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Abstract: The golden ratio and the Fibonacci sequence pFnq are well known, as is the fact that the

ratio
Fn`1

Fn
converges to the golden ratio for sufficiently large n. In this paper, we investigate the

metallic ratio—a generalized version of the golden ratio—of pulsating Fibonacci sequences in three
forms. Two of these forms are considered in the sense of pulsating recurrence relations, and their
diagrams can be represented by symmetry, which is one of their distinguishing characteristics. The
third form is the Fibonacci sequence in bipolar quantum linear algebra (BQLA), which also pulsates.

Keywords: pulsating Fibonacci sequence; bipolar Fibonacci sequence; golden ratio; metallic ratio;
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1. Introduction

One of the most well-known sequences in the world is the Fibonacci sequence,
Fn`2 “ Fn`1 ` Fn, for any n ě 0 with initial conditions F0 “ 0 and F1 “ 1. This sequence
has been studied for a long time and has been explored in many fields. It can be found in a
variety of mathematical fields, such as abstract algebra and number theory. For example,
in 1986, H.J. Wilcox [1] established the Fibonacci sequence in a finite abelian group with in-
spiration from D.D. Wall [2] and A.P. Shah [3]. Both of them studied the Fibonacci sequence
together with modulo some fixed integer m. In 1990, S.W. Knox [4] (in the spirit of [1–3])
considered the k-nacci sequence of a finite group. The development along this route has
continued. In 2003, E. Özkan et al. [5] provided some results with the Wall number of the
ordinary three-step Fibonacci sequence psnq in a nilpotent group with nilpotency class 4
and exponent p for a prime number p ą 3, defined by

sn`3 “ sn`2 ` sn`1 ` sn, (1)

where s0 “ s1 “ 0, and s2 “ 1. In the same year, R. Dikici and E. Özkan [6] also studied
a similar sequence (1) with the same initial data in a 3-generator relatively free group in
the variety of nilpotent groups of class 2 and exponent p but in a generalized version as
sn`3 “ asn`2` bsn`1` csn for fixed a, b, c P N. In 2020, the largest Fibonacci number, whose
decimal expansion is of the form ab . . . bc . . . c, was found by P. Trojovský [7]. Moreover,
we can see applications of Fibonacci numbers in applied mathematics and computer
science, as follows. A.F. Nematollahi et al. [8] proposed a new metaheuristic optimization
algorithm known as the golden ratio optimization method (GROM) that uses the golden
ratio of the Fibonacci series to update the solutions in two different phases. This method
is a parameter-free and simple implementation. Furthermore, GROM is very robust,
and almost similar results have been obtained in different trials. F. Caldarola et al. [9]
showed that all the Carboncettus words thus defined are Sturmian words, except in the
case of n “ 5, and the limit of the sequence of Carboncettus words is the Carboncettus
limit word itself. These results originate from the Carboncettus octagon, a new geometric
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structure based on Fibonacci numbers which is similar to a regular octagon; see [10].
Furthermore, the Fibonacci sequence has numerous essential applications in diverse fields,
including aesthetic applications, as shown in [11–13] or applications related to cross-branch
testing, including probability theory [14], statistical physics [15], and education [16–18].

In this paper, we combine “the metallic ratio” and “the pulsated Fibonacci sequence”,
which generalize the concepts of the golden ratio and the Fibonacci sequence, respectively.
To the best of our knowledge, this is the first work that provides a study on this topic. We
give the definitions that we use below. The metallic ratio was defined by D. Passoja [12],
in 2015, in the form of a continued fraction expansion. In addition, in 2020, R. Sivaraman [19]
tried to generalize the recurrence relations to produce a more general ratio from which
golden, silver, and bronze ratios follow:

For a given positive integer k as ρk “
k`
?

k2`4
2 “ lim

nÑ8

xn`1

xn
where

xn`2 “ kxn`1 ` xn, (2)

and x1 “ x2 “ 1 for each n ě 1. Indeed, in 2011, O. Yayenie [20] proposed a new type of
generalized Fibonacci sequence txnu

8
n“0, which is defined recursively by x0 “ 0, x1 “ 1,

and xn “

"

axn´1 ` xn´2 if n is even,
bxn´1 ` xn´2 if n is odd,

where a, b P Rzt0u and n ě 2. Notice that

in the case a “ b “ k, the above sequence is Sequence (2). For special cases, we have
the golden ratio Φ “ ρ1 “

1
2 p1 `

?
5q, the silver ratio ρ2 “ 1 `

?
2, and the bronze ratio

ρ3 “
1
2 p3`

?
13q. In addition, in 1985, the origin of the pulsated Fibonacci sequence was

shown by K.T. Atanassov et al. [21] who introduced a new perspective on the generalization
of the Fibonacci sequence. After this, the generalization of pulsated Fibonacci sequences
has been expressed. For example, in 2013, Atanassov [22] constructed the pa, bq-pulsated
Fibonacci sequence as follows:

α0 “ a, β0 “ b,

α2n`1 “ β2n`1 “ α2n ` β2n,

α2n`2 “ α2n`1 ` β2n,

β2n`2 “ β2n`1 ` α2n

(3)

where n P N0 and a, b P R. In the same year, the above sequence was modified by
Atanassov [23], which was called the pa, b, cq-pulsated Fibonacci sequence. The following
year, the pa1, a2, . . . , amq-pulsated Fibonacci sequence [24] was introduced and is described
as follows:

α1,0 “ a1, α2,0 “ a2, . . . , αm,0 “ am,

α1,2k`1 “ α2,2k`1 “ . . . “ αm,2k`1 “

m
ÿ

i“1

αi,2k,

αj,2k`2 “ αj,2k`1 ` αm´j`1,2k

(4)

where j, k, m P N0 such that 1 ď j ď m and a1, a2, . . . , am P R. In 2019, the complex
pulsating Fibonacci sequence was introduced by S. Halici and A. Karatas [25] and is described
as follows:

P0 “ a` ci, Q0 “ b` ci,

RepPn`1q “ ImpPnq,

RepQn`1q “ ImpQnq,

ImpP2n`1q “ RepQ2nq ` ImpP2nq,

ImpQ2n`1q “ RepP2nq ` ImpQ2nq,

ImpP2n`2q “ ImpQ2n`2q “ ImpP2n`1 `Q2n`1q
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where n P N0 and a, b, c P R. Recent types of pulsating Fibonacci sequences were published
in 2021 and 2022. One is referred to as the pulsating pm, cq´Fibonacci sequence [26]. For
real numbers a1, a2, . . . , am and c, the pulsating pm, cq´Fibonacci sequence is defined by

