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Abstract: Different from conventional networks with only pairwise relationships among the nodes,
there are also complex tuple relationships, namely the hyperedges among the nodes in the hypernet-
work. However, most of the existing network representation learning methods cannot effectively
capture the complex tuple relationships. Therefore, in order to resolve the above challenge, this
paper proposes a hypernetwork representation learning method with common constraints of the
set and translation, abbreviated as HRST, which incorporates both the hyperedge set associated
with the nodes and the hyperedge regarded as the interaction relation among the nodes through
the translation mechanism into the process of hypernetwork representation learning to obtain node
representation vectors rich in the hypernetwork topology structure and hyperedge information.
Experimental results on four hypernetwork datasets demonstrate that, for the node classification task,
our method outperforms the other best baseline methods by about 1%. As for the link prediction
task, our method is almost entirely superior to other baseline methods.

Keywords: hypernetwork representation; hypernetwork structure; hyperedge set; translation
mechanism; common constraint

1. Introduction

The goal of network representation learning, also regarded as network embedding,
is to map each node to a low-dimensional representation vector space. The node repre-
sentation vector can be applied to some popular network analysis tasks, such as node
classification [1], link prediction [2], and community detection [3].

According to the type of network, network representation learning is divided into
conventional network representation learning and hypernetwork representation learning.
As for conventional network representation learning, most of the related studies only take
the network topology structure as input to learn node representation vectors, such as
DeepWalk [4], node2vec [5], LINE [6], GraRep [7], and HOPE [8]. Nevertheless, the node
representation vectors learnt only from the network topology structure are not desirable
vectors. Hence, some researchers have proposed some methods to incorporate other types
of supplementary information, such as text, label, and community, into the process of
network representation learning, such as CANE [9] and CNRL [10].

Nevertheless, the above network representation learning methods are designed for
conventional networks with pairwise relationships.

As for the hypernetwork, hypernetwork representation learning [11] has been grad-
ually widely studied by researchers. According to the characteristics of hypernetwork
representation learning methods, they are divided into expanded spectral analysis and
non-expanded methods. The expanded spectral analysis methods, such as star and clique
extensions [12], transform the hypernetwork into a conventional network to learn the
node representation vector while losing hyperedge information during the hypernetwork
expansion. The non-expanded methods without the hyperedge decomposition are mainly
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divided into non-expanded spectral analysis and neural-network-based methods, such as
Hyper2vec [13], HPHG [14], DHNE [15], and so on.

Although the expanded spectral analysis methods are intuitive, there is a loss of
hyperedge information. The non-expanded methods do not decompose the hyperedge.
For example, Hyper2vec captures the pairwise relationships among the nodes on the
hyperedge-based walk sequence but does not capture the tuple relationships among the
nodes well. HPHG, combined with a one-dimensional convolutional layer, effectively
captures tuple relationships among the nodes, and DHNE captures tuple relationships
among the nodes by combining multi-layer perceptron, but both HPHG and DHNE are
limited to heterogeneous hyperedges with a fixed size. However, the above methods cannot
effectively capture the complex tuple relationships with an unfixed size. Therefore, in order
to resolve the above challenge, this paper proposes a hypernetwork representation learning
method with common constraints of the set and translation to effectively capture tuple
relationships among the nodes.

The following two points are the main characteristics of this paper:

• The hypernetwork was transformed into a conventional network abstracted as a two-
section graph. Based on this conventional network, a hypernetwork representation
learning method with common constraints of the set and translation was proposed to
learn node representation vectors rich in both the hypernetwork topology structure
and hyperedges.

• The strength of our proposed method was to incorporate a hyperedge (tuple relation-
ship) that is not limited to a fixed size into the process of hypernetwork representation
learning. The weakness of our proposed study was that some hypernetwork struc-
ture information was still missing because the hypernetwork was transformed into a
conventional network.

