels and quantitative electropherograms. Moreover, these intervals are
equally compatible with those found in the preliminary study of the 22 control subjects.

Hence, (a) the major density of protein peak dispersion—{12;18] kDa and [43;66] kDa—was
statistically and relevantly subdivided into:

(C) [10.3;13.7] kDa;

(D) [13.7;17.5] kDa;

(E) [17.5;21.1] kDa;

(I) [42.6;51.5] kDa;
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(J) [51.5;65] kDa.

Similarly, (b) the minor density of protein peak dispersion—[20;40] kDa and [70;145]
kDa—was statistically and relevantly subdivided into:

(F) [21.1;24.7] kDa;

(G) [24.7;36] kDa;

(H) [36;42.6] KDa;

(K) [65;77] kDa;

(L) [77;149.7] kDa.

From this analysis, a new range of density of protein peak dispersion was discovered
in the lower molecular range, which offered significant relevance to our specific molecular
data dispersion—(c) the lower MW density protein peaks:

(A) [9.1,9.8] kDa;

(B) [9.8;10.3] kDa.

All data visualization and analysis are offered as an easy access tool for the researcher,
who may update his proteomic dataset and evaluate how the proposed solution reflects
her/his data and hypothesis, as shown in Figure 1.

- >

A) [9.1:9.8]kDa
B) [9.8,10.3)kDa

N. of cases

Intervals definition
File name C:\hemetdalimondiprojecte\limmitidata\protLabledFinal xiz

C) [10.3;13.7]kDa
D) [13.7;17.5]kDa
E) [17.5;21.1kDa
F) [21.1;24.7]kDa

13 Kernels Compute

Total Protein Profile ©) 247301z
H) [36;42.6]kDa
1) [42.6;51.5]kDa

J) [51.5:65]kDa

K) [65:77]kDa
L) [77;149.7)kDa

* * Weighla[E:(Da] * = "
Figure 1. MODeLING.Vis Data Visualization: use of the MODeLING.Vis with EM iteration, de-
limiting the concentration (ng/uL) thresholds and the quantity of MW intervals (kernels = 13). It
provides the identification of the following significant (p < 0.05) intervals of MW: (A) [9.1,9.8] kDa,
(B) [9.8;10.3] kDa, (C) [10.3;13.7] kDa, (D) [13.7;17.5] kDa, (E) [17.5;21.1] kDa, (F) [21.1;24.7] kDa,
(G) [24.7;36] kDa, (H) [36;42.6] kDa, (I) [42.6;51.5] kDa, (J) [51.5;65] kDa, (K) [65;77] kDa, and (L)
[77;149.7] kDa.

Subsequently, our GUI provided us with (ii) Data Exploration for hypothesis setting
and testing. The toolbox was designed to explore not only one type of dataset but also
integrate other datasets acquired for the same sample of subjects. As it is, the researcher
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can feed multiple clinical and molecular datasets: e.g., clinical evaluations, genomic data,
immune detection data, etc.

An additional feature of the toolbox allows for the following:

(a) Integration of multiple omics datasets;

(b) Visual access to explore all the subject information, in particular, and the whole
sample, in general.

This approach (a) allows the researcher to conduct better her/his multimolecular
approaches in datasets (which tend to be multiple) and (b) addresses a possible solution for
the increasingly prominent data characteristics of omics methods.

Moreover, as shown in Figure 2, the researcher can define the following;:

(a) Colors;

(b) Type of symbol;

(c) Size for the clustering of subgroups.

T0
“9%)9 .
L] ° . o
8
- .
.
(]
.
- .
L
[}
[ ]
g [ ]
z L]
4 MODELING.Vis &
T u
Oh A ~
[ ]
Intervals definition
File name C:\home‘dalimondiprojects\immifidata\protLabledFinal xls
13 Kernels  |Compute
Data visualization °
File name | C:\nome\dalimond\projects\immitidata\protLabledFinal xis,
expSup | Symbol |8 Size |10
expinf
ctsup coor [ [eer0s0160720
clrinf Visualize this dataset 18t PC 2nd PC
Use these dataset to compute PCA
] Use these data for pattern analysis
Groups (Subphenomes)
®T0 OT OT-To 2500 |Threshold  |Visualize| .
= expSup = Experimental Top = Self Awareness
Log = explnf = Experimental Bottom = Reflective Self
limmit==User selected data file:t1 limmit A 0 = = 1
iyt ctrSup = Control Top = Self Consciousness
w

Figure 2. MODeLING.Vis Data Exploration TO: an exploration of the electrophoretic dataset for T0,
defining the threshold to 2500 ng/uL. Experimental Top is shown in red, Experimental Bottom is
shown in green, Control Top is shown in blue, and Control Bottom is shown in yellow. Data clusters
in only two PCA components are represented. A small but not significant (p > 0.05) separation of the
Experimental Top (red square) and Control Bottom (yellow circle) subgroups are presented.

This configuration eases the identification of specific clusters and makes hypothesis
testing more visible. In our study, we created a solution to import T0, T1, and A (T1 — T0)
datasets and defined the supervised search of the four subgroups. In this part of the data
mining, we wanted to feed the algorithm with a specific classification to learn and recognize
the four specified labels, which are our subgroups. Moreover, we created the threshold
variable for the independent variable (in the case of the electrophoretic data: concentration
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in ng/pL). The threshold allows the researcher to define how many subjects she or he
wants to plot according to the T0, T1, and A (T1 — T0) intergroup variability or effect size.

Intergroup statistical testing is performed by simple principal component analysis
(PCA), as the data that is routinely fed into the toolbox and its algorithms need an orthog-
onal linear transformation, which projects the data into a new coordinate system with
a reduced number of dimensions, hence allowing for the visualization and interpreta-
tion of the data. In Figure 2, the data exploration of our electrophoretic dataset for TO in
MODeLING.Vis is shown. As mentioned, we had the option to define the threshold to
2500 ng/ puL because it better fits our data. Then, we set the analysis to TO and chose the
Data Visualization of our electrophoretic data (“ExportForMOdeLINGVis”) and the inter-
val definition acquired before. Finally, we defined colors and symbols for our subgroups.
This analysis shows data clusters in only two PCA components and a small, but not very
significant, separation of the Experimental Top (red square) and Control Bottom (yellow
circle) subgroups.

In Figure 3, the data exploration of our electrophoretic dataset for T1in MODeLING.Vis
is shown. The same parameters were set. This data exploration presents data clustering in
three PCA components, and there is a more relevant separation of the Experimental Top
(red square) and Control Bottom (yellow circle) subgroups (when compared to T0), which
is not visually perceived.
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Figure 3. MODeLING.Vis Data Exploration T1: an exploration of the electrophoretic dataset for T1,
defining the threshold to 2500 ng/pL. The Experimental Top is shown in red, Experimental Bottom is
shown in green, Control Top is shown in blue, and Control Bottom is shown in yellow. Data clusters
in three PCA components are represented. A more relevant separation of the Experimental Top (red
square) and Control Bottom (yellow circle) subgroups (when compared to T0) is presented.

However, this separation is more evident in Figure 4, which shows the data exploration
of our electrophoretic dataset for (T1 — TO).
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Figure 4. MODeLING.Vis Data Exploration T1 — T0: an exploration of the electrophoretic dataset
for T1 — TO, defining the threshold to 2500 ng/pL. Experimental Top is shown in red, Experimental
Bottom is shown in green, Control Top is shown in blue, and Control Bottom is shown in yellow. Data
clusters in three PCA components are represented. A significant separation (p < 0.05) of the square
symbols (Experimental subgroups), distributed along the top 2PCA and 3PCA axis, and the circle
symbols (Control subgroups), distributed along the bottom 2PCA and bottom 1PCA axis, is presented
with statistical relevance. As an example of the statistical separation between the electropherograms
of each subgroup, the image shows a comparison of the electrophoretic profiles of the subject D01383
(Experimental Top subgroup (1)), subject D01371 (Experimental Bottom subgroup (3)), subject D01337
(Control Top subgroup (2)) and subject D01319 (Control Bottom subgroup (4)).

Likewise, the same parameters were set. Nevertheless, in this analysis, data clusters in
three PCA components and a significant separation of our cluster of subjects, i.e., clustering
in subgroups.

The square symbols (Experimental subgroups), distributed along the top 2PCA and
3PCA axis, are separated from the circle symbols (Control subgroups), spread along the
bottom 2PCA and bottom 1PCA axis, with statistical relevance. This approach offers
confident consistency for an electrophoretic profile intergroup separation in between the
Experimental and Control groups.

Additionally, but not so significantly, there is a separation of the red squares (Exper-
imental Top group) and green squares (Experimental Bottom group), alongside PCA1,
and of the blue circles (Control Top group) and yellow circles (Control Bottom group),
also alongside PCA1. This offers some consistency for the possibility of an electrophoretic
profile separation in between the intra-Experimental electropherograms (Experimental sub-
groups) and the intra-Control electropherograms (Control subgroups). However, this elec-
trophoretic profile separation is not statistically relevant for a defined threshold A (T1 — T0)
and effect size of 2500 ng/pL.
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More significant is the separation and clustering, both alongside the 3PCA components,
between (i) the red squares (Experimental Top group) vs. the blue circles (Control Top
group) and (ii) the green squares (Experimental Bottom subgroup) vs. the yellow circles
(Control Bottom subgroup).

This data exploration offers some consistency for a possible electrophoretic profile
separation between (i) the Experimental Top and Control Subphenomes and (ii) the Experi-
mental Bottom and Control Subphenomes.

This clustering lacks proper hypothesis testing to evaluate the exact concentration
(ng/uL) of the A (T1 — T0), which is the main limitation of this analysis.

Notwithstanding, it may offer the opportunity to define a consequent hypothesis,
i.e., to better profile and stratify substrata in our total electrophoretic data. Therefore, the
subsequent data analysis was executed as a reasonable solution for this limitation.

The toolbox has the objective of (iii) Data Mining the individual molecular profile
(subject to subject/sample to sample) and comparing it to the whole sample (neurotypical
young adults).

As referred, it was designed to integrate multiple clinical and molecular datasets.

As such, in Figure 4, we present an example of the comparison of four subjects after
the phases of the GUI toolbox:

(i) Data Visualization;

(ii) Data Exploration;

(iif) Data Mining,.

We show, fittingly, subject D01383 (Experimental Top subgroup (1)), subject D01371
(Experimental Bottom subgroup (3)), subject D01337 (Control Top subgroup (2)), and
subject D01319 (Control Bottom subgroup (4)).

These four subjects (with the same colors) are the most significant subjects of each
subgroup and represent the specific and characterizing stratum of the electrophoretic profile
of their subgroup.

From the molecular intervals found, those which are more relevant are the red (No. 2)
and the pink (No. 4) ones, which correspond to (B) [9.8;10.3] kDa and (D) [13.7;17.5] kDa in
the lighter MW range (Figure 1).

Additionally, with a correspondent relevance are the purple (No. 9) and light blue
(No. 10) ones, which correspond to (I) [42.6;51.5] kDa and (J) [51.5;65] kDa in the heavier
MW range (Figure 1).

The A (T1 — T0) ng/uL of the (B) [9.8;10.3] kDa and (D) [13.7;17.5] kDa molecular
weight range is for:

(1) Subject D01383 (representing the Experimental Top group) = 50 ng/uL and
—900 ng/uL;

(2) Subject D01337 (representing the Control Top group) = —10ng/uL and —30 ng/uL;

(3) Subject D01371 (representing the Experimental Bottom group) = 600 ng/uL and
800 ng/uL;

(4) Subject D01319 (representing the Control Bottom group) = 0 ng/uL and 2000 ng/ uL.

Those MW ranges [(B) [9.8;10.3] kDa and (D) [13.7;17.5] kDa] are characteristic of
molecules that have been documented to cross the blood-brain barrier [33] (Banks, 2009).
Please note that an error variable should be considered and correspond to the lack of
accuracy offered by Experion™ analysis and the identified MW ranges. This consideration
should take this inaccuracy into account, but also the process of protein degradation
observed and well documented in saliva.

Different molecular characteristics are associated with the capacity to cross the blood-
brain barrier, a significant field of study in neuropharmacology [34,35].

However, in the interest of molecular biology, it is essential to understand those small
molecules’ physiology and biological function.

Banks [36] has described the biological characteristics of those small peptides crossing
the blood-brain barrier and correlated them to the neuropeptide response. Likewise, this
light MW [(B) and (D)] range was earlier associated with neuroinflammatory response [37].



Symmetry 2023, 15, 42

12 of 28

Still, more recently, Erickson and Banks [38] described it as part of the neuroimmune axes
of the blood-brain barriers and blood-brain interfaces.

Please note that uncertainties should be considered, which correspond to the lack of
accuracy offered by Experion™ analysis and the identified MW ranges. In addition to this
inaccuracy, the process of protein degradation observed and well-documented in saliva
should be considered.

Hence, the importance of these small peptides, detected by capillary electrophoresis
in this light MW [(B) and (D)] range, for the physiological and pathological regulation of
neurotypical/atypical subjects.

The A (T1 — TO) ng/ uL of the (I) [42.6,51.5] kDa and (J) [51.5;65] kDa molecular weight
range is for:

(1) Subject D01383 (representing the Experimental Top group) = —100 ng/uL and
Ong/uL;

(2) Subject D01337 (representing the Control Top group) = —600 ng/puL and —400 ng/puL;

(3) Subject D01371 (representing the Experimental Bottom group) = 2200 ng/uL and
2000 ng/uL;

(4) Subject D01319 (representing the Control Bottom group) = 900 ng/uL and 800 ng/ L.

Those MWs are characteristic of a group of larger systemic molecules, which have not
been documented to cross the blood-brain barrier [33] (Banks, 2009).

Hence, they are not directly relevant to our study as they are not brain-produced
proteins but indirectly important as systemic protein expression. In another oriented study
design, they could be interesting for heavier protein molecular profiling of the subjects
with systemic-produced proteins.

Specifically, this heavier MW range is essential for comprehending the role of larger
proteins and protein complexes in non-neuropsychiatric diseases.

As an example, proteins, such as alpha-1-antitrypsin, 47 kDa [39], pyruvate kinase
PKM, 58 kDa [40], and serum albumin, 69 kDa [41], are essential markers for hereditary,
metabolic, and cardiovascular diseases, respectively.

As a hypothesis for better conduction of our study and better statistical generalization
power, it is essential to quantify those lighter MW ranges, i.e., (B) [9.8;10.3] kDa and (D)
[13.7;17.5] kDa with more accurate sensibility and sensitivity.

The quantification and identification of those lighter MW ranges are imperative to
understand better what is affecting this electrophoretic profile.

However, acquiring data with the ExperionTM automated electrophoresis system
(Biorad®) offers a low capacity to discriminate which proteins reflect that stratum.

This low capacity is explained because electrophoretic patterns refer to a conjunction
of proteins that migrate to the same MW and not a specific and single protein migration,
and an error correspondent to the lack of accuracy offered by Experion™ analysis.

A better acquisition method, with higher sensitivity, sensibility, and discrimination, is
necessary to explain which proteins are changing.

Identifying those specific proteins can improve our understanding of how they influ-
ence the total protein profile in those light molecular ranges: [9.1;30] kDa.

This specific molecular range reflects the whole spectrum of peptides, peptide com-
plexes, and small proteins that migrate in electrophoresis in (c) the lower MW density
protein peaks.

For that purpose, simultaneous immune detection, with specific antibodies for specific
peptides in those MW ranges, is mandatory for adequate quantification and discrimination.

Moreover, this quantification offers a suitable possibility for multivariate hypothesis
testing of the identified peptides and proteins by immune detection.

Following the work of Banks [33,36] and the objective of our study design, immune
detection of the peptides and the small proteins implicated in the neuropeptide and the
neuroinflammatory response should be addressed.

This identification is essential for better characterization of the protein strata in this
light MW range and understanding of how they affect neurotypical young adults.



Symmetry 2023, 15, 42

13 of 28

3.2. Neuroinflammatory and Neuropeptide Panel Choice

A MODeLING.Vis analysis helped us understand which proteins are responsible for
the changes observed in the MW range [9.1;30] kDa.

The [9.1;30] kDa MW interval corresponds to small proteins like the ones already
identified in saliva by Rosa and colleagues [42] and listed in the OralCard by Arrais and
colleagues [43]:

Histatin-1, 7 kDa;

Submaxillary gland androgen-regulated protein 3B, 8 kDa;

Acyl-CoA-binding protein, 10 kDa;

Protein S100-A8, 11 kDa;

Cystatin-A, 11 kDa;

Protein S100-A9, 13 kDa;

Profilin-1, 15 kDa;

Fatty acid-binding protein, 15 kDa;

Cystatin-SA, 16kDa;

Cystatin-SN, 16 kDa;

Cystatin-S, 16 kDa;

Cystatin-C, 16 kDa;

CALMLS3, 17 kDa;

PIP, 17 kDa;

PRH1, 17 kDa;

Interleukin-1 receptor antagonist protein, 20 kDa;

Glutathione S-transf P, 23 kDa;

HSP B-1, 23 kDa;

ZG16 homol f, 23 kDa;

BPI fold-containing family A member, 27 kDa;

14-3-3 protein sigma, 28 kDa;

Kallikrein-1, 29 kDa.

The listed proteins are small enough either (i) to pass the blood-brain barrier or (ii) to
be detected in saliva.

Those proteins have not only well-known neurological functions, for instance, Cystatin-
C in amyotrophic lateral sclerosis [44], but may also be altered in neurodevelopmental
conditions, for instance, Interleukin-1 receptor antagonist protein (part of the neuroimmune
system) in intellectual disability [45].

The best four subjects of the (1) Experimental Top, (2) Control Top, (3) Experimental
Bottom, and (4) Control Bottom subgroups are plotted.

These four subjects represent the molecular profile with more significant intergroup
variability and intragroup homogeneity.

Therefore, they are the subjects more characteristic of each group and have a more
representative molecular profile.

Henceforth, we chose those four subjects of each four subgroups to perform the
following analysis. Additionally, we selected one control subject for each group.

As the objective of the following analysis was (i) to study the MW range considered for
particles passing the blood-brain barrier and (ii) to probe into the neuroinflammatory and
neuropeptide system, we chose one control subject of each subgroup with an inflammatory
disease, undergoing the same cognitive load and task.

The subjects followed the analysis already discussed in (ii) the Expected Protein
Profile Results.

The Experion™ Automated Electrophoresis System (Biorad®) analysis was repeated,
but in this case, for those five subjects (4 best + 1 control) of each group. The final objective
of this analysis was to evaluate if those five subjects should advance for simultaneous
immune detection and quantification.

We want to warn about the limitations of conducting such an analysis and hypothesis
testing.
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This nonblind analysis lacks the statistical power for generalization for the researcher,
and it would be a type 1 statistical error to act as such.

However, such an exploration is valid as an exploratory study aiming at the sole
understanding of the protein expression in this small MW range.

Therefore, the most significant protein profiles were selected. This (c) lower MW range
[9.1;30] kDa was one of the protein density peaks with more intergroup concentration
(ng/uL) difference and intragroup curve similarity.

This [9.1;30] kDa interval is known as characterizing neuroinflammatory response [46],
as well as neuropeptide response, as published in the NeuroPep database [47].

The cytokines, interleukins, and neuropeptides are small proteins that migrate in the
electrophoresis in this molecular range.

Hence, the vital role that those small neuroimmune molecules [48] and small neuropep-
tides [49] may have in neurodevelopmental conditions; e.g., autism spectrum disorder [50].

In the following pictures, two molecular ranges should be separated.

From the [9.1;30] kDa range studied, interval I. [9.1;17] kDa, corresponding to the electro-
pherogram’s first peaks, is associated with the smallest molecules of neuropeptide response.

Complementarily, interval II. [17;30] kDa corresponds to slightly larger molecules
associated with the neuroinflammatory response.

For a more accessible display, on the x-axis, we added two markers indicated in the
figures as Bioplex Th17 (Start and End). From the beginning of the x-axis to Bioplex Th17
Start, the interval is associated with the neuropeptide response.

The interval is associated with the neuroinflammatory response from the Bioplex Th17
[Start; End].

We named the markers indicatively and referred to a possible Bioplex Th17 immun-
odetection panel, which would be a good panel for understanding the peptides involved in
this MW range.

Figure 5 shows all four subgroups’ capillary gels and electropherograms of the five
chosen subjects for the neuroinflammatory and neuropeptide panel.

All subjects (from all the subgroups) in TO + T1 are plotted together, and in TO (before)
and T1 (after), the Intervention Protocol. Likewise, the capillary gel from the total four
subgroups is shown separately, in TO + T1.

In the interval 1. [9.1;17] kDa, the total four subgroups of the study showed two
protein peaks of a considerably high heterogeneity, both in the MW range and in fluores-
cence (concentration (ng/pL)), which need further investigation. Likewise, in interval II.
[17;30] kDa, the total four subgroups of the study showed one protein peak of considerably
high heterogeneity, more in the MW range variable than in the concentration variable.

This heterogeneity can also be observed in the capillary gels.

In Figure 6, it is possible to see the electropherograms, separately in T0 and T1, of the
subjects belonging only to the (1) Experimental Top Subphenome.

Five subjects were plotted. Moreover, they were also charted together in TO + T1
without the positive control for that group. The fourth graph shows TO0 + T1 for the positive
control, a subject with an ICD-10 classification: J30.1—Allergic rhinitis due to pollen and
medicated with the antihistaminergic Zyrtec.

As is shown in the first two graphs, there is considerable variability from the T1
to the TO, specifically, a slight increase in the concentration (ng/pL) in the interval I
[9.1,17] kDa and a substantial decrease in the concentration (ng/pL) in the interval II.
[17;30] kDa. These results confirm the hypotheses made previously in the MODeLING.Vis
for the A (T1 — TO) ng/ uL of the (B) [9.8;10.3] kDa and (D) [13.7;17.5] kDa MW range.

In the third graph, we can see the overall intragroup homogeneity of the concentration
(ng/uL) in the [9.1;30] kDa (the (c) lower MW range), contrastingly to the positive control,
plotted in the fourth graph, showing a significant increase in the concentration in this
MW range.

Specifically, this augmentation is visible in interval I. [9.1;17] kDa; this augmentation
is visible in interval I. [9.1;17] kDa.
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In Figure 7, the same electropherograms are equally shown, but for the five subjects
belonging to (3) the Experimental Bottom Subphenome.

Neuroinflammatory and Neuropeptide Panel Choice (TO-T1 Best 5): Capillary Gels and Electrophoretogram

Control Top Experimental Bottom

7 £ T T 1 : 7
Best5 -TO all Best5- T1- All

Figure 5. Capillary gels and electropherogram profile of the selected best five subjects in all TO — T1,
all in TO, and all in T1, for the neuroinflammatory and neuropeptide panel. From each subphenome,
for both the expected protein profile in T0, after the intervention protocol in T1, and the combined
TOT1, a graphical representation is presented showing the best five capillary gels and quantitative
electropherograms for the study of the neuroinflammatory and neuropeptide panel. The intergroup
difference and the protein distribution are represented.

In this case, the fourth graph shows TO + T1 for the positive control, a subject with an
ICD 10: J30.9—Allergic Rhinitis, unspecified and nonmedicated.

As is shown in the first two graphs, there is considerable variability from T1 to TO,
specifically a significant increase in the concentration (ng/pL) of both intervals I. [9.1;17]
kDa and II. [17;30] kDa. In this electropherogram, the atypical protein profile is due to the
positive control in the [9.1;17] kDa, and is better demonstrated in the fourth graph, showing
a significant decrease in the concentration in this MW range.

These results also confirm the hypothesis made previously in the MODeLING.Vis for
the A (T1 — TO) ng/uL of the (B) [9.8;,10.3] kDa and (D) [13.7;17.5] kDa MW range.

In the third graph, we can also see the overall intragroup homogeneity of the concen-
tration in the [9.1;30] kDa, contrasting with the positive control, plotted in the fourth graph.

Figure 8 shows the five subjects belonging to the (2) Control Top Subphenome. In this
situation, the fourth graph shows TO0 + T1 for the positive control, a subject with an ICD-10:
J45—Asthma, nonmedicated.
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Neuroinflammatory and Neuropeptide Panel Choice (TO-T1 Best 5): Experimental Top Subphenome Electrophoretogram

Figure 6. Electropherogram profile of the selected best five subjects from the Experimental Top sub-
group, in TO, in T1, in TO — T1 without positive control, and in TO — T1 with only positive control, for
the neuroinflammatory /neuropeptide panel. For the expected protein profile in T0, after the interven-
tion protocol in T1, the combined T0T1 without the positive control, and the combined T0T1 of only
the positive control, a graphical representation is presented showing the best five quantitative electro-
pherograms of the Experimental Top subgroup to study the neuroinflammatory and neuropeptide
panel. Through this figure, the intragroup difference between T0 and T1 is demonstrated.

Neuroinflammatory and Neuropeptide Panel Choice (TO-T1 Best 5): Experimental Bottorn Subphenome Electrophoretogram

Figure 7. Electropherogram profile of the selected best five subjects from the Experimental Bottom
subgroup, in T0, in T1, in TO — T1 without positive control, and in TO — T1 only positive control,
for the neuroinflammatory/neuropeptide panel. For the expected protein profile in TO, after the
intervention protocol in T1, the combined TOT1 without the positive control, and the combined
TOT1 of only the positive control, a graphical representation is presented showing the best five
quantitative electropherograms of the Experimental Bottom subgroup to study the neuroinflammatory
and neuropeptide panel. Through this figure, the intragroup difference between TO and T1 is
demonstrated.
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Neuroinflammatory and Neuropeptide Panel Choice (TO-T1 Best 5): Control Top Subphenome Electrophoretogram

Figure 8. Electropherogram profile of the selected best five subjects from the Control Top subgroup,
in TO, in T1, in TO — T1 without positive control, and in T0O — T1 only positive control, for the
neuroinflammatory/neuropeptide panel. For the expected protein profile in T0, after the intervention
protocol in T1, the combined TOT1 without the positive control, and the combined TOT1 of only
the positive control, a graphical representation is presented showing the best five quantitative
electropherograms of the Control Top subgroup to study the neuroinflammatory and neuropeptide
panel. Through this figure, the intragroup difference between T0 and T1 is demonstrated.

As is shown in the first two graphs, there is considerable variability from T1 to TO,
specifically a slight decrease in the concentration (ng/upL) in both intervals I. [9.1;17] kDa
and II. [17;30] kDa.

These results also confirm the hypothesis made previously in the MODeLING.Vis for
the A (T1 — T0) ng/uL of the (B) [9.8;10.3] kDa and (D) [13.7;17.5] kDa MW range. In the
third graph, we can see the overall intragroup homogeneity of the concentration in the
[9.1;30] kDa.

Additionally, the electropherogram of the positive control, plotted in the fourth graph,
shows a baseline control concentration in interval II. [17;30] kDa, characteristic of the
neuroinflammatory response.

Figure 9 shows the five subjects belonging to the (4) Control Bottom Subphenome. In
this condition, the fourth graph shows T0 + T1 for the positive control, which was a subject
with an ICD-10: J30.9—Allergic Rhinitis, unspecified, and medicated with a leukotriene
receptor antagonist (Singulair®), a corticosteroid (Pulmicort®), and a long-acting 32-agonist
(Simbicort®).

As shown in the first two graphs, there is considerable variability from T1 to TO,
specifically the significant concentration increase (ng/ L) in interval II. [17;30] kDa.

These results also confirm the hypothesis made previously in the MODeLING.Vis
for the A (T1 — TO0) ng/uL of the B) [9.8;10,3] kDa (which remains constant) and D)
[13.7;,17.5] kDa (which augments considerably) MW range. The third graph shows a
slight overall intragroup heterogeneity in the [9.1,30] kDa MW range compared to the
other subgroups.

This heterogeneity is due to the lower clinical score characterizing this subgroup [17]
and, therefore, lower specific molecular print in this MW range.
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The electropherogram of the positive control, plotted in the fourth graph, shows a
baseline control concentration in interval II. [17;30] kDa, which is also characteristic of the
neuroinflammatory response.

Neuroinflammatory and Neuropeptide Panel Choice (TO-T1 Best 5): Control Bottom Subphenome Electrophoretogram

T0-T1 Positive Control

Figure 9. Electropherogram profile of the selected best five subjects from the Control Bottom sub-
group, in TO, in T1, in TO — T1 without positive control, and in TO — T1 only positive control, for the
neuroinflammatory/neuropeptide panel. For the expected protein profile in T0, after the intervention
protocol in T1, the combined TOT1 without the positive control, and the combined TOT1 of only the
positive control, a graphical representation is presented showing the best five quantitative electro-
pherograms of the Control Bottom subgroup to study the neuroinflammatory and neuropeptide
panel. Through this figure, the intragroup difference between T0 and T1 is demonstrated.

After this analysis, we postulate that those five subjects should be chosen to advance
for a sequential phase of our molecular screening: simultaneous immune detection.

The excerpt of the research outline (Figure 10) systemizes the experimental study and
helps the reader understand this paper’s sequence and integration in the overall experiment
conducted by the authors.

1 Tool Develop-

Molecular GU 00l box evelop
D ment in Neurotypical

Stratification Young Adults

Figure 10. Research outline: molecular stratification. Graphical scheme presenting the integration
of this paper in the overall experiment conducted by the authors for molecular stratification of a
neurotypical sample. “GUI Toolbox Development In Neurotypical Young Adults” thus considers the
same methodology that led to the establishment of Neuro.SalivaPrint. It advanced with a stratification
stage by data visualizing and data mining of 92 stratified subjects.



Symmetry 2023, 15, 42

19 of 28

4. Discussion

The total protein profile acquired usually lacks adequate resolution for analyte quan-
tification compared to high-throughput techniques, such as nanoliquid chromatography-
tandem mass spectrometry. Indeed, acquiring data with the Experion™ automated elec-
trophoresis system (Biorad®, Bio-Rad Laboratories, Inc., Hercules, California, USA) offers a
low capacity to discriminate individual proteins and specific MW bands. This low capacity
influences the electrophoretic patterns, characterized by a conjunction of proteins that
migrate to the same MW and not to a particular and single protein migration.

Moreover, the electrophoretic bands usually have an associated error corresponding to
the lack of accuracy offered by Experion™ analysis; and what is seen in a MW band should
account for this inaccuracy related to the instrument and measure. Consequently, for the
reasons presented above and to ensure precise quantification and discriminative power, a
multiplexed simultaneous immune detection was proposed and used in a sequential phase
of this experiment.

Henceforward, and considering the limitations of this electrophoresis-based technique,
we proposed using a MATLAB GUI toolbox to set viable hypotheses and to design possible
conclusions. The objective was not to compare an electrophoresis-based approach with
high-resolution methods such as mass spectrometry (accurate proteomics data), which
would not be reliable, but risky and unfounded.

Taking this concern with much care, we combined, ExperionTM and MATLAB, offering
a more effective methodological strategy. This strategy was only used as an initial qualita-
tive top-down approach for stratifying four molecular profiles in neurotypical subjects.

Previous mental health stratification in this experiment had already obtained those
profiles. That mental health stratification permitted the choice of the subjects that better
represented each subgroup and, therefore, were potentially better candidates for a specific
protein profile. Combined Experion™ and MATLAB analysis advanced with the possi-
bility of further characterizing cognition with a preliminary low-end molecular technique.
Moreover, this analysis also offered the consequent hypothesis of quantifying those four
mental health-molecular profiles with better discriminative power.

We stress that as descriptive research, the central hypothesis of this study was centered
mainly on its methodology strategies, to take full benefit from the limited financial funds for
the experiment and the restraints of using an electrophoresis-based technique versus high-
resolution methods such as mass spectrometry. With this chief limitation in mind, primary
outcomes were already attained in a previous publication: (i) the pipeline identification of
neuronal-saliva protein profiles and (ii) the protein stratification of neurotypical young
adults. With this publication, we concluded (iii) the GUI toolbox development for data
visualization of those strata, and (iv) the selection of subjects advancing for quantification.

MODeLING.Vis permitted adequate data mining of limited neuroproteomics datasets.
This data mining consisted of both unsupervised /unlabeled and supervised/labeled ma-
chine learning. Initially, the subjects were imported, and no labels were given to the
learning algorithm, leaving it on its own to find structure in its input. Later, in a posterior
phase of the data mining, the subjects were labeled to compare individual subjects’ protein
concentration (ng/uL) in specific MW intervals.

Initially, all the subgroups’ protein profiles, comprising all electrophoretic runs, were
systematically and randomly uploaded to the algorithms. The algorithms then performed
an exploratory data analysis, discovering hidden patterns in protein profile data. A first
dataset, i.e., total protein profiles, was inputted for feature learning of functional protein
network profiles.

Until now, as a limitation, only capillary electrophoresis data had been explored, but
this GUI toolbox is also designed for other datasets, for instance, multiplex simultaneous
immunodetection. Likewise, this GUI toolbox allows further integration of the acquired
psychological data, the intersubjective mental health profile [17]. Only relying on standard
methods for analyzing those databases (e.g., assessment of the covariance between vari-
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ables) might provide suboptimal results due to the high number of measured quantities
and possible nonlinear relationships [51] among them.

The datasets generated by this full cognitive-molecular study should optimally be
intercorrelated in a phenomic multidata approach. Hence, our data mining solution was
planned to discover and model patterns, for instance, the EM algorithm used to find the
MW intervals shown in Figure 11.
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Figure 11. Protein profile Experion™ data acquisition and algorithm development. Data mining
solution planned to discover, and model patterns used to find the MW intervals in the neurotypical
sample. A user-friendly software environment was developed to enable a thorough exploration of
the information embedded in the capillary electrophoresis database.

Data visualization techniques were adopted for the molecular profiles” interactive
query (Figure 12). This interactive query of the acquired Experion™ Protein Profile data
offered the chance to check for functional network profiles.
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Figure 12. GUI toolbox: MODeLING.Vis is used for data mining of different neuroproteomics
datasets. This data mining consisted of both unsupervised/unlabeled and supervised/labeled
machine learning.
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Moreover, it also showed the whole effort of the authors to find differences in the
electrophoretic separation by Experion™ in the different samples, facing the limitations of
a system that prevents the extraction of direct and solid conclusions.

Finally, and for that matter, data classification and regression algorithms are being
devised for operational applications, such as recognizing a molecular state or profile from
the analysis of salivary samples. Expectantly, the same regression algorithms will also
be used in the future to recognize a mental health state or trait from the analysis of the
molecular profiles.

To summarize, three central components were defined: data visualization, data explo-
ration, and the development of algorithms. These components encompassed a data mining
toolbox, which aimed to:

(i) Implement and test visualization software that allowed the interactive exploratory
of information content embedded in multilayered and multisource data;

(ii) Service the scientific community by distributing, instructing, and supporting
software users, i.e., researchers and clinicians.

The results of this investigation moderately emphasized the molecular strategy we
developed for identifying functional networks as a complementary and alternative method
in neurobiology.

We applied the FAIR data principles to the electrophoretic data of the pipeline oral
proteome study and the full approach on the 92 neurotypical young adults. Likewise,
FAIR principles were maintained in the data mining by the expectation-maximization (EM)
algorithm and the GUI toolbox.

The digital research objects [52], from the electrophoretic data to the analytical pipelines
offered by MODeLING.Vis, ensured transparency, reproducibility, and reusability.

Hence, a follow-up molecular study of a selected sample is proposed for further
proteomic explorations and quantification. This follow-up study can better characterize the
molecular substrates of the neurotypical development of young adults, as it probes into the
neuropeptide and neuroinflammatory response with a high-resolution method.

For now, and with the limited internal validity offered by low-end techniques, we can
only conclude that the neurotypical phenome is a complex result of the intercorrelation of
mental health [17] and the consequent expression of protein networks.

Those protein networks, generated in the brain, may be detected in saliva and usually cor-
respond to small neuroimmune molecules or neuropeptides crossing the blood-brain barrier.

Finally, the [9.1;30] kDa molecular weight range should be better quantified when
studying a neurotypical sample because it offers a possible solution for probing into the
neurocognitive response.

Please note that an error variable should be considered and correspond to the lack of
accuracy offered by ExperionTM analysis and the identified MW ranges.

These considerations should take this inaccuracy into account, but also the process of
protein degradation observed and well documented in saliva.

MODeLING.Vis: FAIR Principles for Scientific Data Management, Video Tutorial, and
Stand-Alone Executable

In analyzing our digital objects, i.e., proteomic data, we used a well-curated and
deeply integrated UniProt repository [53]. UniProt is constantly curating and capturing
high-value reference datasets on proteins and fine-tuning them to enrich scholarly outputs,
delivering comprehensive tools to access their dynamic protein data.

Moreover, we also shared our data with the community by using the open globally-
scoped repository named Zenodo (http://zenodo.org/ (accessed on 23 November 2022))
for “EPPStrategyDataExport” (https://doi.org/10.5281/zenodo.7054406, accessed on 20
November 2022), “ExportForMOdeLINGVis” (https://doi.org/10.5281/zenodo.7054551,
accessed on 22 November 2022), and MODeLING.Vis (https://doi.org/10.5281/zenodo.70
41477, accessed on 21 November 2022).
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In our study’s descriptive research, Zenodo was used as a preliminary repository of
data, but to avoid the decentralization of our datasets and the reusability problem, in the
future, we will publish our explanatory analysis in special-purpose repositories for the life
sciences, such as Genbank [54], Worldwide Protein Data Bank [55], or UniProt.

MODeLING.Vis was designed as an attempt to perform interactive data analyses.
Given the software’s effectiveness in extracting valuable information from the experimental
data presented in this study, the applied methods and principles have been presented
together with the analysis of results, and the code has been shared.

Note, however, that MODeLING.Vis is not commercial, which constrains efforts
behind scientific investigations. In order to provide a demo/user manual for the MODeL-
ING.Vis toolbox for users” convenience, we created a video tutorial demonstrating how to
download, install, run, and operate MODeLING.Vis.

The practical video tutorial can be accessed online and was attributed a https://doi.
org/10.5281/zenodo.7337428 (accessed on 30 November 2022). The electrophoretic dataset
(protLabled.xls) is published together with the tutorial for ease of access.

Concerning the creation of a MODeLING.Vis stand-alone executable or compiled .exe
file from the MATLAB code file, it requires additional efforts on the users’ side, such as
downloading and installing a run-time MATLAB library.

In its turn, this could create drawbacks when software updates are needed, and com-
patibility between the runtime library and the executable is required. Henceforth, a MOD-
eLING.Vis stand-alone executable would go behind the possibilities of the present study.

5. Conclusions

The paper tested a symmetric correlation between the psychological data offered by
the mental health stratification already published by the authors [17-19] and the molecular
data offered by capillary electrophoresis.

To better correlate both mental health and total protein profiles, a GUI toolbox
was developed—MODeLING.Vis (Figure 13,https://doi.org/10.5281/zenodo.7041477, ac-
cessed on 21 November 2022).

e Address the
problematic of the
low discriminative
power of capillary
electrophoresis

¢ Graphical User
Interface toolbox

MODeLING.Vis A Data
Visualization

.. B. Data
C. Data Mining Exploration

¢ Hypothesis testing
of the
biomolecular data

* Acquired
neuroproteomic
data

Figure 13. MODeLING.Vis. Graphical representation of the GUI toolbox and its functions: data
visualization, exploration, and mining.
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Hence, MODeLING.Vis permitted to address the problem of the low discriminative
power of capillary electrophoresis and offered:

i. Data visualization by a graphical user interface toolbox, using expectation-maximization
(EM) iteration, which depends on unobserved latent variables.

ii. Data exploration by hypothesis testing of the biomolecular data. Moreover, the
toolbox is prepared to integrate other neuromolecular datasets.

iii. Data mining of the acquired neuroproteomics data, comparing individual molecu-
lar profiles to the whole sample.

In order to give a brief explanation of the structure of the GUI toolbox, a flow chart
(Figure 14) summarizes the ten processing steps executed in MATLAB.

GMM

Modeling the data
distribution with a set of
Gaussian bell curves

Data visualization

MODelING.Vis Fitting the data iteratively by

Data exploration and
processing by GUI (MATLAB)

6. Tuning the weights based on
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Gaussian (Expectation step)

5. Definition of the bell curves
« the mean and standard
deviation of each Gaussian

mixture component express
their location and width

« weights of each bell curve is

an additional GMM
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1. Acquisition of the full protein
profile
« capillary electrophoresis
(Experion™ Automated
System, Biorad®
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and the standard deviation
values (Maximization step)

Datamining of
electropherograms

Expectation-Maximization
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domain peak

3. Alignment of peaks in

2. Calculation of the accurate multiple measurements

m/z value for each peak
detected within the time
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normalization function

4. Detection of representative
peaks and MW range intervals

10. Quantification of the
molecular subphenomes,

Figure 14. MODeLING.Vis. Flow chart with a brief explanation and summary of the overall process-
ing steps and the structure of the GUI toolbox.

In the first step, the acquired full protein profile by capillary electrophoresis (Expe-
rion™ Automated System, Biorad®) was imported.

In the second step, the accurate m/z value for each peak detected within the time
domain was calculated with a Gaussian curve-fitting m/z domain peak.

Using the EM algorithm, in the third step, the toolbox made the alignment of peaks in
multiple measurements, and for the fourth step, it detected the representative peaks and
MW range intervals.

In the fifth step, data distribution was performed by Gaussian mixture modeling with
a set of Gaussian bell curves. Each Gaussian mixture component’s mean and standard
deviation express its location and width. The weights of each bell curve are defined as an
additional GMM parameter set.

In step six, data visualization was achieved by fitting the data iteratively by tuning the
weights based on the mean and the standard deviation values of each Gaussian (Expectation
step), and in step seven, by relying on the computed weights to update the mean and the
standard deviation values (Maximization step).

The data mining of electropherograms was achieved: in step 8, by identifying corre-
sponding peaks across multiple samples; in step 9, by optimizing the numerical parameters
of the normalization function; and in step 10, by quantifying the molecular subphenomes.
Thus, MODeLING.Vis used unsupervised and supervised machine learning and facili-
tated the exploration of the acquired electrophoretic data with a low-end method and
low-cost technique. Our electrophoretic dataset can be quickly and automatically inte-
grated with private in-house data and with other third-party protein data repositories. In
our investigation and the future publications of the authors, we privileged UniProt as it is
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a wide-ranging resource for protein sequence and annotation data, where all entries are
exclusively identified by a stable URL. The protein record offered contains rich metadata
using shared vocabularies and ontologies. Moreover, each UniProt record interacts with dif-
ferent databases, such as PubMed, enabling rich citation and permitting cross-referencing
of our neuroproteomics data.

Finally, the outcome of that descriptive analysis was hypothesizing the [9.1;30] kDa
molecular weight range as an interesting molecular range for adequate quantification. This
MW range, obtained by pattern recognition of our dataset, has been published as char-
acteristic of small neuroimmune molecules and neuropeptides and thus offers a possible
solution for probing into the neurocognitive response.

MODeLING.Vis: Limitations and Future Scope

In summary, MODeLING.Vis provides three main functions: data visualization, ex-
ploration, and mining. In this paper, MODeLING.Vis is used to analyzing electrophoretic
data of neurotypical young adults. Expectation-maximization (EM) iteration provides
data visualization of the electrophoretic profiles to explore unobserved latent variables in
our dataset.

MODeLING.Vis also executes data mining of our dataset, comparing individual molec-
ular profiles to the whole sample, and permits better visualization of the homogeneous
separation of the salivary peptides.

MODeLING.Vis accepts a T1 — T0 variate input threshold (ng/uL) defined by the
researcher to explore T1 — TO electrophoretic differences better. As shown in Figure 4, this
variate input threshold is used to compare the electrophoretic profile between subjects,
for example, between the Experimental Top subgroup (in red, subject D01383) and other
subgroups. Likewise, MODeLING.Vis permits the better visualization of intersubject
differences by plotting data clusters in three PCA components with statistical relevance
(p <0.05).

In a further publication, the authors will publish an extended electrophoretic analysis
of both the pipeline oral proteome study and the full approach on the 92 neurotypical young
adults. This subsequent paper will plot and illustrate the total protein profiles of the 92 sub-
jects as an innovative probe using saliva. Subsequently, the authors show that the 92 young
adults showed specific expected protein profiles present in saliva, which correspond to the
four psychologically different subgroups (self-awareness, self-consciousness, reflective self,
and pre-reflective self) found in the neurotypical subjects with discrete self-processes [56].

However, MODeLING.Vis is a GUI toolbox used for common unsupervised and/or
supervised machine learning and can be generalized and extrapolated to other samples
and populations. Moreover, MODeLING.Vis is prepared to integrate other neuromolecular
datasets. For example, in a future study, the authors will use MODeLING.Vis not only to se-
lect the most representative electrophoretic molecular profiles but also for data exploration
of combined neuropeptide and neuroimmune panels. Thus, MODeLING.Vis is already
designed to integrate other molecular panels obtained by simultaneous immunodetection,
which the authors will use for the data exploration of neuropeptides and messengers of the
neuroimmune response.

Instead, these neuromolecular datasets will be obtained by a combined multiplex
panel: the Human Neuropeptide Assay, [9.1;,17] kDa, and the Human Th17 Cytokine Assay,
[17;30] kDa. In this case, MODeLING.Vis will permit the identification of subgroups in
a sample of neurotypical young adults with a homogeneous molecular profile consistent
with the neuropeptide and neuroimmune response. The analysis of this profile of analytes,
comprising 19 molecules with distinct concentrations (pg/mL) in our four molecular sub-
phenomes, will permit, as an outcome, the preliminary identification of possible biomarkers
of susceptibility in neurotypical young adults.

The outcome of this study is thus to correlate the four different mental health strata [17,56]
with the four different molecular profiles using MODeLING.Vis as a GUI toolbox. The
practical proposition of this analysis is to accomplish the molecular assessment of self-
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regulation processes with separate cognitive and molecular characteristics. The reliability
of these mental-molecular strata and their distinct neuropsychophysiology will be tested
in future publications of the same participants.

In conclusion, this analysis precedes explanatory and causalistic analysis but may be
used for other design studies in neuroproteomics and the screening and monitoring of
neurodevelopmental disorders. The authors plan, in the future, to test MODeLING.Vis
with a neurodevelopmental cohort of patients. Henceforth, MODeLING.Vis can also be
used to study a sample of patients with autism spectrum disorder, intellectual disability, or
other neurogenetic diseases, for example, Fragile X, Prader—Willi, Phelan-McDermid, and
Rett’s syndromes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//doi.org/10.5281/zenodo.7054406 (accessed on 29 November 2022) and https://doi.org/10.528
1/zenodo.7054551 (accessed on 29 November 2022). The first supplementary material comprises
the neurotypical young adults” Expected Protein Profile. This publication (https://doi.org/10.528
1/zenodo.7054406, accessed on 29 November 2022) contains the “EPPStrategyDataExport” dataset,
which comprises the electrophoretic workbook, named Expected Protein Profile, and the strategy
applied to the electrophoretic data. The dataset corresponds to the full raw electropherogram
of the 92 neurotypical young adults. The dataset can also be consulted at: https://tinyurl.com/
EPPStrategyDataExport (accessed on 29 November 2022). The second supplementary material
comprises the export for MOdeLING.Vis of the Expected Protein Profile of Neurotypical Young Adults.
The full raw electrophoretic data dataset, named Expected Protein Profile workbook, is treated to be
imported to MATLAB. This treated electropherogram was published in “ExportForMOdeLINGVis”
(https:/ /doi.org/10.5281/zenodo.7054551, accessed on 29 November 2022) and can also be consulted
at https:/ /tinyurl.com /ExportForMOdeLINGVis (accessed on 29 November 2022).
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//doi.org/10.5281/zenodo.7054551, accessed on 29 November 2022). The MATLAB code generates
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For a better understanding of the graphical user interface toolbox, a toolbox demo is provided for
users’ convenience. The electrophoretic dataset is published together with the tutorial for ease of
access. For that matter, the authors created a practical video tutorial (https://doi.org/10.5281/
zenodo.7337428, accessed on 30 November 2022) demonstrating how to download, install, run, and
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operate MODeLING.Vis, and provide direct access to the electrophoretic dataset (protLabled.xls).
This video tutorial can be found here: https://doi.org/10.5281/zenodo.7337428 (accessed on 30
November 2022).
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