α1,0 “ a1, α2,0 “ a2, . . . , αm,0 “ am,

α1,2k`1 “ α2,2k`1 “ ¨ ¨ ¨ “ αm,2k`1 “ c
m
ÿ

i“1

αi,2k,

αj,2k`2 “ αj,2k`1 `

m
ÿ

i“1
i‰j

αi,2k

where j, k, and m are non-negative integers such that 1 ď j ď m, and c ‰ 0. Another one is
referred to as the complex pulsating pa1, a2, . . . , am, cq-Fibonacci sequence [27], which is given
as follows. Let a1, a2, . . . , am and c be real numbers. Then,

P1,0 “ a1 ` ci, P2,0 “ a2 ` ci, . . . , Pm,0 “ am ` ci,

RepPj,k`1q “ ImpPj,kq,

ImpPj,2k`1q “ RepPm´j`1,2kq ` ImpPj,2kq,

ImpP1,2k`2q “ ImpP2,2k`2q “ ¨ ¨ ¨ “ ImpPm,2k`2q “ Im

˜

m
ÿ

i“1

Pi,2k`1

¸

for any non-negative integers j, k, and m such that 1 ď j ď m.
However, the related problem of finding the metallic ratio, particularly the golden

ratio, remains. The aim of this paper is to study the ratio of the consecutive terms of the
following sequences. The first pulsating Fibonacci sequence to merge Sequences (2) and (3)
is given by

α0 “ a, β0 “ b,

α2n`1 “ β2n`1 “ α2n ` β2n,

α2n`2 “ kα2n`1 ` β2n,

β2n`2 “ kβ2n`1 ` α2n

(5)

where n P N0, k ą 0, and a, b ě 0, such that a, b are not both zero simultaneously. By the
pattern of pulsating of Sequence (5), in even subscript, the green line represents sequence
α, and the yellow line represents sequence β, which are symmetrical with each other.
Moreover, while α2 “ α1` β0, β4 “ β3` α2 and so on are shown in solid lines, β2 “ β1` α0,
α4 “ α3` β2 and so on are shown in dashed lines, where both types of lines are symmetrical;
see Figure 1.

Figure 1. The pa, bq-pulsating Fibonacci sequence when k “ 1 in Sequence (5).

Another sequence is in the same trace, but we consider the sequence (4) in the case of
m “ 3, shown as follows.
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α0 “ a, β0 “ b, γ0 “ c,

α2n`1 “ β2n`1 “ γ2n`1 “ α2n ` β2n ` γ2n,

α2n`2 “ kα2n`1 ` γ2n,

β2n`2 “ kβ2n`1 ` β2n,

γ2n`2 “ kγ2n`1 ` α2n

(6)

where n P N0, k ą 0, and a, b, c ě 0, such that a, b, and c are not all zero simultaneously; see
Figure 2.

Figure 2. The pa, b, cq-pulsating Fibonacci sequence when k “ 1 in Sequence (6). As seen in Figure 1,
the green and yellow lines are symmetrical to each other, as are the solid and dashed lines.

Outline of the paper: In this paper, the main results are separated into two sec-
tions. In Section 2, the metallic ratios of pulsated Fibonacci sequences are presented in
Theorems 1 and 2. In order to pave the way for the main results, the auxiliary result is
found for α, β, and γ in Sequence (6), which is shown in the first part of this section. In
Section 3, a new type of Fibonacci sequence introduced in 2016 by [28]—namely, the bipo-
lar Fibonacci sequence—is presented, and we extend some concepts of Section 2 to this
sequence; see Theorem 3. Both results in Sections 2 and 3 are equivalent. In Section 4, a
discussion of the results and future work is presented. Lastly, in Section 5, we summarize
our results and suggest some conjectures.

2. Pulsating Fibonacci Sequence

The following lemma is used to obtain the result in Theorem 2, which is one of the
main results related to Sequence (6).

Lemma 1. Let α, β, γ be the sequence (6). Then, for each n P N, the formulas for α and γ are

α2n “

$

’

’

’

’

&

’

’

’

’

%

n´1
ÿ

i“0

kα2i`1 ` α0 if 2 | n

n´1
ÿ

i“0

kα2i`1 ` γ0 if 2 ffl n

and γ2n “

$

’

’

’

’

&

’

’

’

’

%

n´1
ÿ

i“0

kγ2i`1 ` γ0 if 2 | n

n´1
ÿ

i“0

kγ2i`1 ` α0 if 2 ffl n,

and the formula for β is β2n “

n´1
ÿ

i“0

kβ2i`1 ` β0.

Proof. First, we will prove by mathematical induction the case of sequences α and γ.
Clearly, for n “ 1, we obtain α2 “ kα1 ` γ0, and γ2 “ kγ1 ` α0. For n “ 2, we
have α4 “ kα3 ` γ2 “ kα3 ` kα1 ` α0, because α1 and γ1 are the same value. Similarly,
γ4 “ kγ3` α2 “ kγ3` kγ1` γ0. Then, using the inductive hypothesis, we consider the two

cases when n is even and odd. If n is even, then γ2n “

n´1
ÿ

i“0

kγ2i`1`γ0. Since α2n`1 “ γ2n`1,
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we obtain α2n`2 “ kα2n`1 ` γ2n “ kα2n`1 `

n´1
ÿ

i“0

kα2i`1 ` γ0. Thus, α2n`2 “

n
ÿ

i“0

kα2i`1 ` γ0

if 2 ffl n ` 1. If n is odd, then γ2n “

n´1
ÿ

i“0

kγ2i`1 ` α0. Since α2n`1 “ γ2n`1, we obtain

α2n`2 “ kα2n`1 `

n´1
ÿ

i“0

kα2i`1 ` α0. Then, α2n`2 “

n
ÿ

i“0

kα2i`1 ` α0 if 2 | n` 1. In a similar

manner, we obtain γ2n`2 “

n
ÿ

i“0

kγ2i`1 ` α0 if 2 ffl n ` 1, and γ2n`2 “

n
ÿ

i“0

kγ2i`1 ` γ0 if

2 | n` 1. Hence,

α2n`2 “

$

’

’

’

’

&

’

’

’

’

%

n
ÿ

i“0

kα2i`1 ` α0 if 2 | n` 1

n
ÿ

i“0

kα2i`1 ` γ0 if 2 ffl n` 1

and

γ2n`2 “

$

’

’

’

’

&

’

’

’

’

%

n
ÿ

i“0

kγ2i`1 ` γ0 if 2 | n` 1

n
ÿ

i“0

kγ2i`1 ` α0 if 2 ffl n` 1.