2. Related Studies

Different from the conventional network with only pairwise relationships among
the nodes, there are also complex tuple relationships, namely the hyperedges among the
nodes in the hypernetwork. However, most of the existing network representation learning
methods cannot effectively capture the complex tuple relationships. Therefore, in order
to resolve the above challenge, researchers have proposed some hypernetwork represen-
tation learning methods, which were divided into the expanded spectral analysis and
non-expanded methods. As for the expanded spectral analysis methods, by transforming
the hypernetwork into a conventional network, the problem of hypernetwork represen-
tation learning was simplified into the problem of conventional network representation
learning, and then solved according to the spectral characteristics of the Laplace matrix.
For example, star and clique extensions are two classical hypernetwork expansion methods.
As for the non-expanded methods, they are mainly divided into the non-expanded spectral
analysis and the neural network-based methods. The non-expanded spectral analysis meth-
ods directly model the hypernetwork, that is, the Laplacian matrix on the hypernetwork is
directly built, and this modeling process ensures the integrity of hypernetwork information.
For example, Zhou [16] extended the powerful method of spectral clustering [17], originally
run on undirected graphs, to the hypergraph [18] and further developed the hypergraph
learning algorithm on the basis of the spectral hypergraph clustering method. Hyper2vec
was proposed based on the biased random walk strategy on the hypergraph to preserve
the structure and inherent property of the hypernetwork. Neural-network-based methods
have a strong learning ability, flexible structure design, and high generalization, which
make up for the defects of spectral analysis methods. For example, for DHNE, it was
theoretically proved that the linear similarity measure in the embedding space used by the
existing methods could not preserve the indecomposability of the hypernetwork. Thus, a
new deep model was proposed to realize the local and global proximity of the nonlinear
tuple similarity function in the embedding space. HPHG designs a random walk based
on the hypergraph to retain the hypernetwork topology structure information to learn
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node representation vectors. Hyper-SAGNN [19] uses a self-attention mechanism [20] to
aggregate hypergraph information, constructs pairwise attention coefficients between the
nodes as the dynamic features of the nodes, and combines the original static features of the
nodes to describe the nodes.

3. Problem Definition

Given the hypernetwork H = (V, E), abstracted as the hypergraph, which was com-
posed of the node set V = {vi}

|V|
i=1 and the hyperedge set E = {ei = (v1, v2, . . . , vm)}|E|i=1

(m ≥ 2), the goal of hypernetwork representation learning, with common constraints of
the set and translation, was to learn a low-dimensional vector rn ∈ Rk for each node n in
the hypernetwork, where k was expected to be much smaller than |V|.

4. Preliminaries
4.1. Transforming Hypergraph into Two-Section Graph

A feasible way to transform the hypergraph into a conventional graph was to carry
out the research of the hypergraph, because the research for the conventional graph was
relatively mature. In the literature [18], hypergraphs were transformed into three kinds of
conventional graphs, namely line, incidence, and two-section graphs. In fact, two-section
graphs lost less hypernetwork structure information than line and incidence graphs. Hence,
a hypergraph was transformed into a two-section graph in this study. A hypergraph and
its corresponding two-section graph are shown in Figure 1.
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Figure 1. Hypergraph and two-section graph: (a) hypergraph; (b) two-section graph.

The two-section graph S = (V′, E′) transformed from the hypergraph H = (V, E) was
a conventional graph with the following conditions:

• V′ = V, that is, the node set of two-section graph S was equal to the node set of the
hypergraph H.

• One edge was associated with any two different nodes if and only if the two nodes
were simultaneously associated with at least one hyperedge.

4.2. TransE

Knowledge representation is the vectorization of the entity and relation in the knowl-
edge graph, which specifically maps the entity or relation to a low-dimensional vector
space. For simplicity, (h, r, t) denotes the triplet (head, relation, and tail), where h, r, and
t denote the head entity, relation, and tail entity, respectively, and h, r, and t denote the
vectors corresponding to the head entity, relation, and tail entity, respectively. In the relation
extraction of the knowledge graph, as a knowledge representation learning algorithm based
on the translation, TransE [21] thought that the head entity vector plus the relation vector
were approximately equal to the tail entity vector, that is, h + r ≈ t when the triplet (h, r, t)
held (t should be the nearest neighbor of h + r), while h + r should otherwise be far away
from t. TransE is shown in Figure 2.
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5. Our Method

Hypernetwork representation learning with common constraints of the set and trans-
lation HRST is introduced in detail in this section. Firstly, the topology-derived model is
introduced in Section 5.1. Secondly, the set constraint model is introduced in Section 5.2.
Thirdly, the translation constraint model is introduced in Section 5.3. Fourthly, the joint
optimization of the above three models is introduced in detail in Section 5.4. Finally, the
complexity analysis of HRST is introduced in Section 5.5.

5.1. Topology-Derived Model

Because the computational efficiency of CBOW [22] is greater than that of skip-
gram [22], a topology-derived model [11] based on the negative sampling to be used
to capture the network structure was introduced. To be specific, in the optimization pro-
cedure of this model, the center node n was the positive sample, other nodes were the
negative samples, and NEG(n) was the subset of negative samples with a predefined size
ds. For ∀ u ∈ V, the node labels are denoted as follows:

Ln(u) =

{
1, u ∈ {n}
0, u ∈ NEG(n)

(1)

The prediction probability of the node u is denoted as p(u|context(n)) under the
condition of the contextual nodes context(n) corresponding to n. The node sequence
set is denoted as C. In view of the above conditions, we maximized the following
objective function:

D1 = ∏
n∈C

∏
u∈{{n}∪NEG(n)}

p(u|context(n)) (2)

