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Abstract: Structural damages occur in modern structures during operations due to environmental
and human factors. The damages accumulating with time may lead to a significant decrease in
structure performance or even destruction; natural symmetry is broken, resulting in an unexpected
life and economic loss. Therefore, it is necessary to monitor the structural response to detect the
damage in an early stage, evaluate the health condition of structures, and ensure the operation safety
of structures. In fact, the structure and the evaluation can be considered as a special symmetry.
Among several SHM methods, vibration-based SHM techniques have been widely adopted recently.
Hence, this paper reviews the vibration-based SHM methods in terms of the vibrational parameters
used. In addition, the technical codes on vibration based SHM system have also been reviewed, since
they are more important in engineering applications. Several related ISO standards and national
codes have been developed and implemented, while more specific technical codes are still required
to provide more detailed guidelines in practice to maintain structure safety and natural symmetry.

Keywords: structural health monitoring (SHM); vibration; frequency domain; time domain;
time-frequency domain; technical codes

1. Introduction

Civil engineering structures are usually designed to serve for 50 years to 100 years,
during which they are expected to maintain structural integrity. Unpredicted and un-
expected structure failure due to accumulated damages during design life may cause
significant life and economic losses; therefore, structural health monitoring (SHM) is very
important since it can monitor the structural response, evaluate the structural safety in real
time and maintain structure safety and symmetry in nature.

SHM techniques have been developed for many years [1–10]. Generally, the vibration
based SHM methods are the most widely adopted. The objectives of these SHM approaches
are determining the existence of structural damages, identifying the location and severity
of structural damages, evaluating structure safety, predicting the remaining service life
of the structure, and making decision of the maintenance strategy, if possible. In fact, the
vibration characteristics of a structure are a function of its physical parameters. Structural
damage causes change in physical parameters of the structure, and change in physical
parameters therefore can be used as an indicator of structure health condition. Through the
signal monitored by the sensors installed on the structure, the vibration characteristics can
be extracted and the corresponding change can be detected and analyzed. In addition, from
the change of vibration characteristics, one can further obtain the change in the physical
parameters of the structure to diagnose the structure health condition. Recently, with the
rapid development of modern computer technology and the progress of sensor technology
and signal processing technology, test signals can be accurately and quickly analyzed and
processed. Therefore, vibration-based structural health monitoring technology has become
a research hotspot at home and abroad.
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Based on these techniques and recently developed IT and sensing techniques, many
technical standards and codes on vibration-based SHM have been developed and imple-
mented for engineering applications. For a SHM system that can be used in practice, it
usually contains four parts or sub-systems: sensing sub-system, including both a fixed
sensor system and a portable sensor, data acquisition and transmission sub-system com-
posing of a data acquisition unit, data transmission network and corresponding software
system, data management and control sub-system containing of data management software
and control server, and structure performance evaluation sub-system including structural
health assessment server, structural health assessment workstation, and corresponding
software system.

Although SHM has become an important field in the development of civil engineering
disciplines, related technical methods still need to be improved, and there is still a lack
of complete technical standards and specifications for vibration-based structural health
monitoring. It is difficult for engineers to design suitable SHM system for a given structure
based on the existing codes because there is no explicit answer of what kind of sensors to be
used, where the sensors to be installed, and how to evaluate the structure health condition
by using monitored data. Therefore, this work aims to review both vibration-based SHM
techniques and technical codes, and provide a certain reference for the application of tech-
nical methods and standard specifications for vibration-based structural health monitoring.
In Section 2, the vibration-based SHM approaches are reviewed, and attention will be paid
on the more recently developed ones due to the length limit. In addition, the advantages
and drawbacks of each approach has been summarized. In Section 3, the developed techni-
cal codes including both ISO standards and national codes are reviewed, and the suitable
situations that each code can be applied have been reviewed, which may help to find out
most suitable SHM method for a given structure. In Section 4, the challenges and future
development are discussed.