Next, based on mathematical induction and the fact that β2n`2 “ β2n`1 ` β2n, the se-
quence β follows.

The ratios of the consecutive terms for Sequences (5) and (6) are presented in
Theorems 1 and 2, respectively.

Theorem 1. Let pαnq and pβnq be an pa, bq-pulsating Fibonacci sequence as Sequence (5). Then,
the pulsating metallic ratio is

• lim
nÑ8

α2n`1

α2n
“ lim

nÑ8

β2n`1

β2n
“ 2,

• lim
nÑ8

α2n`2

α2n`1
“ lim

nÑ8

β2n`2

β2n`1
“

2k` 1
2

.

Proof. From Sequence (5), we obtain

lim
nÑ8

α2n`1

α2n
“ lim

nÑ8

ˆ

1`
β2n

α2n

˙

. (7)

Then, the limit of the ratio of β2n and α2n as n approaches infinity must be found.
From the formulas of α and β, we have that α2n`2 “ kα2n`1 ` β2n “ kα2n ` pk ` 1qβ2n,
and β2n`2 “ kβ2n`1 ` α2n “ kβ2n ` pk` 1qα2n. Now, for n P N, we obtain

α2n`2

α2n
“ k`

pk` 1qβ2n

α2n
, (8)

β2n`2

β2n
“ k`

pk` 1qα2n

β2n
, (9)

and |α2n ´ β2n| “ |a ´ b| by using mathematical induction. It is obvious that pβ2nq is
a strictly increasing sequence and unbounded. Therefore, lim

nÑ8
β2n “ 8, which forces

lim
nÑ8

α2n ´ β2n

β2n
“ 0. Thus, we obtain lim

nÑ8

α2n

β2n
“ 1. From Equation (7), we conclude



Symmetry 2022, 14, 1204 6 of 18

that lim
nÑ8

α2n`1

α2n
“ 2. Similarly, we obtain lim

nÑ8

β2n`1

β2n
“ lim

nÑ8

ˆ

1`
α2n

β2n

˙

“ 2. In addi-

tion, from Equations (8) and (9), we obtain lim
nÑ8

α2n`2

α2n
“ lim

nÑ8

β2n`2

β2n
“ 2k ` 1. Thus,

lim
nÑ8

α2n`2

α2n`1
“ lim

nÑ8

α2n`2

α2n
¨

α2n

α2n`1
“

2k` 1
2

. Similarly, we have lim
nÑ8

β2n`2

β2n`1
“

2k` 1
2

.

Corollary 1. For Sequence (5), the pulsating golden ratio is

• lim
nÑ8

α2n`1

α2n
“ lim

nÑ8

β2n`1

β2n
“ 2,

• lim
nÑ8

α2n`2

α2n`1
“ lim

nÑ8

β2n`2

β2n`1
“

3
2

.

Proof. This follows directly by substituting k “ 1 in Theorem 1.

Theorem 2. Let pαnq, pβnq and pγnq be an pa, b, cq-pulsating Fibonacci sequence as Sequence (6).
Then, the pulsating metallic ratio is

• lim
nÑ8

α2n`1

α2n
“ lim

nÑ8

β2n`1

β2n
“ lim

nÑ8

γ2n`1

γ2n
“ 3,

• lim
nÑ8

α2n`2

α2n`1
“ lim

nÑ8

β2n`2

β2n`1
“ lim

nÑ8

γ2n`2

γ2n`1
“

3k` 1
3

.

Proof. Since

α2n`3

α2n`1
“

α2n`2 ` β2n`2 ` γ2n`2

α2n`1
“

kα2n`1 ` γ2n ` kβ2n`1 ` β2n ` kγ2n`1 ` α2n

α2n`1

“
3kα2n`1 ` α2n ` β2n ` γ2n

α2n`1
“
p3k` 1qα2n`1

α2n`1
,

we obtain lim
nÑ8

α2n`3

α2n`1
“ 3k` 1. Similarly, lim

nÑ8

β2n`3

β2n`1
“ 3k` 1 “ lim

nÑ8

γ2n`3

γ2n`1
. Moreover,

from the fact that αm “ βm “ γm for any positive odd number m, we have

lim
nÑ8

α2n`3

β2n`1
“ lim

nÑ8

α2n`3

γ2n`1
“ lim

nÑ8

β2n`3

γ2n`1
“ lim

nÑ8

α2n`3

α2n`1
“ 3k` 1.

Using Lemma 1, we know that

α2n “

$

’

’

’

’

&

’

’

’

’

%

n´1
ÿ

i“0

kα2i`1 ` α0 if 2 | n

n´1
ÿ

i“0

kα2i`1 ` γ0 if 2 ffl n

,

and it implies

α2n`2 “

$

’

’

’

’

&

’

’

’

’

%

n
ÿ

i“0

kα2i`1 ` α0 if 2 | n` 1

n
ÿ

i“0

kα2i`1 ` γ0 if 2 ffl n` 1
“

$

’

’

’

’

&

’

’

’

’

%

n
ÿ

i“0

kα2i`1 ` α0 if 2 ffl n

n
ÿ

i“0

kα2i`1 ` γ0 if 2 | n.
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Hence, we obtain

α2n`2

α2n
“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

n
ÿ

i“0

kα2i`1 ` γ0

n´1
ÿ

i“0

kα2i`1 ` α0

if 2 | n

n
ÿ

i“0

kα2i`1 ` α0

n´1
ÿ

i“0

kα2i`1 ` γ0

if 2 ffl n

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

kα2n`1 `

n´1
ÿ

i“0

kα2i`1 ` γ0

n´1
ÿ

i“0

kα2i`1 ` α0

if 2 | n

kα2n`1 `

n´1
ÿ

i“0

kα2i`1 ` α0

n´1
ÿ

i“0

kα2i`1 ` γ0

if 2 ffl n

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

kα2n ` kβ2n ` kγ2n `

n´1
ÿ

i“0

kα2i`1 ` γ0

n´1
ÿ

i“0

kα2i`1 ` α0

if 2 | n

kα2n ` kβ2n ` kγ2n `

n´1
ÿ

i“0

kα2i`1 ` α0

n´1
ÿ

i“0

kα2i`1 ` γ0

if 2 ffl n.

By Lemma 1, we conclude that

α2n`2

α2n
“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

kα0 ` kβ0 ` kγ0 ` 3
n´1
ÿ

i“0

k2α2i`1 `

n´1
ÿ

i“0

kα2i`1 ` γ0

n´1
ÿ

i“0

kα2i`1 ` α0

if 2 | n

kγ0 ` kβ0 ` kα0 ` 3
n´1
ÿ

i“0

k2α2i`1 `

n´1
ÿ

i“0

kα2i`1 ` α0

n´1
ÿ

i“0

kα2i`1 ` γ0

if 2 ffl n.

Since a, b, c P R` and pαnq, pβnq, pγnq are strictly increasing sequences, we obtain

lim
nÑ8

αn ą 0, lim
nÑ8

βn ą 0, and lim
nÑ8

γn ą 0. Therefore, we have
8
ÿ

i“0

α2i`1 “ 8,
8
ÿ

i“0

β2i`1 “ 8,

and
8
ÿ

i“0

γ2i`1 “ 8. Thus,

lim
nÑ8

1
n´1
ÿ

i“0

α2i`1

“ lim
nÑ8

1
n´1
ÿ

i“0

β2i`1

“ lim
nÑ8

1
n´1
ÿ

i“0

γ2i`1

“ 0.

Hence, lim
nÑ8

α2n`2

α2n
“ 3k` 1. Similarly, lim

nÑ8

β2n`2

β2n
“ 3k` 1, and lim

nÑ8

γ2n`2

γ2n
“ 3k` 1.

Next, Lemma 1 and the fact that α2n`1 “ β2n`1 “ γ2n`1 “ α2n ` β2n ` γ2n imply that
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α2n “

$

’

’

’

’

&

’

’

’

’

%

n´1
ÿ

i“0

kγ2i`1 ` α0 if 2 | n

n´1
ÿ

i“0

kγ2i`1 ` γ0 if 2 ffl n.

Then, for each n P N we have

An ď
γ2n

α2n
ď Bn

where

An “ min

$

’

’

’

’

’

&

’

’

’

’

’

%

n´1
ÿ

i“0

kγ2i`1 ` γ0

n´1
ÿ

i“0

kγ2i`1 ` α0

,

n´1
ÿ

i“0

kγ2i`1 ` α0

n´1
ÿ

i“0

kγ2i`1 ` γ0

,

/

/

/

/

/

.

/

/

/

/

/

-

and

Bn “ max

$

’

’

’

’

’

&

’

’

’

’

’

%

n´1
ÿ

i“0

kγ2i`1 ` γ0

n´1
ÿ

i“0

kγ2i`1 ` α0

,

n´1
ÿ

i“0

kγ2i`1 ` α0

n´1
ÿ

i“0

kγ2i`1 ` γ0

,

/

/

/

/

/

.

/

/

/

/

/

-

.

From the fact that
8
ÿ

i“0

γ2i`1 “ 8, it implies

lim
nÑ8

n´1
ÿ

i“0

kγ2i`1 ` γ0

n´1
ÿ

i“0

kγ2i`1 ` α0

“ lim
nÑ8

n´1
ÿ

i“0

kγ2i`1 ` α0

n´1
ÿ

i“0

kγ2i`1 ` γ0

“ 1

and then we get lim
nÑ8

An “ lim
nÑ8

Bn “ 1. Thus
ˆ

γ2n

α2n

˙

converges to 1 as n Ñ8. We obtain

lim
nÑ8

β2n

α2n
“ 1; hence,

lim
nÑ8

α2n`1

α2n
“ lim

nÑ8

α2n ` β2n ` γ2n

α2n
“ 3.

Similarly, lim
nÑ8

β2n`1

β2n
“ 3, and lim

nÑ8

γ2n`1

γ2n
“ 3. As a result,

lim
nÑ8

α2n`2

α2n`1
“ lim

nÑ8

α2n`2

α2n
¨

α2n

α2n`1
“

3k` 1
3

.

By the same argument, we obtain lim
nÑ8

β2n`2

β2n`1
“

3k` 1
3

, and lim
nÑ8

γ2n`2

γ2n`1
“

3k` 1
3

.

Corollary 2. For Sequence (6), the pulsating golden ratio is

• lim
nÑ8

α2n`1

α2n
“ lim

nÑ8

β2n`1

β2n
“ lim

nÑ8

γ2n`1

γ2n
“ 3,

• lim
nÑ8

α2n`2

α2n`1
“ lim

nÑ8

β2n`2

β2n`1
“ lim

nÑ8

γ2n`2

γ2n`1
“

4
3

.
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Proof. This follows directly by substituting k “ 1 in Theorem 2.

3. Bipolar Pulsating Fibonacci Sequence

In this section, our aim is to provide a smooth connection between bipolar quantum
linear algebra (BQLA), which was first introduced by W.R. Zhang, and a new type of
recurrence relation, as in the pulsating Fibonacci sequence. The concept of bipolar and
its applications—for example, bioeconomics, bipolar disorder, bipolar cognitive mapping,
and metal square—are described in the monograph [29]. Particularly, in chapter 8 of
this monograph, Zhang used BQLA and bipolar quantum cellular automata (BQCA) to
prove many laws, such as the symmetry law (or elementary energy equilibrium), energy
transfer equilibrium law [30], the law of energy symmetry (or YinYang-n-element system
nonequilibrium strengthening law) [31]. Moreover, he delivered some conjectures related
to symmetry. One of them is that antimatter–matter bipolar symmetry or broken symmetry
is bipolar equivalent to contraction–expansion bipolar symmetry or broken symmetry.