When the node n was regarded as the contextual node, the embedding vector vn was
the representation of the node n, while the parameter vector θn was the representation
of the node n when the node n was regarded as the center node. p(u|context(n)) in the
formula (2) is denoted as follows:

p(u|context(n)) =
{

σ(XT
n θu), Ln(u) = 1

1− σ(XT
n θu), Ln(u) = 0

(3)
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where σ(XT
n θu) = 1/(1 + e−XT

n θu) is a sigmoid function and Xn is the summing operation
of the representation vectors corresponding to all the nodes of context(n). Formula (3) can
also be written as an integral expression:

p(u|context(n)) = [σ(XT
n θu)]

Ln(u) · [1− σ(XT
n θu)]

1−Ln(u)
(4)

Consequently, Formula (2) can be rewritten as follows:

D1 = ∏
n∈C

∏
u∈{{n}∪NEG(n)}

{
[σ(XT

n θu)]
Ln(u) · [1− σ(XT

n θu)]
1−Ln(u)}

(5)

Formally, by means of maximizing D1, the network topology was encoded into the
node representation vectors.

5.2. Set Constraint Model

Because the above topology-derived model only considered the network structure,
a set constraint model [11] based on the negative sampling to consider both the network
structure and the hyperedge was introduced. To be specific, in the optimization procedure
of this model, Tn was the set of the hyperedges associated with the center node n, and also
the set of the nodes associated with the center node n if the hyperedge was regarded as the
node. The center node n was the positive sample, and other nodes not associated with the
center node n ∈ V were the negative samples. As for ∀ v ∈ Tn, NEG(v) was the subset of
negative samples with a predefined size ds, and the node labels are denoted as follows:

δ(ϑ|v) =
{

1, ϑ ∈ {n}
0, ϑ ∈ NEG(v)

(6)

In view of the node sequences C and the set of the hyperedges, we tried to maximize
the following objective function to meet the set constraint:

D2 = ∏
n∈C

∏
v∈Tn

p(n|v) = ∏
n∈C

∏
v∈Tn

∏
ϑ∈{{n}∪NEG(v)}

{
σ(eT

v θϑ)
δ(ϑ|v) · [1− σ(eT

v θϑ)]
1−δ(ϑ|v)}

= ∏
n∈C

∏
v∈Tn

{
σ(eT

v θn) · ∏
ϑ∈NEG(v)

[1− σ(eT
v θϑ)]

}
(7)

where ev is the parameter vector corresponding to v ∈ Tn.
By means of maximizing D2, the hyperedges were encoded into the node representa-

tion vectors.

5.3. Translation Constraint Model

Because the above set constraint model did not fully consider the hyperedges, it
could not learn node representation vectors very well. Hence, we tried to incorporate the
hyperedges associated with the nodes, regarded as the interaction relationships among the
nodes, into the process of hypernetwork representation learning.

Inspired by the successful application of the translation mechanism in TransE, the
nodes and interaction relationships were mapped into a unified representation space,
where the interaction relationships among the nodes could be regarded as the translation
operations in the representation space.

To be specific, for the center node n in V, if there was a node h ∈ V and a hyperedge
r ∈ E to make n ∈ r, h ∈ r, that is, the hyperedge r was simultaneously associated with the
node n and node h, a normal triplet (h, r, n) held, where h is a node with the relationship r
with the node n, Hr is the set of the nodes with the relationship r with the node n, and Rn
is the set of hyperedges associated with the center node n, namely the set of relationships.
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Inspired by the above topology-derived model, a novel translation constraint model
based on the negative sampling was proposed. To be specific, in the optimization procedure
of this model, the center node n was the positive sample, other nodes were the negative
samples, and NEG(n) was the subset of negative samples of the center node n with a
predefined size ds. For ∀ ξ ∈ V, the node labels are denoted as follows:

δn(ξ) =

{
1, ξ ∈ {n}
0, ξ ∈ NEG(n)

(8)

In view of the node sequences C and the translation constraint, we tried to maximize
the following objective function to meet the translation constraint:

D3 = ∏
n∈C

∏
r∈Rn

∏
h∈Hr

∏
ξ∈{{n}∪NEG(n)}

p(ξ|h + r) = ∏
n∈C

∏
r∈Rn

∏
h∈Hr

∏
ξ∈{{n}∪NEG(n)}

{
σ(eT

h+rθξ )
δn(ξ) · [1− σ(eT

h+rθξ )]
1−δn(ξ)

}
(9)

where eh, er, and eh+r are all the parameter vectors, eh+r = eh + er. By means of maximizing
D3, the interaction relations were encoded into the node representation vectors.