2. Vibration-Based Structural Health Monitoring Techniques

Generally, in terms of vibration parameters used, vibration-based structural health
monitoring techniques can be classified into three categories: frequency domain, time
domain and time-frequency domain approaches.

2.1. Frequency Domain Methods for Vibration-Based SHM

Modal parameters including frequency, mode shape, and damping are usually used
in frequency domain methods for vibration-based SHM [11–15]. In addition, several
Frequency Response Function (FRF) related parameters have also been widely adopted.
Compared to time domain methods and time-frequency domain methods, the frequency
domain methods can be used in more situations because the frequency domain properties
of structure are more stable. Even if the structure is subjected to greatly different loading
conditions, the extracted dynamic properties are almost the same, and they only depend
on the structure itself. However, it should be noted that the algorithms to extract these
properties are not easy to implement and sometimes time consuming.

2.1.1. Frequencies and Mode Shapes

Frequencies and mode shapes are the most frequently used modal parameters in
SHM methods. When a structure is damaged, its frequencies usually drop accordingly. In
particular, the lower frequencies drop slightly while higher frequencies drop a little bit
significantly [16]. In addition, temperature change also affects the natural frequency of the
structure. The importance of temperature effects for a damage detection method based
on relative frequency shift of several weak-axis bending vibration modes of beam-like
structures was investigated by Gillich et al. [17]. However, frequencies alone are not usually
adopted to identify the local damage since they are global indicator and they do not contain
location information. Therefore, they are usually used together with mode shapes, which
contain location information and more sensitive to local damages. The extracted mode
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shapes during monitoring were compared to those measured at the undamaged stage,
and the damage indices of MAC and COMAC were proposed to locate and evaluate the
local damages:
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where ϕu
i and ϕd

i are the ith undamaged and damaged mode shape, xj is the coordinate
of jth point. It is observed that when ϕd

i exactly matches ϕu
i , the MAC value should be 1,

hence a MAC value close to 1 indicates that the structure is still in good condition, but a
MAC value greatly less than 1 means that the structure is damaged. Compared to MAC,
COMAC has location information, the COMAC value at xj close to 1 indicates that the
structure is still intact at xj and the COMAC value at xj greatly less than 1 means that the
structure has damage at xj.

A lot of research [18–24] has been conducted to identify local damages by using both
frequencies and mode shapes since they contain both global and local information of
structures, and some improvements have also been proposed so that they can be applied
successfully in practice. One direction to improve is to construct the baseline of structure
mode shapes more accurately. Finite element (FE) model updating has been widely used for
this purpose [25–27]. Conventional FE model updating was constructed for regenerating
of baseline of frequencies and mode shapes. The frequencies and mode shapes obtained by
FE model were compared to those measured by monitoring system to check the existence
of local damages in the building. Then the stiffness matrix (usually, the mass matrix is not
included) can be updated so that the updated frequencies and mode shapes can match the
measured ones. Finally, the location and severity (stiffness loss) can be obtained by the
updated FE model. In fact, the FE model updating can be generalized as a constrained
optimization problem:

min
xk
‖∑

i
wi(λFE,i(xk)− λi) ‖

2

2

s.t. xlk ≤ xk ≤ xuk (3)

where λFE,i(xk) is the ith frequency or mode shape obtained by FE model using design
parameters xk, λi is the measured ith frequency or mode shape, wi in the range of 0 to 1 is the
weight factor, xlk and xuk are the upper and lower bounds on the kth design variable. There
are several standard procedures to solve this kind of constrained optimization problem.