For simplicity, we present the terminology that will be used in this section as follows.
A bipolar dynamic equilibrium is a process of bipolar interaction and state change among
bipolar equilibrium, non-equilibrium and eternal equilibrium states of any action–reaction
pair or any collection of such pairs. A bipolar quantum agent (BQA) is a bipolar dynamic
equilibrium. The set of all bipolar agents is the bipolar set B “ tp´a, bq | a, b P R`0 u. The norm
of p´a, bq P B is |p´a, bq| “ |a| ` |b|. For p´a, bq, p´c, dq P B, the addition of the bipolar set
is defined as p´a, bq ` p´c, dq “ p´a´ c, b` dq, and the multiplication of the bipolar set is
defined as p´a, bqp´c, dq “ p´bc´ ad, ac` bdq. Both operations have commutative and
associative properties with the identities p0, 0q and p0, 1q, respectively. Moreover, p0, aq in
B is equivalent to a P R`0 in the sense that if we consider p´x, yq as a vector in R2 space,
the result p0, 3qp´x, yq “ p´3x, 3yq shows that the vector p´x, yq is triply stretched. Hence,
p0, aq behaves as a constant in B, similar to how a behaves in R`0 .

Next, we introduce the bipolar Fibonacci sequence, created by F. Marchetti [28] in 2016,
Fn “ p´ fn, fn`2q for n ě 0, where p fnq is the Fibonacci sequence, and f0 “ f1 “ 1. To
consider the golden ratio of pFnq, Marchetti defined a new operation for BQLA as follows.
The division of the bipolar set is a defined set for p´a, bq, p´c, dq P B such that c2 ´ d2 ‰ 0,

p´a, bq
p´c, dq

“

ˆ

´
bc´ ad
c2 ´ d2 ,

ac´ bd
c2 ´ d2

˙

.

This operation has a few points to be aware of, which are described in Remark 2.
In addition, we provide some properties of this division that contribute to our proof:

p´a, bq ` p´c, dq
p´a, bq

“ p0, 1q`
p´c, dq
p´a, bq

, and
p´a, bqp´c, dq
p´a, bq

“ p´c, dq for each p´a, bq, p´c, dq P B.

Furthermore, as n Ñ8, Marchetti showed that
Fn`1

Fn
converges to p0, Φq, where Φ “

1`
?

5
2

,

and this limit is sensible because p0, Φq is the constant Φ in R. However, the definition of
the convergent sequence in B was not given.

In this paper, a bipolar agent p´L, Mq is said to be the limit of a sequence p´an, bnq in
B or a sequence p´an, bnq converges to p´L, Mq, denoted by lim

nÑ8
p´an, bnq “ p´L, Mq, if for

every number ε ą 0, there exists a natural number N such that for any n P N, if n ě N, then

|Yinpp´an, bnqq ´ L| ` |Yangpp´an, bnqq ´M| ă ε

where Yinpp´a, bqq “ a, and Yangpp´a, bqq “ b, for any p´a, bq P B. Consequently, for any
sequence p´an, bnq in B, we have that lim

nÑ8
p´an, bnq “ p´L, Mq if and only if

lim
nÑ8

Yinpp´an, bnqq “ L, and lim
nÑ8

Yangpp´an, bnqq “ M. Moreover, if lim
nÑ8

p´an, bnq

p´cn, dnq
“

p0, 1q, then lim
nÑ8

p´cn, dnq

p´an, bnq
“ p0, 1q.
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Next, we aim to find the ratio of Sequences (10) and (11), which are inspired by
sequence (5) and a bipolar sequence from Marchetti.

For pαnq and pβnq satisfying Sequence (5), we define the sequences pFnq and pGnq

as follows:

F2n`1 “ G2n`1 “ F2n ` G2n,

F2n`2 “ p0, kqF2n`1 ` G2n,

G2n`2 “ p0, kqG2n`1 ` F2n

(10)

where F0 “ p´α0, α2q, F1 “ p´α1, α3q, G0 “ p´β0, β2q, G1 “ p´β1, β3q, k P R`, and n P N0.
Then, the sequence in (10) is called a bipolar pulsating Fibonacci sequence, which is depicted
in Figure 3.

Figure 3. A bipolar pulsating Fibonacci sequence in the case where k “ 1, α0 “ 1, and β0 “ 2 in
Sequence (10). This implies that F0 “ p´1, 5q, F1 “ p´3, 9q, G0 “ p´2, 4q, and G1 “ p´3, 9q. The blue
diamonds and the red crosses represent the sequences pFnq and pGnq, respectively.

Note that it is easy to show that Fn “ p´αn, αn`2q, and Gn “ p´βn, βn`2q for any
n P N0 using mathematical induction. Now, we are ready to investigate the metallic ratio of
this sequence.

Theorem 3. Let pFnq and pGnq be a bipolar pulsating Fibonacci sequence as Sequence (10). Then,
the bipolar pulsating metallic ratio is

• lim
nÑ8

F2n`1

F2n
“ lim

nÑ8

G2n`1

G2n
“ p0, 2q,

• lim
nÑ8

F2n`2

F2n`1
“ lim

nÑ8

G2n`2

G2n`1
“

ˆ

0,
2k` 1

2

˙

.

Remark 1. Although pFnq and pGnq are in the bipolar set, and the ratios are computed by a more

complicated division operation, their results p0, 2q and
ˆ

0,
2k` 1

2

˙

still associate with the results

in Theorem 1, which are 2 and
2k` 1

2
, respectively.
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Proof. First, we consider for any n P N0,

F2n`1

F2n
“

F2n ` G2n

F2n
“ p0, 1q `

p´β2n, β2n`2q

p´α2n, α2n`2q

“ p0, 1q `

˜

´
β2n`2α2n ´ β2nα2n`2

α2
2n ´ α2

2n`2
,

β2nα2n ´ β2n`2α2n`2

α2
2n ´ α2

2n`2

¸

“

˜

´
β2n`2α2n ´ β2nα2n`2

α2
2n ´ α2

2n`2
,

β2nα2n ´ β2n`2α2n`2

α2
2n ´ α2

2n`2
` 1

¸

.