5.4. Joint Optimization

In this subsection, the hypernetwork representation learning method with common
constraints of the set and translation HRST is proposed. HRST can jointly optimize the
topology-derived, set constraint, and translation constraint models. Figure 3 shows the
HRST framework.
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Figure 3. HRST framework, where vi is the center node; the other nodes vi−s, vi−s+1, vi+s−1, vi+s, etc.
are contextual nodes of the center node vi, namely context(vi); Tvi is the hyperedge set associated
with the center node vi; r is the interaction relation, namely the hyperedge; h is a node with the
relation r with the center node vi; and Rvi is the hyperedge set associated with the center node vi.

In Figure 3, the network topology representation, and the hyperedge and relation
representations from the topology-derived model, and the set constraint and the translation
constraint models, respectively, shared the same representation rich in the hyperedges.

In order to facilitate calculation, we took the logarithm of D1, D2, and D3 to maximize
the following joint optimization objective function to meet common constraints of the set
and translation:
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L = ∑
n∈C



∑
u∈{{n}∪NEG(n)}

{
Ln(u) · log[σ(XT

n θu)] + [1− Ln(u)] · log[1− σ(XT
n θu)]

}
+

β1 · ∑
v∈Tn

∑
ϑ∈{{n}∪NEG(v)}

{
δ(ϑ|v) · log[σ(eT

v θϑ)] + [1− δ(ϑ|v)] · log[1− σ(eT
v θϑ)]

}
+

β2 · ∑
r∈Rn

∑
h∈Hr

∑
ξ∈{{n}∪NEG(n)}

{
δn(ξ) · log[σ(eT

h+rθξ)] + [1− δn(ξ)] · log[1− σ(eT
h+rθξ)]

}


= ∑
n∈C



∑
u∈{{n}∪NEG(n)}

{
Ln(u) · log[σ(XT

n θu)] + [1− Ln(u)] · log[1− σ(XT
n θu)]

}
+

∑
v∈Tn

∑
ϑ∈{{n}∪NEG(v)}

β1 ·
{

δ(ϑ|v) · log[σ(eT
v θϑ)] + [1− δ(ϑ|v)] · log[1− σ(eT

v θϑ)]
}
+

∑
r∈Rn

∑
h∈Hr

∑
ξ∈{{n}∪NEG(n)}

β2 ·
{

δn(ξ) · log[σ(eT
h+rθξ)] + [1− δn(ξ)] · log[1− σ(eT

h+rθξ)]
}


(10)

where the harmonic factors β1 and β2 were used to counterweigh the contribution rate
among the topology-derived, the set constraint, and the translation constraint models.

In order to facilitate derivation, L(n, u, v, ϑ, r, h, ξ) is denoted as follows:

L(n, u, v, ϑ, r, h, ξ) =
{

Ln(u) · log[σ(XT
n θu)] + [1− Ln(u)] · log[1− σ(XT

n θu)]
}
+

β1 ·
{

δ( ϑ|v) · log[σ(eT
v θϑ)] + [1− δ( ϑ|v)] · log[1− σ(eT

v θϑ)]
}
+

β2 ·
{

δn(ξ) · log[σ(eT
h+rθξ )] + [1− δn(ξ)] · log[1− σ(eT

h+rθξ )]
} (11)

The objective function L was optimized by the stochastic gradient ascent method. The
objective was to give six kinds of gradients of L.

Firstly, the gradient on θu of L(n, u, v, ϑ, r, h, ξ) was calculated as follows:

∂L(n,u,v,ϑ,r,h,ξ)
∂θu

= Ln(u) · [1− σ(XT
n θu)] · Xn − [1− Ln(u)] · σ(XT

n θu) · Xn

=
{

Ln(u) · [1− σ(XT
n θu)]− [1− Ln(u)] · σ(XT

n θu)
}
· Xn

= [Ln(u)− σ(XT
n θu)] · Xn

(12)

Consequently, the updating formula of θu is denoted as follows:

θu = θu + α · [Ln(u)− σ(XT
n θu)] · Xn (13)

where α is the learning rate.
Secondly, the gradient on Xn of L(n, u, v, ϑ, r, h, ξ) was calculated. The symmetry

property between θu and Xn was utilized to get the gradient of Xn:

∂L(n, u, v, ϑ, r, h, ξ)

∂Xn
= [Ln(u)− σ(XT

n θu)] · θu (14)

Consequently, the updating formula of vv′ is denoted as follows, where v′ ∈ context(n):

vv′ = vv′ + α · ∑
u∈{{n}∪NEG(n)}

∂L(n,u,v,ϑ,r,h,ξ)
∂Xn

= vv′ + α · ∑
u∈{{n}∪NEG(n)}

[Ln(u)− σ(XT
n θu)] · θu

(15)

Thirdly, the gradient on θϑ of L(n, u, v, ϑ, r, h, ξ) was calculated as follows:

∂L(n,u,v,ϑ,r,h,ξ)
∂θϑ

= β1 ·
{

∂
∂θϑ

{
δ(ϑ|v) · log[σ(eT

v θϑ)] + [1− δ(ϑ|v)] · log[1− σ(eT
v θϑ)]