To reduce iteration times and increase computation efficiency, substructure techniques
have been developed [28–35]. It divided the whole structures into several small substruc-
tures, each of which was treated independently. Then the substructures were assembled to
regenerate the global structure by imposing interface constraints. Weng et al. [28] proposed
a new iterative substructuring method, which can accurately obtain the eigen-solutions
and eigen-sensitivities of structures. Li et al. [30] proposed a sub-structure damage identifi-
cation method based on frequency domain dynamic response reconstruction, and verified
it numerically and experimentally. Papadimitriou et al. [31] proposed the component
mode synthesis technology, which can effectively re-analyze in the generalized coordinate
space of the accurate component model calculated by using the reference finite element
model and the characteristic interface mode. The substructure techniques are usually more
effective than conventional FE model updating method since substructure is more sensitive
to local damage. The FE model updating methods including substructure techniques are
considered as a typical inverse problem in mathematics, where restraint and optimization
algorithm are very important.

Constraint is important since FE model updating is generally ill conditioned due to
less measurements than unknown parameters to be determined. Hence, the target function
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to be optimized should include an additional term leading to a convex error function, and
the selection of regularization parameters should be determined by specific structures and
experience. The Tikhonov regularization is frequently adopted [36–38], and it is proven
effective for a lot of practical scenarios, but the identified size of damage is usually larger
than expect.

In addition to conventional optimization algorithms, several advanced optimization
algorithms proposed for artificial intelligence and pattern recognition have been adopted
in vibration-based SHM approaches, such as genetic algorithm [39–43], artificial neural
network [44,45], and particle swarm optimization [46,47] and Artificial bee colony algo-
rithm [48,49], etc. Unlike conventional optimization techniques which require established
model to optimize parameters, these advanced ones are model-independent. This is actu-
ally very helpful in vibration-based SHM system since the measured and monitored data
are usually insufficient and contains significant uncertainties, which brings great difficulties
in convergence when identifying parameters by conventional optimization methods. How-
ever, it should also be admitted that these advanced approaches have their own drawbacks,
for example, the computation load of genetic algorithm is very high since it is a global
optimizer. In fact, for different types of structures, different optimization techniques should
be considered due to various degree-of-freedoms; unfortunately, there is no common sense
on how to select the optimization algorithms based on the type of structures.

Recently, machine learning methods become more popular due to the quick develop-
ment of artificial intelligence [50–58]. It can definitely help to improve the reconstruction
of structural model, but the model is a data-driven model rather than the physics-based
model in FE model updating methods. Generally, the machine learning methods contains
three steps, data acquisition, feature extraction, and feature classification, which are also
the most important steps in pattern recognition. Frequencies and mode shapes are usually
obtained during data acquisition and pre-processing as input of these algorithms. Feature
extraction may depend on “model”, which means that the features of undamaged “model”
and damaged “model” should be labeled artificially during the training process. Then the
algorithms are trained by the labeled data to generate the classifier. This is also known
as supervised learning, and artificial neural network, convolutional neural network, and
supported vector machine, etc., are the most typical ones. Actually, these methods are
quite useful in real vibration-based SHM systems since it does not require regeneration of
physics-based models of structures; therefore, it has great potential in the future application.
However, it should be noted that there is a huge amount of data to be labeled during the
training process, which costs a lot of manpower.

Bayesian methods [59–63] have been proposed and developed to reduce the influence
of measurement noise and model errors on identifying local damages, since deterministic
methods may fail when the change of frequencies and mode shapes due to damage is
concealed by measurement noise or model errors. Bayesian methods use prior information
from experiments and experience to construct the posterior probability of uncertainties and
identified and evaluated damages accordingly. They are typical probabilistic methods, and
they can even help on ill-conditioned inverse problems since they introduce a regularization
term by using the probability distributions of uncertainties. However, it is noteworthy
that prior information is very important in Bayesian methods, if the prior information is
not accurate enough, the damage identification may fail even though the measurement is
noiseless and model is perfect. In fact, the Bayesian probability of parameters θ under a
given structure response R is as follows:

p(θ |R ) =
p(R |θ )p(θ)

p(R)
(4)

where p(R |θ ) is the posterior joint probability distribution of the structure response under
the condition of θ, p(θ) is the prior probability distribution of θ, p(R) is a standardized
constant, and p(θ |R ) is the posterior joint probability distribution of θ under the condition
of R. It should also be noted that the integral value of p(θ |R ) equals to 1.
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In practice, the sampling data for generating prior distribution is usually sparse which
makes the task difficult; therefore, sparse Bayesian learning [64–69] has been proposed
to construct parameterized prior which can accurately construct the prior distribution
based on sparse data. Several investigations have been conducted to show the feasibility
of Bayesian methods on SHM by using frequencies and mode shapes, however most of
which used lab-scale experiments and numerical simulations. Further studies are expected
to show the applicability of Bayesian methods on real structures.

The other direction to improve is elimination of the dependency of the baseline or
the undamaged model of structures. An assumption was proposed for this purpose: the
mode shapes and mode shape curvatures are smooth and no sudden change with respect
to location can be found for undamaged structures [70–73]. Once the sudden change of
mode shapes or mode shape curvatures is observed, it is believed that the local damage
occurs there. It is also proven by some studies that the mode shape curvatures are more
sensitive than mode shapes on local damages, especially for early-stage damages. However,
the extraction of mode shapes from accelerations or displacements is usually polluted by
noise, and the mode shape curvatures obtained by central difference on mode shapes are
even less accurate, resulting that the sudden change of mode shape curvatures due to local
damages are covered by numerical error. Hence, how to improve the accuracy of mode
shape curvature during monitoring should be investigated. On the other hand, the machine
learning methods may also be independent on “model”, which means that the features
from undamaged “model” and damaged “model” do not need to be completely labeled,
and the algorithms themselves can identify can classify the features. This is what is called
“semi-supervised learning” [58,74] and “unsupervised learning” [75,76]. It is attractive but
the identification accuracy needs to improve significantly, otherwise the false alarm will be
issued unexpectedly and frequently.

2.1.2. Damping

Although damping can also be used for SHM system to monitor the health condi-
tion of structures [14,77–81], it is less frequently observed in practice than frequencies
and mode shapes since it is more difficult to measure. Frizzarin et al. [77] analyzed the
damping by using ambient vibration data to detect damage without baseline, and demon-
strated the proposed method by a large-scale concrete bridge model with seismic damage.
Mustafa et al. [78] introduced an energy based damping evaluate approach to evaluate the
health condition of a truss bridge by numerical simulations. Cao et al. [79] compared damp-
ing based damage detection methods by using reinforced concrete structures and fiber
reinforced composites, and clarified the factors that influenced the capability of damping on
damage detection. Recently, Liu et al. [14] proposed a novel complex eigen-parameter iden-
tification method to evaluate the stiffness reduction and damping defect simultaneously
on a non-classically damped shear building.

Ideally, the damping change due to local damage can be observed because the cracks
may increase the frictions between interfaces. However, the measurement is vulnerable
to noise, especially for structures subject to ambient environmental vibrations, so that
the change of damping due to local damage is concealed by the measurement error. On
the other hand, the damping model is difficult to select or construct whereas which is
important in identification of damping. Classical Rayleigh damping which is a combination
of mass and stiffness is frequently adopted in practice because it is the simplest damping
model. However, it cannot be applied to many structures; therefore, some more advanced
damping models have been proposed. It should be noted that for different types of
structure, different damping models should be considered. Moreover, damping is a global
property for a structure, similar to frequency, so damping itself can hardly be used to
identify the location of local damages.
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2.1.3. FRFs and Related Variants

FRFs are actually an extension of conventional modal parameters, because they con-
tain the information over the entire frequency range. For different types of structure, the
optimal frequency range may be various, which is highly dependent on experience and
trial experiments. There is lack of theoretical analysis and numerical simulation inves-
tigations of how to select the sensitive frequency range to local damages for different
structures. Operational deflection shapes [82–85] and their curvatures, power spectral
density [86–88], frequency shift curve, and its curvature [89,90] are the most frequently
used FRFs related variants.

FE updating methods can be applied to FRFs and related variants [91]. Conventional
FE updating methods are effective in identifying local damages but have lower compu-
tational efficiency. Unfortunately, there are less investigations on applying substructure
techniques, advanced regulation algorithms and optimization algorithms to FRFs and
related variants, because it is difficult to select the sensitive frequency range for a given
structure and it is also difficult to converge due to uncertainties in the measurement of FRFs.

Machine learning methods can also be applied to FRFs and related variants [92–94].
Conventional FRFs are curves which can be represented as one-column vectors, hence
artificial neural network is suitable for identifying local damages by using FRFs. Usually,
principal component analysis is applied to FRFs first to extract the most important compo-
nents, which are then used as input to artificial neural network. Fourier amplitude spectra
is a 2D surface FRFs related variant [95], therefore, convolutional neural network can be
applied to it to construct the SHM system. In addition to neural networks, the Dirichlet
process clustering [96] can be applied to SHM system to identify early-stage damages
on bridges by using FRFs. However, these investigations have been conducted through
numerical simulations and lab-scale experimental studies. Whether these machine learning
methods based on FRFs and related variants are still effective should be further examined
by field measurement. It should also be noted that since the quality of dataset for training is
crucial for machine learning methods, therefore, the performance of these methods should
be further examined when more FRFs data are available.

2.2. Time Domain Methods for Vibration-Based SHM

Instead of extracting the frequency related properties from the time history of dynamic
responses of a structure, the dynamic responses of a structure in time domain can be used
for SHM directly. Among them, acceleration and displacement are the most frequently used.
The time domain methods usually do not require much calculation resources and therefore
are timesaving, but they are used for the structures subject to stabilize environmental
excitations because different excitation may cause quite different dynamic response and
may cause the methods to fail to identify damages.

2.2.1. Accelerations

FE updating methods can be applied to accelerations for SHM [97], similar to fre-
quencies and mode shapes. Tikhonov regularization [98,99], adaptive Tikhonov regular-
ization [100], and L1 regularization [101] were successfully used to identify local damages
based on accelerations. However, the dataset of time history of accelerations is much larger
than the dataset of frequencies and mode shapes, hence the convergency is difficult to
achieve. Moreover, there is no proven procedures on how to select the certain time history
of accelerations, which is now generally dependent on experience.

Machine learning methods can also be applied to accelerations and variances for
SHM [102–108], including both supervised and unsupervised methods. Although research
showed that the machine learning methods can locate and evaluate local damages suc-
cessfully in lad-scale experiments and numerical benchmark studies, no evidence have
been provided that they can also be applied to real structure in practice. On the other hand,
unlike frequencies and mode shapes which are only dependent on the structure itself, the
accelerations are highly dependent on environmental excitations. The environmental exci-
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tations are always varying with respect to time, therefore it is quite difficult for the training
algorithms in machine learning methods to differentiate the change of accelerations due to
local damage and that due to environmental excitations.

Bayesian methods are also applicable when accelerations are used [109,110], and they
show great potential in application to real structures. Research work has been conducted
through experimental and numerical study. It should be noted that since the prior infor-
mation is important to the Bayesian methods, hence the change of operational conditions
should be considered carefully. For example, the traffic load of a bridge may increase with
the economy development, therefore the prior information constructed previously may
change with respect to time.

Statistical time series methods [111,112] are proposed especially for time history of
dynamic responses, which usually fit time series models such as autoregressive model,
autoregressive with exogenous model, and Mahalanobis squared distance, etc. All of
them show their distinguishing advantages, but they still have their own limitations.
For autoregressive model and autoregressive with exogenous model, it is difficult to
determine the model order, which is currently highly dependent on experience. For
Mahalanobis squared distance method, the data from the undamaged structures under
various conditions is required, which is almost impossible for old building and structures.
Statistical moment of accelerations can also be used to identify local damages of structure,
Yang et al. [113,114] proposed a fusion of statistical moments by combining the fourth-
order statistical moment of displacement with the eighth-order statistical moment of
acceleration for the damage identification of structures. However, the order of moment
to be selected is highly dependent on experience since different structures may have
various statistical moments sensitive to damages, which limits the widely application
of statistical moment. Temperature also plays an important role in SHM approach in
time domain. Hios et al. [115] proposed a new stochastic global model method based on
statistical hypothesis testing, and determined a functional hybrid model that can describe
temperature-dependent dynamics. OBrien et al. [116] used temperature data to validate
damage indicators based on measured data collected under uncontrolled traffic conditions,
and showed that temperature can be used as a proxy for damage since stiffness of concrete
structure is dependent on temperature.

2.2.2. Displacements

Generally, the methods that can be applied on accelerations can also be applied to
displacement [117]. However, the displacement is usually not directly measured during
monitoring [118]. In principle, acceleration measurement can be doubly integrated to give
displacement, but this process is notoriously error-prone due to unknown initial conditions
such as integration constants and low frequency noise of measurement that is amplified in
an inverse square manner. In reality, the displacement at the measured location can only be
recovered from field measured acceleration in an approximate sense, depending on the
frequency characteristics of the contributing activities.

In the SHM system, one strategy to resolve the issue of unknown initial conditions
makes use of the basic fact in structural dynamics that initial condition effects decay
exponentially with time. Thus, one can start the numerical integration process before
the main event to be captured, so as to allow a ‘burn-in’ time for the (unknown) initial
condition effect to die down to negligible level during the main event that matters. On the
other hand, the presence of noise especially in the low frequency regime presents a major
difficulty. In addition to amplification of low frequency noise during numerical integration,
data acquisition hardware typically has ‘pink’ noise in the low frequencies, i.e., with PSD
inversely proportional to frequency. Integrating the ‘raw’ measured acceleration will often
lead to significant systematic over-estimation of displacement, in many cases a ‘flying off’
trace of time history. In particular, a constant error in the acceleration gives a linear trend in
the velocity and a quadratic trend in the displacement. One basic strategy is to suppress the
noise by a causal filter with parameters designed to significantly attenuate the frequency
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components in the data below and above specified cut-off frequencies. Acceleration data is
filtered before numerically integrated to give velocity data, which is filtered again and then
integrated to give displacement data. Filtering produces distortion in the acceleration data
and hence the integrated displacement. This will need to be controlled and verified in the
development of SHM system.

2.3. Time-Frequency Domain Methods for Vibration-Based SHM

In addition to time domain and frequency domain dynamic properties, the properties
in both time domain and frequency domain can also be used for SHM due to the devel-
opment of advanced time-frequency analysis. Compared to time domain and frequency
domain methods, the amount of time-frequency domain methods is much fewer. The
time-frequency domain methods are more powerful because it contains the information of
stable frequency domain properties and can further show the change with time. However,
it is admitted that they require a lot of calculation resources and space for data storage.

Short time Fourier Transform, Wavelet Transform [119], and Hilbert-Huang Trans-
form [120] including empirical mode decomposition are the most widely used time-
frequency analysis methods. Usually, only the measured accelerations or dynamic strains
are required for these methods, and the high frequency components may change signif-
icantly once the local damage occurs. Therefore, it is not necessary for these methods
to construct the undamaged model for the monitored structure. This is a very attractive
advantage of these methods; however, it is noteworthy that the time-frequency methods
can only locate the local damages but cannot evaluate the severity of local damages. Further
investigations of applying time-frequency domain methods on real structures are expected
in the near future.

3. Current Technical Codes Related to Vibration-Based Structural Health Monitoring

In this section, the current technical standards and codes related to vibration-based
structural health monitoring are reviewed, including both ISO standards and national codes.

ISO has four technical committees related to building and construction: TC 59 (Com-
mittee on Architecture and Civil Engineering), TC 98 (Committee on Fundamentals of
Structural Design), TC135 (Committee on Nondestructive Testing), and TC268 (Committee
on Urban and Community Sustainable Development). TC 59 including its SCs has pub-
lished 124 ISO standards of which 33 under the direct responsibility of ISO/TC 59 (Table 1),
TC 98 including its SCs has published 23 ISO standards (Table 2), TC 135 including its SCs
has published 97 ISO standards of which 1 under the direct responsibility of ISO/TC 135
(Table 3), and TC 268 (including its SCs) has published 26 ISO standards of which 10
under the direct responsibility of ISO/TC 268 (Table 4). The ISO standards published by
ISO/TC135 are all about non-destructive testing, including detailed procedures of different
non-destructive testing methods. They are not reviewed herein since they are more relevant
to damage detection rather than SHM system.

In fact, the codes published by ISO TC 59 do not only specify the general principles to
determine requirements of structural performance, but also provides a general approach to
assess the structural safety based on structural performance. They are a very important
framework of a SHM system, but they lack details on how to implement in real engineering
projects. The standards published by ISO TC 98 focus more on reliability and show the
requirements and procedures to assess structure health condition based on structural relia-
bility. They also provide approaches and procedures to prepare national and organization
codes. However, structural reliability is more abstract, and it contains more complicated
mathematical models, which is difficult to be applied in real SHM projects. The regulations
published by ISO TC 268 focus on smart building and sustainable development. They pro-
vide the foundation on how to construct smart community infrastructures. Of course, the
SHM system is helpful to construct smart community infrastructures and maintain sustain-
able development. Therefore, they provide the future work scope for current SHM systems,
but they lack more details on how to construct a SHM system for an existing building.
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Table 1. Published ISO standards by TC 59’s SCs.

Subcommittee Subcommittee Title Published Standards Standards under Development

ISO/TC 59/SC 2 Terminology and harmonization
of languages 4 2

ISO/TC 59/SC 8 Sealants 30 14

ISO/TC 59/SC 13

Organization and digitization of information
about buildings and civil engineering works,

including building information
modelling (BIM)

18 5

ISO/TC 59/SC 14 Design life 10 1

ISO/TC 59/SC 15 Framework for the description of
housing performance 8 2

ISO/TC 59/SC 16 Accessibility and usability of the
built environment 1 1

ISO/TC 59/SC 17 Sustainability in buildings and civil
engineering works 12 3

ISO/TC 59/SC 18 Construction procurement 8 3

Table 2. Published ISO standards by TC 98’s SCs.

Subcommittee Subcommittee Title Published Standards Standards under Development

ISO/TC 98/SC 1 Terminology and symbols 2 0
ISO/TC 98/SC 2 Reliability of structures 8 2
ISO/TC 98/SC 3 Loads, forces, and other actions 13 0

Table 3. Published ISO standards by TC 135’s SCs.

Subcommittee Subcommittee Title Published Standards Standards under Development

ISO/TC 135/SC 2 Surface methods 14 2
ISO/TC 135/SC 3 Ultrasonic testing 24 3
ISO/TC 135/SC 4 Eddy current testing 7 0
ISO/TC 135/SC 5 Radiographic testing 26 0
ISO/TC 135/SC 6 Leak testing 4 0
ISO/TC 135/SC 7 Personnel qualification 7 1
ISO/TC 135/SC 8 Thermographic testing 4 2
ISO/TC 135/SC 9 Acoustic emission testing 10 3

Table 4. Published ISO standards by TC 268’s SCs.

Subcommittee Subcommittee Title Published Standards Standards under Development

ISO/TC 268/SC1 Smart community infrastructures 16 15

3.1. Standards Published by ISO/TC59
3.1.1. ISO 11863:2011

ISO 11863:2011 (ISO/TC 59/SC 15) [121], specifies the basic requirements and princi-
ples to determine and check the basic requirements of structural performance. This is very
important to a SHM system since it can help to restrain the scope of the SHM system and
select proper vibration parameters to be monitored. It also specifies the thresholds for ca-
pability, which is in fact essential for a SHM system since automated alert algorithm highly
depends on the pre-defined thresholds. In addition, it provides guidelines on assessing the
difference between designed and measured capabilities, which is helpful to generate the
maintenance strategy in SHM system. However, it does not provide any detailed feasible
procedures for any specific structures. Therefore, it is difficult to construct a SHM system
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for a specific building or structure by just following ISO 11863. For example, it requires
“the threshold level is a minimum level of demand”, but the statement is quite general
because for different buildings or structural components the requirements may be quite
different, hence it is difficult to be applied in real application directly.

3.1.2. ISO 15928-1:2015

ISO 15928-1:2015 [122] shows a general method on assessment of the structural safety
performance of buildings, in which the principles on how to evaluate the design and
construction of buildings are provided. It mainly focuses on the design and construction
stage of buildings; therefore, it is helpful for generating SHM systems during construction.
Although the idea of evaluating the structural safety performance of building during design
can be shared in constructing SHM systems for operation stage, it should also be noted
that design of building and design of monitoring system for building are quite different.
Therefore, the evaluation processes outlined in this code cannot be directly used for design
of monitoring system during operation. Moreover, it only shows that the evaluation “may
be carried out by analysis, testing, service experience or a combination of the above” [120]
without any details. The details of design of building provided in Eurocode 1-9, or other
national standards are important supplementary standards, however they are not covering
the design of monitoring system.

3.2. Standards Published by ISO/TC98
3.2.1. ISO 4356:1977

ISO 4356:1977 [123] establishes the basic principles that should be adopted when
setting up national standards, regulations and recommendations for the deformation of
buildings at the limit states of serviceability. Traditionally, measurement of deformation is
usually considered as static measurement rather than dynamic measurement. However,
recently developed signal processing techniques can be used to reconstruct the time history
of displacement by integrating accelerations twice. In fact, deformation of structural
components is quite important in monitoring; when the deformation approaches the
threshold at limit states of serviceability, an alert should be issued by the SHM system.
Although this code was drafted for the purpose of building design, it can also be used
as guideline for design of monitoring system since it provides the basic principles to
determine the deformations of buildings at the serviceability limit states, which can also be
considered as the base for answering the critical question that how to evaluate the health
condition of the building based on the monitored data.

3.2.2. ISO 13822:2010

ISO 13822:2010 [124] provides general requirements and procedures for the assessment
of existing structures based on the principles of structural reliability and consequences
of failure. Although it is applicable to the assessment of any type of existing structure
of any material that was originally designed, analyzed, and specified based on accepted
engineering principles and design rules, it only provides very general requirements and
procedures without any specified methods. In addition, it mainly focuses on routine visual
inspections, including visible deformations and surface defects like cracks and spalling,
but limited information of vibration parameters is required in this code. There is no doubt
that it is helpful to generate SHM systems of buildings. However, it is noteworthy that the
regular inspection and real time monitoring is a little bit different, e.g., the former requires
experienced technician while the latter depends on pre-installed sensors.

3.2.3. ISO 2394:2015

ISO 2394:2015 [125] presents a risk- and reliability-informed foundation for decision
making of maintenance strategy by considering design and assessment of structures for the
purpose of developing code. It is certainly helpful for building SHM systems by answering
the critical question that how to evaluate the health condition of buildings based on the
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monitored data and how to plan maintenance strategy and build automated alert system
based on evaluated condition. However, there is only the basic idea without any detailed
procedures for specific buildings and the vibration parameters to be monitored.

3.3. