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Abstract: To solve the modeling problem of altitude ground test facility (AGTF) exhaust systems,
which is caused by nonlinearity along the gas path and the difficulty of ejection factor calculation, a
multi-cavity iterative modeling method is presented. The components of exhaust systems, such as
the exhaust diffuser and cooler, are built with a series of volumes. It overcomes the disadvantage that
traditional lumped-parameter models have, whereby they cannot calculate the dynamic parameters
along the gas path. The exhaust system model is built with an iterative method based on multi-
cavity components, and simulations are carried out under experimental conditions. The simulation
results show that the maximum error of pressure is 2 kPa in the steady state and less than 6 kPa in
the transient process compared with experimental data. Closed-loop simulations are also carried
out to further verify the accuracy and effectiveness of the multi-cavity iterative exhaust system
modeling method.

Keywords: altitude ground test facility; exhaust system; multi-cavity iterative model

1. Introduction

Altitude ground test facilities (AGTFs) can test the performances of aero engines
over the flight envelope on the ground by simulating the inlet and outlet environment
conditions of aero engines [1]. In order to reduce energy consumption in altitude ground
test experiments with the aim of energy conservation and reducing expenses, the modeling
of AGTFs has been a hot issue over the last decades. Moreover, the demand of the precise
modeling of AGTF to design an advanced control algorithm with the purpose of realizing
full mission profile flight trajectory continuous simulations for aero engines has been
increasing for many years [2]. The exhaust system is an important component of AGTFs
that is responsible for simulating air conditions after the engine nozzle. The modeling
problem of the exhaust system results from the nonlinearity of components [3], especially
the exhaust diffuser, which cools the gas exiting the engine nozzle by mixing it with air
ejected from the test chamber and increases the static pressure of the mixed gas at the
same time. The traditional lumped-parameter modeling method is insufficient to reflect
the coupled dynamic of temperature and pressure inside. Moreover, due to the distance
between the engine nozzle and the exhaust diffuser, the traditional method [4] cannot
calculate the ejected secondary flow effectively. Research on exhaust diffuser simulations
can be simplified with no induced secondary flow [5].

At the system level, the Arnold Engineering Development Complex (AEDC), which
is located in America, has been conducting research on AGTF modeling and has been
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updating simulation software since 2000 [6–8]. A mathematical model of an AGTF in
Canada was built by Boraira in 2006 [9]. In Germany, a digital simulation platform was
built by Bierkamp et al. [10] and was developed to a semi-physical simulation platform by
Weisser in 2013 [11]. In China, a system-level model of AGTF was established by Pei et al.
in 2019 [12].

At present, the majority of research on AGTF modeling focuses on the lumped-
parameter method. In the platform built by Pei et al. in reference [12], the exhaust system
of an AGTF is considered single volume, which sacrifices the accuracy of the exhaust
system model. Many algorithms are presented to compensate system simulation results by
improving the accuracy of components. Zhu et al. proposed a coordinate positioning and
regression algorithm to improve the accuracy of butterfly valves in exhaust systems [13].
Sosunov considered the thermal inertia of pipes and proposed an unsteady temperature
calculation method [14]. In 2022, Liu et al. started to focus on the axial dynamic perfor-
mance in AGTFs and built a quasi-one-dimensional flow model of a pipe [15] because
Sheeley et al. proved that the accuracy of the lumped-parameter model is inadequate [16].
Moreover, robust control algorithms such as scheduled proportional–integral control [17],
linear active disturbance rejection [18] and µ synthesis [19] are presented as a compromise
to the inaccurate system model. It limits the development of the advanced control method,
which maximizes the ability of AGTFs for more complicated experiments.

It can be concluded that there are increasing demands for an accurate model of exhaust
systems that reflects the dynamic of the parameters along the symmetry components of
the system. Therefore, a multi-cavity iterative modeling method for the exhaust systems
of ATGFs is proposed in this paper. It separates exhaust systems into a series of volumes
and calculates the parameters in each volume with the lumped-parameter method, because
the exhaust system is composed of symmetry components, which means that the dynamic
in the circumferential direction can be ignored. The dynamic of parameters in the axial
direction can be reflected with lumped parameters in the ordered volumes. Moreover, the
multi-cavity iterative modeling method introduces the initial guess values to ensure the
smooth calculation of parameters. The iterative method takes the exhaust system as a whole
and updates a series of system states at the same time, which increases the convergence of
the model and speeds up the simulation process appropriately.

This paper is organized as follows. In Section 2, the multi-cavity components of the
exhaust system are built. In Section 3, the exhaust system is built with a component model.
The actual states of the system are achieved by solving residual differential equations with
the Newton–Raphson iterative method. In Section 4, a simulation under different flight
conditions is carried out, and the simulation results are compared with experimental data.
Moreover, the simulation results are compared with the lumped-parameter model. Finally,
conclusions are given in Section 5.

2. Component Model of the Exhaust System

The exhaust system is composed of a test chamber, exhaust diffuser, cooler, butterfly
valves and pipe volume. Its structure is shown in Figure 1. The boundary conditions of
the exhaust system consist of environment conditions, engine outlet conditions and Valve
3 outlet pressure conditions provided with the air extraction system. The environment
condition includes temperature and pressure before Valve 1 and Valve 2. Since the outlet
of the engine cannot be measured with sensors in the experiment directly, the mass flow,
temperature, pressure and velocity, after the aero engine, are calculated with the inlet
condition and states of aero engine, which consist of inlet mass W0, inlet total temperature
T0, inlet total pressure P0, power level angle (PLA), etc.



Symmetry 2022, 14, 1399 3 of 22

Symmetry 2022, 14, x FOR PEER REVIEW 3 of 23 
 

 

The working medium in the exhaust system is a real gas that consists of the gas from 

the engine nozzle and air in the test chamber. However, because the pressure in the ex-

haust system is much lower than the atmospheric pressure (101 kPa) and the temperature 

is higher than 288.15 K, it is also reasonable to treat it as an ideal gas. 

 

Figure 1. Structure of exhaust system. 

The units of the variables used in the modeling process are shown in Table 1. 

Table 1. The units of variables. 

Variable Meaning Units 

p Pressure Pa 

T Temperature K 

A Area m2 

d Diameter m 

V Volume m3 

v Velocity m/s 

W Mass flow kg/s 

m Mass kg 

c Specific heat J/(kg*°C) 

R Gas constant J/(kg*°C) 

ht Unit enthalpy J/kg 

h Heat transfer coefficient W/(m2*°C) 

E Energy J 

U Internal energy J 

Q  Heat transfer rate J/s 

2.1. Exhaust Diffuser Model 

The exhaust diffuser is used to reduce the temperature and velocity of the high-tem-

perature and high-speed gas discharged from engine nozzle. Moreover, it reduces the 

load of the air extraction system by increasing the static pressure of the gas. 

The exhaust diffuser model built with the multi-cavity method is divided into three 

parts, which are the ejection model, mixture model and expansion model, and into four 

sections, which are boundaries of the three models and are shown in Figure 2. 

Figure 1. Structure of exhaust system.

The working medium in the exhaust system is a real gas that consists of the gas from
the engine nozzle and air in the test chamber. However, because the pressure in the exhaust
system is much lower than the atmospheric pressure (101 kPa) and the temperature is
higher than 288.15 K, it is also reasonable to treat it as an ideal gas.

The units of the variables used in the modeling process are shown in Table 1.

Table 1. The units of variables.

Variable Meaning Units

p Pressure Pa
T Temperature K
A Area m2

d Diameter m
V Volume m3

v Velocity m/s
W Mass flow kg/s
m Mass kg
c Specific heat J/(kg*◦C)
R Gas constant J/(kg*◦C)
ht Unit enthalpy J/kg
h Heat transfer coefficient W/(m2*◦C)
E Energy J
U Internal energy J
.

Q Heat transfer rate J/s

2.1. Exhaust Diffuser Model

The exhaust diffuser is used to reduce the temperature and velocity of the high-
temperature and high-speed gas discharged from engine nozzle. Moreover, it reduces the
load of the air extraction system by increasing the static pressure of the gas.

The exhaust diffuser model built with the multi-cavity method is divided into three
parts, which are the ejection model, mixture model and expansion model, and into four
sections, which are boundaries of the three models and are shown in Figure 2.
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Figure 2. Multi-cavity exhaust diffuser model.

First, some theorems of aerodynamics need to be introduced.

Theorem 1. Aerodynamic function π(λ) describes the relationship between the static pressure p
and the total pressure pt. Moreover, it can be calculated with the specific heat ratio k and the velocity
coefficient λ shown in Equation (1) [20].

π(λ) =
p
pt

= (1− k− 1
k + 1

λ2)

k
k−1

(1)

where, in λ = v
vcr

, v is the velocity of gas and vcr is critical acoustic velocity.

Theorem 2. The flow formula in Equation (2) describes the relationship between the mass flow W
and the total parameters of the gas [20].

W = K
pt√
Tt

Aq(λ) (2)

where K =

√
k
R (

2
k+1 )

k+1
k−1 is calculated with the specific heat ratio k and gas constant R, and the

flow function q(λ) = ( k+1
2 )

1
k−1 λ(1− k−1

k+1 λ2)
1

k−1 is calculated with the specific heat ratio k and
the velocity coefficient λ. pt is the gas total pressure, Tt is the gas total temperature and A is the
flow area.

Theorem 3. The impulse of a gas can be calculated with the mass flow, velocity, static pressure,
flow area or total pressure, flow area, and flow function f (λ). They are equal to each other, which is
shown in Equation (3) [20].

WV + pA = pt A f (λ) (3)

where f (λ) = ( 2
k+1 )

1
k−1 q(λ)z(λ) and z(λ) = 1

λ + λ.

Secondly, initial guess values need to be introduced into the calculation process of the
exhaust diffuser model. They are listed in Table 2.

Table 2. The initial guess values of exhaust diffuser model.

Variable Meaning

u Ejection factor
Ps2 Static pressure at Section 2
Pt3 Total pressure at Section 3
λ4 Velocity coefficient at Section 4

Then, the calculation process from Sections 1–4 is shown as follows.
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2.1.1. Ejection Model

In the ejection process, the main stream expands slightly and increases the speed of
the secondary flow in the ejection model shown in Figure 3. The ejection model calculates
the mass of the secondary flow W1s with the mass of the main stream W1m and the ejection
factor u, as shown in Equation (4). The flow area of the main stream and the secondary
flow at Section 2, which are denoted as A2m and A2s, are also obtained.

W1s = uW1m (4)
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The total pressure and total temperature of the main stream and secondary flow from
Sections 1 and 2 are invariable because it is an isentropic expansion process. It is denoted as

pt2m = pt1m, pt2s = pt1s (5)

Tt2m = Tt1m, Tt2s = Tt1s (6)

where pt1m is the total pressure of the main stream at Section 1 and pt2m is the total pressure
of the main stream at Section 2. Tt1m is the total temperature of the main stream at Section 1,
and Tt2m is the total temperature of the main stream at Section 2. pt1s is the total pressure
of the secondary flow at Section 1, and pt2s is the total pressure of the secondary flow at
Section 2. Tt1s is the total temperature of the secondary flow at Section 1, and Tt2s is the
total temperature of the secondary flow at Section 2.

Then, π(λ) of the main stream at Section 2 can be calculated with the total pressure
Ps2m and the initial guess value Ps2.

π(λ2m) =
ps2

pt2m
(7)

The velocity coefficient of the main stream can be obtained with the inverse function
in Theorem 1. It is denoted as

λ2m = π−1(λ2m) (8)

Then, q(λ) of the main stream at Section 2 can be obtained with

q(λ2m) = (
k + 1

2
)

1
k−1

λ2m(1−
k− 1
k + 1

λ2
2m)

1
k−1

(9)

Moreover, because of the flow conservation law, we have

W2m = W1m (10)

W2s = W1s (11)
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The equivalent flow area of the main stream at Section 2 is defined as

A2m =
q(λ1m)

q(λ2m)
A1m (12)

where A1m is the output area of the engine.
Then, the equivalent flow area of secondary flow at Section 2 is defined as

A2s =
πd2

4
− A2m (13)

where d is the diameter of the exhaust diffuser.

2.1.2. Mixture Model

The mixture model calculates the temperature and pressure of the well-mixed gas
by mixing the main stream and secondary flow at Section 2, as shown in Figure 4. The
mixing process should meet the laws of flow conservation, energy conservation, impulse
conservation and pressure balance.
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The velocity coefficient λ2s can be obtained with Theorem 2 because W2s, Tt2s, Pt2s and
A2s are obtained from Equations (5), (6), (11) and (13). Then, π(λ2s) can be obtained with
Theorem 1.

The static pressure of the secondary flow at Section 2 can be calculated with π(λ) in
Equation (14).

ps2s = pt2sπ(λ2s) (14)

The static pressure of the main stream and secondary flow should be balanced at
Section 2. This means that ps2m = ps2s. The relative error of the static pressure at Section 2 is
denoted with

e1 = (ps2s − ps2m)/ps2m (15)

The calculation process of static pressure balance, including Equations (7)–(15), is
shown in Figure 5.
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The unit enthalpy at Section 3 can be calculated with the energy conservation law, as
shown in Equation (16). The temperature is obtained with Equation (17).

ht3 = (ht2mW2m + ht2sW2s)/W3 (16)

Tt3 = ht3/Cp (17)

where W3 = W2s + W2m, and ht is unit enthalpy at each section.
The impulse of the gas at Sections 2 and 3 can be obtained with the right part of

Equation (3) in Theorem 3. Because the mass flow at Sections 2 and 3 meets the impulse
conservation law, we have

pt2m A2m f (λ2m) + pt2s A2s f (λ2s) = pt3 A3 f (λ3) (18)

The relative error of impulse is denoted as

e2 = (pt2m A2m f (λ2m) + pt2s A2s f (λ2s)− pt3 A3 f (λ3))/(pt2m A2m f (λ2m) + pt2s A2s f (λ2s)) (19)

2.1.3. Expansion Model

The inputs and outputs of the expansion model are shown in Figure 6. It is assumed
that the process between Sections 3 and 4 is isentropic and adiabatic. Therefore, the total
temperature and total pressure can be obtained with

pt4 = pt3 (20)

Tt4 = Tt3 (21)
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Then, the mass flow at Section 4 can be calculated with Theorem 3 as

W4 = K
pt4√
Tt4

A4q(λ4) (22)

where A4 = πD2

4 is the exit area of the expansion stage.
As a result of flow conservation, we have W4 = W3. Then, the relative error of the

mass flow is defined as
e3 = (W4 −W3)/W3 (23)

The exit static pressure of the exhaust diffuser model is

p4 = π(λ4)pt4 = (1− k− 1
k + 1

λ2
4)

1
k−1

pt4 (24)

The exit static temperature of the exhaust diffuser model is

T4 = τ(λ4)Tt4 = (1− k− 1
k + 1

λ4
2)Tt4 (25)

2.2. Cooler Model

In the exhaust system, the cooler improves the gas flow capacity and reduces the aging
of the equipment by reducing the gas temperature. The high-temperature gas passing
through the cooling pipes with the cooling water inside is cooled to the allowable working
temperature. The structure of the cooler in the exhaust system is shown in Figure 7. It is
divided into n volumes, and it is assumed that the temperature in each volume between
pipes is even. Then, the temperature decreases gradually from Tv,1 to Tv,n in the volumes.

The heat transfer process of each pipe is shown in Figure 8. The heat transfers from the
gas to the pipe and then to the cooling water. Finally, the heat is brought out of the system
by the cooling water. The heat transfer rate between the gas and the pipe is denoted as

.
Q1 = h1 A1(T1 − Tm) (26)

where h1 is heat transfer coefficient between the gas and the pipe, A1 is the contact area, T1
is the average temperature of gas and Tm is the average temperature of the pipe.
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The heat transfer rate between the water and the pipe is denoted as

.
Q2 = h2 A2(T2 − Tm) (27)

where h2 is heat transfer coefficient between the gas and the pipe, A2 is the contact area, T2
is the average temperature of cooling water and Tm is the average temperature of the pipe.

The heat quantity brought out of the system by the cooling water is

.
Q3 = W2Cp2(T2 − T2in) (28)

where W2 is the mass of the cooling water in each pipe, Cp2 is the specific heat of the
cooling water, T2 is the average temperature of the cooling water and T2in is the original
temperature of the cooling water.

Therefore, the energy change rate of the pipe is

dEm

dt
=

.
Q1 +

.
Q2 (29)

Moreover, the energy of the pipe can be defined as

Em = cmmmTm (30)

where cm is the specific heat of the pipe, mm is the mass of the pipe and Tm is the average
temperature of the pipe.

Another definition of the energy change rate of the pipe is shown in Equation (31),
which is obtained by differentiating Equation (30).

dEm

dt
= cmmm

dTm

dt
(31)

The differential equation of the pipe temperature is obtained by substituting Equation (29)
into Equation (31). It is denoted as

dTm

dt
=

h1 A1(T1 − Tm) + h2 A2(T2 − Tm)

cmmm
(32)

With the same calculation, we can obtain the differential equation of the gas temperature
and the differential equation of the water temperature, as shown in Equations (33) and (34).
The output temperature of the gas T1out and the output temperature of the cooling water
T2out are shown in Equations (35) and (36).

dT1

dt
= −h1 A1(T1 − Tm)

cp1W1
(33)

dT2

dt
=
−h2 A2(T2 − Tm)−W2Cp2(T2 − T2in)

cp2W2
(34)

T1out = T1 +
dT1

dt
(35)

T2out = T2in +
dT2

dt
(36)

where cp1 is the specific heat of the gas, and W1 is the mass of the gas flow through a pipe.
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2.3. Butterfly Valve Model

A butterfly valve is used to regulate the pressure in the test chamber by controlling
the mass flow exiting the exhaust system. The mass passing the butterfly valve depends on
the pressure and temperature before the valve, the pressure after the valve and the opening
of the valve. The structure of butterfly is shown in Figure 9.
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The butterfly valve is modeled in the form of a flow characteristic model with a flow
coefficient map, as shown in Figure 10, and the flow function is denoted in Equation (37).

W = φ
πD2

4
(1− cos

απ

180
) · pin ·

√
2

RTin
(37)

where W is the mass flow through the valve, and D is the diameter of the valve. The
flow coefficient φ can be calculated with the valve pressure ratio pr =

pout
pin

and the valve
opening α.
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2.4. Test Chamber Model and Pipe Volume Model

The test chamber is the test section of the exhaust system that simulates the exhaust
environment of the engine at a high altitude by controlling the mass of the entering flow
and exiting flow. The entering flow is controlled with Valve 1 and Valve 2 in this test
chamber, which is the valve flow in Figure 11. The exiting flow is ejected by the engine
exhaust gas, which is the secondary flow in Figure 11.
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The internal energy equation of the air in the test chamber is defined as

U = WCvT = W(Cp − R)T (38)

where U is the internal energy of the air in the test chamber, W is the mass of the air in the
test chamber, T is the temperature of the air in the test chamber, R is the gas constant, Cv is
the specific heat of the gas at a constant volume and Cp is the specific heat of the gas at a
constant pressure.

The energy differential equation in Equation (39) is obtained by differentiating Equation (38).

dU
dt

=
dW
dt

(Cp − R)T + W(Cp − R)
dT
dt

(39)

Moreover, the energy differential equation in Equation (39) can be deducted from the
law of energy conservation.

dE
dt

= Win(CpTin +
vin

2

2
)−Wout(CpTout +

vout
2

2
) (40)

where E is energy of the air in the test chamber, and Win is the mass of the air entering the
test chamber, which is the valve flow. Tin is the temperature of the air entering the test
chamber. vin is the velocity of the air entering the test chamber and is calculated with the
mass of the air and the inlet area of the test chamber. Wout is the mass of the air exiting the
test chamber, which is the secondary flow. Tout is the temperature of the air exiting the test
chamber. vout is the velocity of the air exiting the test chamber and is calculated with the
mass of the air and the exiting area of the test chamber.

It is assumed that the air in the test chamber does not exchange heat with the
wall. Therefore,

dE
dt

=
dU
dt

(41)

The change in the mass is denoted as

dW
dt

= Win −Wout (42)

The ideal gas equation of state is shown in Equation (43).

PV = WRT (43)

The temperature differential equation of the air in the test chamber, as shown in
Equation (44), can be deduced with Equations (39)–(43).

dT
dt

=
RT

PV(CP − R)

[
(CP − R)T(Wout −Win) +

(
CPTin +

vin
2

2

)
Win −

(
CPTout +

vout
2

2

)
Wout

]
(44)

The pressure differential equation of the ideal gas, as shown in Equation (45), can be
obtained by differentiating the ideal gas equation of state in Equation (43).

dP
dt

=
RT
V

dW
dt

+
P
T

dT
dt

(45)

The pressure differential equation of the air in the test chamber, as shown in Equation (46),
can be obtained by substituting Equations (43) and (44) into Equation (45).

dP
dt

=
R

V(CP − R)

[(
CPTin +

vin
2

2

)
Win −

(
CPTout +

vout
2

2

)
Wout

]
(46)
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The pressure and temperature inside the test chamber at time t + ∆t can be denoted
with the pressure and temperature at time t and the variation within ∆t.

P+ = P +
dP
dt

∆t (47)

T+ = T +
dT
dt

∆t (48)

The pipe volume model represents the pipe connecting the components above. In
the exhaust system, it is the volume between the exhaust diffuser and Valve 3. It can be
modeled the same as the test chamber model with one input and one output. However, the
heat brought out of the volume by the cooler must be considered. Therefore, Equation (40)
is augmented as Equation (49). The differential equations of temperature and pressure in
Equations (44) and (46) are transformed into Equations (50) and (51). A diagram of the pipe
volume model is shown in Figure 12.

dE
dt

= Win(CpTin +
vin

2

2
)−Wout(CpTout +

vout
2

2
)−∑

.
Q1 (49)

where ∑
.

Q1 is the total heat quantity brought out of the gas in the cooler.

dT
dt

=
RT

PV(CP − R)

[
(CP − R)T(Wout −Win) +

(
CPTin +

vin
2

2

)
Win −

(
CPTout +

vout
2

2

)
Wout + ∑

.
Q1

]
(50)

dP
dt

=
R

V(CP − R)

[(
CPTin +

vin
2

2

)
Win −

(
CPTout +

vout
2

2

)
Wout + ∑

.
Q1

]
(51)
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3. Iterative Model of the Exhaust System

The exhaust system consists of two dynamic cavities whose temperature and pressure
change when the flow balance of the inlet and outlet breaks. One of the cavities is the test
chamber, and the other is the pipe volume. Since the main purpose of the exhaust system is
to simulate the exhaust pressure of the engine, the pressure in the two dynamic cavities is
chosen as the system states. The static pressure in the test chamber (p1s) is mainly decided
by the valve flow passing through Valve 1 and Valve 2 and the secondary flow ejected by
the engine. The static pressure in the pipe volume (p5) is mainly decided by the output
mass of the exhaust diffuser and the mass passing through Valve 3.

In the calculation process of the exhaust diffuser, four initial guess values are intro-
duced. This means that four residual equations are needed. By solving the residual equa-
tions with the iteration method, the initial guess values can be replaced with the true values
of system gradually. The first three equations are shown in Equations (15), (19) and (23).
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The fourth equation is the balance of the exhaust diffuser output pressure p4 and the pipe
volume pressure p5, as shown in Equation (52).

e4 = (p5 − p4)/p5 (52)

The relationship between the components is shown in Figure 13. The inlet conditions,
system states and control values of the exhaust system model are listed in Table 3.
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Table 3. Inlet conditions and control values of exhaust system model.

Type Variable Meaning

Inlet conditions

pamb Environment pressure
Tamb Environment temperature
We Mass flow of engine nozzle exit
Te Temperature of engine nozzle exit
pe Pressure of engine nozzle exit
λe Velocity coefficient of engine nozzle exit
Ae Flow area of engine nozzle exit
Wc Mass flow of cooling water
Tc Temperature of cooling water
pc Pressure of cooling water
p7 Pressure after Valve 3

System states p1s Static pressure in test chamber
p6 Static pressure in pipe volume

Control values
α1 Opening of Valve 1
α2 Opening of Valve 2
α3 Opening of Valve 3

4. Model Simulation and Verification

In order to verify the accuracy of the exhaust system model, its simulation results
should be compared with experimental data. The experimental data used in this paper
were obtained in an experiment during the research of a turbofan engine at the AGTF of
the AECC Sichuan Gas Turbine Establishment. It tests the performances of engines from
idle to intermediate states at different flight heights, including 3 km, 5 km and 10 km. The
experimental data were divided into four different types, which are mass flow, temperature,
pressure and valve opening. They were obtained with four different kinds of sensors, which
were orifice meters, temperature sensors, pressure sensors and linear displacement sensors.
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As a result of the linear relationship between the displacement of the actuator and the
opening of butterfly valve, as shown in Equation (53), the α1, α2 and α3 could be calculated
with the displacement measured with the linear displacement sensors. The arrangement of
the sensors in the exhaust system is shown in Figure 14. Their manufacturers and accuracy
are listed in Table 4. The measured experimental data are shown in Figure 15.

α =
90

Lmax
L (53)

where Lmax is the maximum stroke of the hydraulic cylinder, and L is the current displace-
ment measured by the sensor.
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Table 4. Type and accuracy of sensors.

Type Manufacturer Accuracy

Orifice meter Chuanyi ±1%
Temperature sensor Therncway ±0.5%

Pressure sensor Honeywell ±0.1%
Linear displacement sensor MTS ±0.1%
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Figure 15. Experimental data: (a) Pressure of exhaust system; (b) Opening of valves in exhaust system.

4.1. Model Verification with Experimental Data and Observed Engine Parameters

The exhaust system model was built with Matlab in Simulink. The simulation platform
is shown in Figure 16. It consisted of the experimental data module, engine data observer
module, exhaust system controller module, actuator module and exhaust system module.
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Figure 16. Simulation platform for exhaust system validation.

The experimental data module contained the data that are shown in Figure 15. The
engine data observer module calculated the outlet mass flow We, pressure Pe, temperature
Te and nozzle throat area Ae of the engine based on the states of the engine because they
were not measured directly. They are shown in Figure 17. The controller and the actuator
were used to test the performance of the exhaust system built with the multi-cavity method
in a closed-loop system. It was a PI controller with P = 0.001 and I = 0.1. The pressure in
the test chamber was regulated to the desired value by adjusting the opening of Valve 3
with this PI controller by switching the manual switch module and activating the control
loop. The transfer function of the valve actuator was assumed as 1

0.1s+1 .
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Figure 17. Observed engine parameters: (a) Mass flow of engine; (b) Total temperature after turbine;
(c) Total pressure after turbine; (d) Throat area of engine nozzle.
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The simulation platform was solved with the Heun method and a fixed step size
of 0.01.

A simulation under the same working conditions as in the experiment was carried out.
The inlet conditions and the control values of the exhaust system model that are shown in
Table 2 were set with the experimental data module and the engine data observer module,
as shown in Figure 16. Other parameters were set as constants. The temperature of the
environment and cooling water was 288.15 K. The velocity coefficient λe at the nozzle throat
was 1.

The simulation results compared with experimental data are shown in Figure 18. The
pressure error between the simulation results and experimental data was no more than
2 kPa in the steady state and less than 6 kPa in the transient process.
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4.2. Simulation Results Compared with Lumped-Parameter Model

It should be known that, in the modeling procedure of the test chamber and pipe
volume model, the the main reason for the pressure dynamic in the volume is the inflow and
outflow mass. Therefore, the mass calculation becomes an important part of the exhaust
system model for both accurate calculations and dynamic performance analysis.

The simulation results of mass are shown in Figure 19. Taking the exhaust system
shown in Figure 13 as a whole, the total mass flow into the system consists of the valve flow
Wv, which is the sum of the mass that passes through Valve 1 and Valve 2, and the engine
flow We. The mass flow out of the system includes mass that passes through Valve 3, which
is denoted as W7. They are equal to each other in the steady state, and both of them increase
and decrease with the engine state as the mass flow We changes. It should be mentioned
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that W7 increases around time 6000 s and decreases around time 27,600 s quickly, as shown
in Figure 19a. It results from rapid opening change of Valve 3, as shown in Figure 15b, with
the purpose of changing the pressure p1s in the test chamber, as shown in Figure 15a. The
dynamic performance of the test chamber, as shown in Figure 11, is defined with the input
denoted as valve flow Wv and the output denoted as secondary flow W1s. It is shown in
Figure 19b that the valve flow Wv equals the secondary flow W1s in the steady state, and
the balance is broken in the transient process of the engine or exhaust system.
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Figure 19. Simulation results of mass flow: (a) Mass flow of exhaust system; (b) Mass flow of
test chamber.

The secondary flow of mass W1s, which is ejected by the main stream of mass W1m and
defined in Equation (4), is the output of the test chamber model and one of inputs of the
exhaust system volume. It is a bridge connecting the two main volumes, which is the test
chamber and pipe volume, as shown in Figure 13, in the exhaust system. The multi-cavity
iterative exhaust system model calculates secondary flow based on the exhaust parameters
of the engine, the pressure in the test chamber and the pressure in the exhaust system by
iteration. It makes the model have the advantage of calculating the pressure difference
more accurately compared with the traditional lumped-parameter model. The lumped
parameter model of AGTF exhaust systems was first proposed in reference [12], and its
logic diagram is shown in Figure 20. It simplifies the exhaust system as a single volume
without considering the pressure dynamic in the exhaust diffuser and the heat exchange in
the cooler.
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Therefore, to further verify the advantage of the exhaust system built with the multi-
cavity iterative modeling method, it was compared with the traditional lumped-parameter
model. The simulation was carried out under the same conditions shown in Figure 15. The
simulation results are shown in Figure 21, where the experimental data are marked with a
solid line, and the simulation results are marked with a dashed line.
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It is shown in Figure 21a that the test chamber pressure obtained with the single-
volume lumped-parameter model is much higher than that of the experimental data and
the multi-cavity model simulation results. The secondary flow cannot be obtained with the
single-volume model and is simplified as the valve flow. Due to the higher pressure in the
test chamber, the valve flow Wv calculated with the single-volume model is smaller than
that of the experimental data and the multi-cavity model simulation results. The difference
between the experimental data and the multi-cavity model simulation results in Figure 21b
was a result of replacing the experimental W1s with Wv, because the secondary flow could
not be measured directly in the experiment.

Moreover, the total mass flow of the exhaust system is shown in Figure 21c. The smaller
total mass flow of the single-volume model results from the much higher temperature
before Valve 3, because the lumped-parameter model does not consider the heat exchange
in the cooler. The temperature before Valve 3 is shown in Figure 21d.
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4.3. Closed-Loop Simulation Results

To verify the performance of the exhaust system built with the multi-cavity method in
a closed-loop system, the manual switch module was switched, and the control loop was
activated, as shown in Figure 16.

The simulation results are shown in Figure 22. The pressure in the test chamber fits the
experimental data, and the difference between α3 is relatively small, which further verifies
the accuracy of the exhaust system model. It proves that the exhaust system model can be
used to design and test the control algorithm. Moreover, the response of the mass flow,
shown in Figure 23, is similar to the mass flow response, shown in Figure 19, with a smaller
mass flow fluctuation.
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5. Conclusions

A multi-cavity iterative modeling method is proposed, which aims at improving
accuracy and reflects the dynamic process of the exhaust system model. The conclusions
that were obtained are listed as follows:

1. The multi-cavity iterative model is able to simulate the pressure in the test chamber
and in the exhaust system. The simulation results show that the maximum error of pressure
in the test chamber is 2 kPa in the steady state and 5 kPa in the transient process compared
with the experimental data. The pressure error in the exhaust system is no more than 2 kPa
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in the steady state and no more than 6 kPa in the transient process compared with the
experimental data.

2. The simulation results of the multi-cavity iterative model were compared with the
lumped-parameter model under the same working conditions. This showed that the model
built with the proposed method has advantages of calculating the pressure and mass in the
exhaust system accurately over the lumped-parameter model.

3. The multi-cavity iterative model was tested in a closed-loop system. The results
show that the pressure in the test chamber can be controlled to the desired value, and the
opening of the valve is only slightly different from the experimental data, which further
verifies the accuracy of the exhaust system model and proves the model’s capability of
being used to design and test the control algorithm.

Impurities such as water vapor should be considered in the future, because engine
emissions have been a hot issue for decades, and new AGTFs that are able to carry out
research on the icing and noxious gases of engines are being built. It increases the demand
of the exhaust system model, and the modeling method should be improved to support
the research.
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