}}
= β1 ·

{
δ(ϑ|v) · [1− σ(eT

v θϑ)] · ev − [1− δ(ϑ|v)] · σ(eT
v θϑ) · ev

}
= β1 ·

{{
δ(ϑ|v) · [1− σ(eT

v θϑ)]− [1− δ(ϑ|v)] · σ(eT
v θϑ)

}
· ev
}

= β1 · [δ(ϑ|v)− σ(eT
v θϑ)] · ev

(16)

Consequently, the updating formula of θϑ is denoted as follows:

θϑ = θϑ + α · β1 · [δ(ϑ
∣∣∣v)− σ(eT

v θϑ)] · ev (17)
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Fourthly, the gradient on ev of L(n, u, v, ϑ, r, h, ξ) was calculated. The symmetry prop-
erty between θϑ and ev was utilized to get the gradient of ev:

∂L(n, u, v, ϑ, r, h, ξ)

∂ev
= β1 · [δ(ϑ

∣∣∣∣v)− σ(eT
v θϑ)] · θϑ (18)

Consequently, the updating formula of ev is denoted as follows, where v ∈ Tn:

ev = ev + α · β1 · [δ(ϑ
∣∣∣v)− σ(eT

v θϑ)] · θϑ (19)

Fifthly, the gradient on θξ of L(n, u, v, ϑ, r, h, ξ) was calculated as follows:

∂L(n,u,v,ϑ,r,h,ξ)
∂θξ

= β2 ·
{

∂
∂θξ

{
δn(ξ) · log[σ(eT

h+rθξ)] + [1− δn(ξ)] · log[1− σ(eT
h+rθξ)]

}}
= β2 ·

{
δn(ξ) · [1− σ(eT

h+rθξ)] · eh+r − [1− δn(ξ)] · σ(eT
h+rθξ) · eh+r

}
= β2 ·

{{
δn(ξ) · [1− σ(eT

h+rθξ)]− [1− δn(ξ)] · σ(eT
h+rθξ)

}
· eh+r

}
= β2 · [δn(ξ)− σ(eT

h+rθξ)] · eh+r

(20)

Consequently, the updating formula of θξ is denoted as follows:

θξ = θξ + α · β2 · [δn(ξ)− σ(eT
h+rθξ)] · eh+r (21)

Finally, the gradient on eh+r of L(n, u, v, ϑ, r, h, ξ) was calculated. The symmetry
property between θξ and eh+r was utilized to get the gradient on eh+r:

∂L(n, u, v, ϑ, r, h, ξ)

∂eh+r
= β2 · [δn(ξ)− σ(eT

h+rθξ)] · θξ (22)

where, eh+r = eh + er and the vectors to update are eh and er, so the updating of the
gradient ∂L(n,u,v,ϑ,r,h,ξ)

∂eh+r
was utilized on eh and er respectively. The updating formulae of eh

and er are denoted as follows.

eh = eh + α · β2 · ∑
ξ∈{{n}∪NEG(n)}

[δn(ξ)− σ(eT
h+rθξ)] · θξ (23)

er = er + α · β2 · ∑
ξ∈{{n}∪NEG(n)}

[δn(ξ)− σ(eT
h+rθξ)] · θξ (24)

5.5. Complexity Analysis

The time complexity of HRST was O(|C|·(ds + 1) · (β1 ·Ms + β2 ·MHr ·MR + 1)) ,
where the time complexities of the topology-derived, the set constraint, and the translation con-
straint models are O(|C|·(ds + 1)) , O(|C|·(ds + 1) ·Ms) , and O(|C|·(ds + 1) ·MHr ·MR) ,
respectively, where ds is a constant independent of the network size,
and Ms = max

{∣∣∣Tv1

∣∣∣, |T v2

∣∣∣, . . . ,
∣∣∣Tv|V|

∣∣∣} are the maxima of the set of the hyperedges
associated with the node vi, MHr is the maxima of Hr, which is the set of the nodes in the

triplets with the relation r with the node vi, and MR = max
{∣∣∣Rv1

∣∣∣, |R v2

∣∣∣, . . . ,
∣∣∣Rv|V|

∣∣∣} are
the maxima of the set of the relations associated with the node vi.

The stochastic gradient ascent method was used for optimization. More details are
shown in Algorithm 1.
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Algorithm 1: HRST

1 Input:
2 Hypernetwork H = (V, E)
3 Embedding size d
4 Output:
5 Embedding matrix X ∈ R|V|×d

6 for node n in V do
7 initialize embedding vector vn ∈ R1×d

8 initialize parameter vector θn ∈ R1×d

9 for node v in Tn do
10 initialize parameter vector ev ∈ R1×d

11 end for
12 for hyperedge r in Rn do
13 for node h in Hr do
14 initialize parameter vector eh+r ∈ R1×d

15 end for
16 end for
17 end for
18 node sequences C = RandomWalk()
19 for (n, context(n)) in C do
20 update parameter vector according to Formula (13)
21 update embedding vector according to Formula (15)
22 update parameter vector according to Formula (17)
23 for node v in Tn do
24 update parameter vector according to Formula (19)
25 end for
26 update parameter vector according to Formula (21)
27 for hyperedge r in Rn do
28 for node h in Hr do
29 update parameter vector according to Formula (23)
30 update parameter vector according to Formula (24)
31 end for
32 end for
33 end for
34 for i = 0; i <|V|; i ++ do
35 Xi = vvi

36 end for
37 return X

6. Experiments
6.1. Dataset

Four hypernetwork datasets were used to evaluate the effectiveness of HRST. Detailed
dataset statistics are shown in Table 1.

Table 1. Dataset statistics.

Dataset Node Type #(V) #(E)

GPS user location activity 146 70 5 1436
MovieLens user movie tag 457 1688 1530 5965

drug user drug reaction 4 132 221 1195
wordnet head relationship tail 1754 7 1549 2174

Four datasets are shown as follows:

• GPS [23] described a situation where a user partook in an activity in a location. The
set of three-tuple <user, location, activity> was used to construct the hypernetwork.
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• MovieLens [24] described personal tag activities from MovieLens. The set of three-
tuple <user, movie, tag> was used to construct the hypernetwork, where each movie
had at least one genre.

• Drug (http://www.fda.gov/Drugs/, accessed on 27 January 2020) described a situa-
tion where the user took drugs and had certain reactions that led to adverse events.
The set of three-tuple <user, drug, reaction> was used to construct the hypernetwork.

• wordnet [21] was composed of a set of triplets <head, relation, tail> extracted from
WordNet3.0. The set of three-tuple <head, relationship, tail> was used to construct
the hypernetwork.

6.2. Baseline Methods

DeepWalk. DeepWalk is a classical representation learning method to learn node
representation vectors.

node2vec. node2vec preserves network neighborhoods of the nodes to learn node
representation vectors.

LINE. LINE preserves both first- and second-order proximities to learn node represen-
tation vectors.

GraRep. GraRep captures global structure properties of a graph by k-step loss func-
tions to learn node representation vectors.

HOPE. HOPE captures the higher-order proximity and asymmetric transitivity of a
graph to learn node representation vectors.

SDNE. SDNE [25] utilizes first- and second-order proximities to characterize local and
global network structures to learn node representation vectors.

HRSC. HRSC [11] incorporates the hyperedge sets associated with the nodes into the
process of hypernetwork representation learning.

HRTC. HRTC models the interaction relationships among the nodes through the
translation mechanism and incorporates the relationships among the nodes into the process
of hypernetwork representation learning.

HRST. HRST incorporates the hyperedge sets associated with the nodes and interaction
relationships among the nodes modeled through the translation mechanism into the process
of hypernetwork representation learning.

6.3. Experimental Setting

Node classification and link prediction were used to evaluate the effectiveness of
HRST. The vector dimension was set to 100, the number of the random walks to begin with
every node to 10, and the length of the random walks to begin with every node to 40. Some
datasets were randomly selected as the training set and the rest as the test set.

6.4. Node Classification

The multi-label classification tasks [1] were conducted on the MovieLens and wordnet
datasets because labels are only on these two datasets. In addition, the nodes without labels
on the two datasets were removed. An SVM [26] classifier was trained to calculate node
classification accuracies.

From Tables 2 and 3, the following observations were obtained as follows:

• For the two datasets, the average value of the node classification accuracy of HRST
was very close to those of HRSC and HRTC, and better than those of other baseline
methods. For instance, for the average values of the node classification accuracy, HRST
outperformed the other best baseline methods (e.g., DeepWalk) by about 1% on the
two datasets. Meanwhile, the average values of the node classification accuracies of
the remaining baseline methods were roughly weaker than those of HRST.

• The average value of the node classification accuracy of GraRep ranked only second
to those of HRST, HRSC, HRTC, and DeepWalk, and was very close to those of
DeepWalk, because GraRep integrated the hyperedges to a certain extent into the
process of network representation learning.

http://www.fda.gov/Drugs/
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Table 2. Node classification accuracies on MovieLens (%).