From the proof of Theorem 1, we recall that lim
nÑ8

α2n

β2n
“ 1, limnÑ8

α2n

α2n`1
“ 1

2 , and

lim
nÑ8

α2n`2

α2n`1
“ lim

nÑ8

β2n`2

β2n`1
“

2k` 1
2

. Next, we consider part of Yin and part of Yang as

follows. In part of Yin, we obtain

lim
nÑ8

β2n`2α2n ´ β2nα2n`2

α2
2n ´ α2

2n`2
“ lim

nÑ8

1´
ˆ

β2n

α2n

˙ˆ

α2n`2

β2n`2

˙

ˆ

α2n

α2n`1

˙ˆ

β2n`1

β2n`2

˙

´

ˆ

α2n`1

α2n

˙ˆ

α2n`2

α2n`1

˙ˆ

α2n`2

β2n`2

˙

“
1´ p1qp1q

ˆ

1
2

˙ˆ

2
2k` 1

˙

´ p2q
ˆ

2k` 1
2

˙

p1q
“ 0.

Since lim
nÑ8

β2n

α2n
“ 1, and lim

nÑ8

α2n`2

α2n
“ lim

nÑ8

β2n`2

β2n
“ 2k` 1, we obtain

lim
nÑ8

β2nα2n ´ β2n`2α2n`2

α2
2n ´ α2

2n`2
“ lim

nÑ8

β2n

α2n
´

ˆ

β2n`2

β2n

˙ˆ

β2n

α2n

˙ˆ

α2n`2

α2n

˙

1´
ˆ

α2n`2

α2n

˙2

“
1´ p2k` 1qp1qp2k` 1q

1´ p2k` 1q2
“ 1.

As a result, in part of Yang, the limit tends to 2. Hence, we have lim
nÑ8

F2n`1

F2n
“ p0, 2q.

Next, for the sequence pGnq, we have

G2n`1

G2n
“

F2n ` G2n

G2n
“ p0, 1q `

p´α2n, α2n`2q

p´β2n, β2n`2q

“ p0, 1q `

˜

´
α2n`2β2n ´ α2nβ2n`2

β2
2n ´ β2

2n`2
,

α2nβ2n ´ α2n`2β2n`2

β2
2n ´ β2

2n`2

¸

for any n ě 0.

Since lim
nÑ8

α2n

β2n
“ 1, and lim

nÑ8

α2n`2

α2n
“ lim

nÑ8

β2n`2

β2n
“ 2k` 1, we can see that

lim
nÑ8

α2n`2β2n ´ α2nβ2n`2

β2
2n ´ β2

2n`2
“ lim

nÑ8

ˆ

α2n`2

α2n

˙ˆ

α2n

β2n

˙

´

ˆ

α2n

β2n

˙ˆ

β2n`2

β2n

˙

1´
ˆ

β2n`2

β2n

˙2

“
p2k` 1qp1q ´ p1qp2k` 1q

1´ p2k` 1q2
“ 0,
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and

lim
nÑ8

α2nβ2n ´ α2n`2β2n`2

β2
2n ´ β2

2n`2
“ lim

nÑ8

ˆ

α2n

β2n

˙

´

ˆ

α2n`2

α2n

˙ˆ

α2n

β2n

˙ˆ

β2n`2

β2n

˙

1´
ˆ

β2n`2

β2n

˙2

“
p1q ´ p2k` 1qp1qp2k` 1q

1´ p2k` 1q2
“ 1.

Thus, lim
nÑ8

G2n`1

G2n
“ p0, 2q. In addition, we have

F2n`2

F2n`1
“

F2n`1 ` G2n

F2n`1
“ p0, kq `

G2n

F2n`1
, and

G2n

F2n`1
“

p´β2n, β2n`2q

p´α2n`1, α2n`3q
“

˜

´
α2n`1β2n`2 ´ α2n`3β2n

α2
2n`1 ´ α2

2n`3
,

α2n`1β2n ´ α2n`3β2n`2

α2
2n`1 ´ α2

2n`3

¸

.

From the fact that α2n`1 “ β2n`1 for all n ě 0 and Theorem 1, it follows that

lim
nÑ8

α2n`1β2n`2 ´ α2n`3β2n

α2
2n`1 ´ α2

2n`3
“ lim

nÑ8

ˆ

β2n`2

α2n`1

˙

´

ˆ

α2n`3

α2n`1

˙ˆ

β2n

α2n`1

˙

1´
ˆ

α2n`3

α2n`1

˙2

“

ˆ

2k` 1
2

˙

´ p2k` 1q
ˆ

1
2

˙

1´ p2k` 1q2
“ 0,

and

lim
nÑ8

α2n`1β2n ´ α2n`3β2n`2

α2
2n`1 ´ α2

2n`3
“ lim

nÑ8

ˆ

β2n

α2n`1

˙

´

ˆ

α2n`3

α2n`1

˙ˆ

β2n`2

α2n`1

˙

1´
ˆ

α2n`3

α2n`1

˙2

“

ˆ

1
2

˙

´ p2k` 1q
ˆ

2k` 1
2

˙

1´ p2k` 1q2
“

1
2

;

hence, lim
nÑ8

G2n

F2n`1
“

ˆ

0,
1
2

˙

. Consequently, lim
nÑ8

F2n`2

F2n`1
“

ˆ

0,
2k` 1

2

˙

. In the same

manner, since
G2n`2

G2n`1
“

G2n`1 ` F2n

G2n`1
“ p0, kq `

F2n

G2n`1
, and

F2n

G2n`1
“

p´α2n, α2n`2q

p´β2n`1, β2n`3q
“

˜

´
α2n`2β2n`1 ´ α2nβ2n`3

β2
2n`1 ´ β2

2n`3
,

α2nβ2n`1 ´ α2n`2β2n`3

β2
2n`1 ´ β2

2n`3

¸

,

it implies that

lim
nÑ8

F2n

G2n`1
“

¨

˚

˚

˝

´

ˆ

2k` 1
2

˙

´

ˆ

1
2

˙

p2k` 1q

1´ p2k` 1q2
,

ˆ

1
2

˙

´

ˆ

2k` 1
2

˙

p2k` 1q

1´ p2k` 1q2

˛

‹

‹

‚

“

ˆ

0,
1
2

˙

.

Hence, we obtain lim
nÑ8

G2n`2

G2n`1
“

ˆ

0,
2k` 1

2

˙

.
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In the rest of this section, we consider Sequence (10) as a special case to the follow-
ing sequence.

Let pαnq and pβnq be sequences obtained from Sequence (5) in the case of k “ 1. Then,
we define the sequences pFnq and pGnq as follows:

F2n`1 “ G2n`1 “ F2n ` G2n,

F2n`2 “ F2n`1 ` G2n,

G2n`2 “ G2n`1 ` F2n

(11)

where F0 “ p´α0, α2q, F1 “ p´α1, α3q, G0 “ p´β0, β2q, G1 “ p´β1, β3q, and n P N0.

Corollary 3. For Sequence (11), the bipolar pulsating golden ratio is

• lim
nÑ8

F2n`1

F2n
“ lim

nÑ8

G2n`1

G2n
“ p0, 2q,

• lim
nÑ8

F2n`2

F2n`1
“ lim

nÑ8

G2n`2

G2n`1
“

ˆ

0,
3
2

˙

.

Proof. The proof follows directly from Theorem 3 and the fact that p0, 1q is the identity of
the multiplication.

Finally, the following remark shows some points to be aware of when dividing in the
bipolar set. This remark was adjusted from the comments in [32].

Remark 2. Let p´a, bq, p´c, dq P B. Then,
p´a, bq
p´c, dq

P B if and only if it satisfies one of the

following conditions.

• c ą d, a ď b, c ě
bd
a

if a ‰ 0

• c ą d, a ě b, c ě
ad
b

if b ‰ 0

• c ă d, a ď b, c ď
ad
b

if b ‰ 0

• c ă d, a ě b, c ď
bd
a

if a ‰ 0

4. Discussion

There are other forms of the pulsating sequence (5) that appeared in the last part
of [21]. The following recurrence relations are other pulsating sequences in the same spirit
as Sequence (3).

α0 “ a, β0 “ b,

α2n`1 “ β2n`1 “ α2n ` β2n,

α2n`2 “ kβ2n`1 ` β2n,

β2n`2 “ kα2n`1 ` α2n

(12)

where n P N0, k ą 0, and a, b ě 0 such that a, b are not both zero simultaneously.

α0 “ a, β0 “ b,

α2n`1 “ β2n`1 “ α2n ` β2n,

α2n`2 “ kα2n`1 ` α2n,

β2n`2 “ kβ2n`1 ` β2n

(13)
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where n P N0, k ą 0, and a, b ě 0 such that a, b are not both zero simultaneously.

α0 “ a, β0 “ b,

α2n`1 “ β2n`1 “ α2n ` β2n,

α2n`2 “ kβ2n`1 ` α2n,

β2n`2 “ kα2n`1 ` β2n

(14)

where n P N0, k ą 0, and a, b ě 0 such that a, b are not both zero simultaneously. Under
the condition α2n`1 “ β2n`1 “ α2n ` β2n, it implies that the pulsating sequences (5) and
(12) are the same sequence, and it also occurs in Sequences (13) and (14). So, the results of
Theorem 1 can be applied to the pulsating sequence (12). Furthermore, Sequence (13) is
similar to the origin sequence (2), and in the same way as the proof of Theorem 1, we can

reach forward the limit of
α2n`2

α2n`1
and

β2n`2

β2n`1
. As a result, the sequence (14) outcomes will

appear right away. That is why we only considered the form of the pulsating sequence (5).
Returning to the original version of the bipolar Fibonacci sequence Fn “ p´ fn, fn`2q

for n ě 0, where p fnq is the Fibonacci sequence, and f0 “ f1 “ 1, for a fixed k ě 1,
the standard form of the metallic ratio should be from the generalized bipolar Fibonacci
sequence as follows. For n ě 0,

Fn`2 “ p0, kqFn`1 ` Fn (15)

where Fn P B, F0 “ p´1, k` 1q, and F1 “ p´1, kpk` 1q ` 1q. If we let Fn “ p´ fn, fn`2q for
all n ě 0, we automatically have a recurrence relation fn`2 “ k fn`1 ` fn, where n ě 0,

f0 “ f1 “ 1; then, lim
nÑ8

fn`1

fn
is the ordinary metallic ratio ρk “

k`
?

k2 ` 4
2

. By the rule

of the division of the bipolar set and the fact that ρ2
k “ kρk ` 1, the following ratio of

Sequence (15) is presented immediately

lim
nÑ8

Fn`1

Fn
“ p0, kq ` lim

nÑ8

Fn´1

Fn
“ p0, kq `

ˆ

0,
1
ρk

˙

“ p0, ρkq.

Hence, we see p0, ρkq plays a role as the metallic ratio of the sequence Fn`2 “ p0, kqFn`1`

Fn, where F0 “ p´1, k` 1q, and F1 “ p´1, kpk` 1q ` 1q. This is very similar to the original
sequence (2), xn`2 “ kxn`1 ` xn. So, instead, we examined a bipolar set and a pulsating
sequence, which can be interwoven with concepts of the metallic means.

Notice that, in Section 3, even though the algebraic operation of addition in the bipolar
set is quite straightforward, it is different for the multiplication and the division of the
bipolar set. To illustrate these operations, we examine two agents p´2, 3q and p´a, bq in B as
vectors. From the results of p´2, 0qp´a, bq “ p´2b, 2aq and p0, 3qp´a, bq “ p´3a, 3bq, we can
see that p´2, 3qp´a, bq “ p´2, 0qp´a, bq ` p0, 3qp´a, bq is a sum of two vectors, where one
p´2b, 2aq is a vector twice the length of vector p´a, bq in the opposite direction with respect
to the line y “ ´x in the XY-plane, and another one is a triple stretch of a vector p´a, bq.

The division operation of bipolar is defined from the inverse operation of multipli-
cation under some conditions. It contains the same trend of multiplication in some cases,

such as
p´a, bq
p´2, 0q

“

ˆ

´
b
2

,
a
2

˙

, and
p´a, bq
p0, 3q

“

ˆ

´
a
3

,
b
3

˙

, but
p´a, bq
p´2, 3q

‰
p´a, 0q
p´2, 3q

`
p0, bq
p´2, 3q

.

Indeed,
p´a, bq
p´2, 3q

“

ˆ

´
2b´ 3a
´5

,
2a´ 3b
´5

˙

“

ˆ

´
3a´ 2b

5
,

3b´ 2a
5

˙

for any nonnegative real

numbers a and b satisfied in Remark 2; then, it is a difference of two vectors
ˆ

´
3a
5

,
3b
5

˙

and
ˆ

´
2b
5

,
2a
5

˙

. So, we can see that the result from the division operation is more complicated.

Surprisingly, this operation does not effect the results of the ratios in Theorem 3.
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As mentioned previously in Section 3, the behavior of p0, aq is that of a constant in
B, similar to how a constant a performs in R. So, the results of the ratio in Theorem 3,

i.e., p0, 2q and
ˆ

0,
2k` 1

2

˙

should be equivalent to 2 and
2k` 1

2
, which are the results in

Theorem 3. From these facts, we assert that, together with the same structure of recurrence
relations in Sequences (5) and (10) and the intrinsic nature of the metallic ratio, this may
dominate the novelty of the division operations of a bipolar set. In other words, if we look
at these characteristics as if they were human genes, the novelty of the division has to be
the recessive genes but the others are the dominant genes. Moreover, the phenomenon of
the equivalent results between Sections 2 and 3 is one of the indications that emphasize the
celebrity number, the golden ratio. This number almost appears in everything (see [33]),
including arts, architecture, music and even bipolar concepts, which still did not seclude
from Φ and its partisans. This is another reason that we proposed Section 3 in this paper.

Finally, the elementary tools for solving the problems in this paper have prompted
us to choose this concept for our students to work on in the active learning classroom to
follow in the footsteps of S. Abramovich et al. [34] in one of our future works. The others
are Conjectures 1 and 2 at the end of Section 5.

5. Conclusions

For Sequence (5),

α0 “ a, β0 “ b,

α2n`1 “ β2n`1 “ α2n ` β2n,

α2n`2 “ kα2n`1 ` β2n,

β2n`2 “ kβ2n`1 ` α2n

where n P N0, k ą 0, and a, b ě 0, such that a, b are not both zero simultaneously. The
pulsating metallic ratio is

• lim
nÑ8

α2n`1

α2n
“ lim

nÑ8

β2n`1

β2n
“ 2,

• lim
nÑ8

α2n`2

α2n`1
“ lim

nÑ8

β2n`2

β2n`1
“

2k` 1
2

.

For Sequence (6),

α0 “ a, β0 “ b, γ0 “ c,

α2n`1 “ β2n`1 “ γ2n`1 “ α2n ` β2n ` γ2n,

α2n`2 “ kα2n`1 ` γ2n,

β2n`2 “ kβ2n`1 ` β2n,

γ2n`2 “ kγ2n`1 ` α2n

where n P N0, k ą 0, and a, b, c ě 0, such that a, b, and c are not all zero simultaneously. The
pulsating metallic ratio is

• lim
nÑ8

α2n`1

α2n
“ lim

nÑ8

β2n`1

β2n
“ lim

nÑ8

γ2n`1

γ2n
“ 3,

• lim
nÑ8

α2n`2

α2n`1
“ lim

nÑ8

β2n`2

β2n`1
“ lim

nÑ8

γ2n`2

γ2n`1
“

3k` 1
3

.

And, for Sequence (10),

F2n`1 “ G2n`1 “ F2n ` G2n,

F2n`2 “ p0, kqF2n`1 ` G2n,

G2n`2 “ p0, kqG2n`1 ` F2n

where F0 “ p´α0, α2q, F1 “ p´α1, α3q, G0 “ p´β0, β2q, G1 “ p´β1, β3q, k P R`, and n P N0.
The bipolar pulsating metallic ratio is
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• lim
nÑ8

F2n`1

F2n
“ lim

nÑ8

G2n`1

G2n
“ p0, 2q,

• lim
nÑ8

F2n`2

F2n`1
“ lim

nÑ8

G2n`2

G2n`1
“

ˆ

0,
2k` 1

2

˙

.

In summary, we investigated the behavior of the ratio of the sequences shown in (5)
and (6) that are paired with the metallic ratio by the limits in the theorems and corollaries in
Section 2. We also showed that there is a bridge between the pulsating Fibonacci sequence
and the bipolar Fibonacci sequence through the limits of the ratio of the consecutive terms
of Sequences (5) and (10) in Section 3.

Moreover, we obtained the other ratios

lim
nÑ8

α2n`3

α2n`1
“ lim

nÑ8

β2n`3

β2n`1
“ lim

nÑ8

α2n`2 ` β2n`2

α2n`1
“ lim

nÑ8

¨

˚

˚

˝

α2n`2

α2n
`

β2n`2

β2n

β2n

α2n

1`
β2n

α2n

˛

‹

‹

‚

“ 2k` 1

in the case of Sequence (5) and

lim
nÑ8

α2n`3

α2n`1
“ lim

nÑ8

β2n`3

β2n`1
“ 3k` 1

in the case of Sequence (6). The change in the value from 2k ` 1 to 3k ` 1 persuaded
us to suggest that if we consider the pa1, a2, . . . , amq-pulsating Fibonacci sequence, then
the limit should be mk ` 1. In the same manner as in Theorems 1 and 2, the limits

should be changed to m and
mk` 1

m
with respect to the evenness and oddness of the

subscripts in the pa1, a2, . . . , amq-pulsating Fibonacci sequence. We end our conclusion with
some conjectures.

Conjecture 1. Let pα1,nq, pα2,nq, . . . , pαm,nq be an pa1, a2, . . . , amq-pulsating Fibonacci sequence
as Sequence (4). Then, the ratio

lim
nÑ8

α1,2n`3

α1,2n`1
“ lim

nÑ8

α2,2n`3

α2,2n`1
“ ¨ ¨ ¨ “ lim

nÑ8

αm,2n`3

αm,2n`1
“ mk` 1.

Conjecture 2. Let pα1,nq, pα2,nq, . . . , pαm,nq be an pa1, a2, . . . , amq-pulsating Fibonacci sequence
as Sequence (4). Then, the pulsating metallic ratio is

• lim
nÑ8

α1,2n`1

α1,2n
“ lim

nÑ8

α2,2n`1

α2,2n
“ ¨ ¨ ¨ “ lim

nÑ8

αm,2n`1

αm,2n
“ m,

• lim
nÑ8

α1,2n`2

α1,2n`1
“ lim

nÑ8

α2,2n`2

α2,2n`1
“ ¨ ¨ ¨ “ lim

nÑ8

αm,2n`2

αm,2n`1
“

mk` 1
m

.
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