Methods
Training Ratios

10% 20% 30% 40% 50% 60% 70% 80% 90% Average Rank

DeepWalk 48.01 50.35 51.41 52.60 52.59 53.47 53.57 54.23 54.09 52.26 4
node2vec 46.93 49.28 50.77 51.51 52.62 52.58 53.04 53.44 52.71 51.43 6

LINE 43.93 45.46 46.52 47.29 47.70 48.16 48.02 49.09 48.34 47.17 8
GraRep 47.75 50.11 51.16 52.01 52.10 53.15 53.34 53.43 53.24 51.81 5
HOPE 46.33 48.57 49.95 50.69 51.06 51.04 51.29 52.53 51.79 50.36 7
SDNE 41.74 41.79 42.34 42.73 43.36 43.27 43.89 43.43 42.81 42.82 9
HRSC 48.60 50.81 52.02 53.19 53.73 54.12 54.83 54.95 56.14 53.15 3
HRTC 48.73 51.26 52.71 53.62 54.38 54.57 55.03 55.82 56.30 53.60 1
HRST 48.45 50.90 52.41 53.23 53.83 54.45 54.95 55.58 55.84 53.29 2

Table 3. Node classification accuracies on wordnet (%).

Methods
Training ratios

10% 20% 30% 40% 50% 60% 70% 80% 90% Average Rank

DeepWalk 29.91 33.44 34.53 35.05 35.70 36.80 37.93 36.71 39.00 35.45 4
node2vec 29.27 32.23 33.71 34.52 36.17 36.05 37.53 37.66 37.30 34.94 6

LINE 22.77 24.11 25.11 24.94 25.23 25.59 25.87 26.60 25.44 25.07 8
GraRep 32.59 34.74 34.63 35.21 35.38 36.05 35.10 36.63 37.79 35.35 5
HOPE 30.53 33.61 35.02 35.97 34.90 35.11 36.21 36.20 34.84 34.71 7
SDNE 21.96 21.57 22.05 22.37 23.26 22.59 23.63 23.60 25.31 22.93 9
HRSC 31.54 33.94 34.98 36.84 37.35 38.02 38.78 40.22 41.10 36.97 2
HRTC 31.30 33.79 35.59 36.18 36.95 37.94 38.14 38.63 40.07 36.51 3
HRST 30.81 33.92 36.03 36.85 37.32 38.73 39.28 40.08 41.43 37.16 1

In a word, it was found that the quality of the node representation vectors learnt from
HRST was better.

6.5. Link Prediction

In this subsection, the link prediction task was evaluated by the measure AUC [27].
From Tables 4–7, the following observations were obtained as follows:

Table 4. AUC values on GPS.

Methods
Training Ratios

60% 65% 70% 75% 80% 85% 90% Average Rank

DeepWalk 0.4308 0.4278 0.4205 0.4583 0.4418 0.4914 0.4831 0.4505 5
node2vec 0.3660 0.3614 0.3808 0.3939 0.3834 0.3958 0.3649 0.3780 8

LINE 0.4575 0.4829 0.4761 0.4562 0.4429 0.4663 0.4574 0.4628 4
GraRep 0.3873 0.3805 0.3882 0.3765 0.3820 0.3857 0.3874 0.3839 7
HOPE 0.3805 0.3676 0.3416 0.2971 0.2794 0.2518 0.2334 0.3073 9
SDNE 0.3262 0.4371 0.4319 0.3157 0.4379 0.3527 0.4540 0.3936 6
HRSC 0.7516 0.7562 0.7488 0.7449 0.7236 0.7325 0.7279 0.7408 1
HRTC 0.6845 0.6428 0.6483 0.6403 0.6216 0.6005 0.5856 0.6319 3
HRST 0.7200 0.7220 0.7241 0.7276 0.6929 0.7071 0.7006 0.7135 2
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Table 5. AUC values on MovieLens.

Methods
Training Ratios

60% 65% 70% 75% 80% 85% 90% Average Rank

DeepWalk 0.7845 0.8129 0.8301 0.8440 0.8729 0.8800 0.9025 0.8467 2
node2vec 0.7078 0.7390 0.7418 0.7696 0.7939 0.8036 0.8296 0.7693 7

LINE 0.8282 0.8242 0.8253 0.8320 0.8365 0.8172 0.8231 0.8266 5
GraRep 0.7290 0.7833 0.7907 0.8121 0.8277 0.8481 0.8544 0.8065 6
HOPE 0.6895 0.7333 0.7203 0.7522 0.7787 0.7986 0.8049 0.7539 8
SDNE 0.4004 0.3511 0.3494 0.3406 0.3433 0.3598 0.4171 0.3660 9
HRSC 0.8714 0.8706 0.8681 0.8644 0.8706 0.8651 0.8528 0.8661 1
HRTC 0.8495 0.8497 0.8351 0.8325 0.8387 0.8281 0.8320 0.8379 3
HRST 0.8377 0.8434 0.8351 0.8268 0.8341 0.8339 0.8297 0.8344 4

Table 6. AUC values on drug.

Methods
Training Ratios

60% 65% 70% 75% 80% 85% 90% Average Rank

DeepWalk 0.4852 0.4954 0.4934 0.4580 0.4901 0.4638 0.4713 0.4796 6
node2vec 0.4500 0.4525 0.4490 0.4525 0.4329 0.4712 0.4345 0.4489 8

LINE 0.4750 0.4672 0.4636 0.4625 0.4741 0.4523 0.4768 0.4674 7
GraRep 0.5025 0.5089 0.4867 0.5051 0.5557 0.5835 0.5362 0.5255 4
HOPE 0.5055 0.5269 0.4933 0.4690 0.4941 0.4668 0.4271 0.4832 5
SDNE 0.2948 0.4310 0.4454 0.5050 0.5196 0.3536 0.3836 0.4190 9
HRSC 0.7871 0.7774 0.7822 0.7920 0.7747 0.7983 0.8056 0.7882 1
HRTC 0.7153 0.7071 0.7134 0.7134 0.6868 0.7108 0.7240 0.7101 3
HRST 0.7914 0.7697 0.7685 0.7977 0.7586 0.7771 0.8105 0.7819 2

Table 7. AUC values on wordnet.

Methods
Training Ratios

60% 65% 70% 75% 80% 85% 90% Average Rank

DeepWalk 0.7780 0.8181 0.8305 0.8341 0.8708 0.8765 0.8880 0.8423 4
node2vec 0.7807 0.8242 0.8309 0.8285 0.8519 0.8503 0.8595 0.8323 5

LINE 0.8063 0.8184 0.8056 0.8091 0.8000 0.7938 0.7926 0.8037 6
GraRep 0.7685 0.7742 0.7888 0.7806 0.7958 0.7972 0.7756 0.7830 7
HOPE 0.6902 0.7314 0.7417 0.7403 0.7649 0.7763 0.7700 0.7450 8
SDNE 0.3712 0.5348 0.4784 0.4824 0.4254 0.6159 0.4850 0.4847 9
HRSC 0.8953 0.9079 0.9086 0.9036 0.9093 0.9045 0.9034 0.9047 1
HRTC 0.9030 0.9115 0.9050 0.9016 0.9098 0.9027 0.8912 0.9035 2
HRST 0.8938 0.9014 0.8910 0.8896 0.9026 0.8961 0.8945 0.8956 3

• On the GPS and drug datasets, the average AUC value of HRST was very close to that
of HRSC and superior to that of HRTC. On the wordnet dataset, the average AUC
value of HRST was almost the same as those of HRSC and HRTC. On the MovieLens
dataset, the average AUC values of HRST and HRTC were weaker than those of HRSC
and DeepWalk. On the whole, HRST performed better than most baseline methods,
which indicated the effectiveness of HRST.

• HRST performed consistently at different training ratios compared with with other
baseline methods, which demonstrated its feasibility and robustness.

• HRST almost performed better than other baseline methods without incorporating
hyperedges, which verified the assumption that it was good for link prediction to
incorporate the hyperedges into the process of hypernetwork representation learning.

In a word, the above observations demonstrated that HRST can obtain high-quality
node representation vectors.
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6.6. Parameter Sensitivity

The harmonic factors β1 and β2 were used to counterweigh the contribution rate
among the topology-derived, the set constraint, and the translation constraint models.
The training ratio and β2 were fixed to 50% and 0.5, respectively, and calculated node
classification accuracies with a different β1, assuming that β1 ranged from 0.1 to 0.9 on
MovieLens and wordnet datasets. Figure 4 shows the comparisons of node classification
accuracies with a different β1.
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As shown in Figure 4, the node classification performance of HRST was not sensitive
to the parameter β1 and demonstrated the robustness of HRST, because the variation ranges
of node classification accuracies with a different β1 were all within 2.5%.

As for MovieLens and wordnet datasets, the best evaluated results in terms of node
classifications were achieved at β1 = 0.2 and β1 = 0.7, respectively.

7. Conclusions

Hypernetwork representation learning can explore the relationships among the nodes
and find a universal method to solve practical problems, and it has a wide range of applica-
tion scenarios, such as trend prediction, personalized recommendation, and other online
applications. Therefore, we proposed a hypernetwork representation learning method with
common constraints of the set and translation to effectively incorporate the hyperedges
into the process of hypernetwork representation learning and regard the learning process
of node representation vectors as a joint optimization problem, which was solved by means
of the stochastic gradient ascend method. The experimental results demonstrated that
our proposed method was almost entirely superior to other baseline methods. Although
we carried out the research of the hypernetwork representation learning by means of a
transformation strategy from the hypergraph to the graph and tried to incorporate the
hyperedges into the process of the network representation learning, some hypernetwork
structure information was still lost. Therefore, future research can be carried out regarding
two aspects: firstly, continue to try to incorporate the hyperedges into network representa-
tion learning methods; secondly, the hypernetwork should no longer be transformed into
the conventional network, so that the hyperedges are no longer decomposed, but regarded
as a whole to study the hypernetwork representation learning.
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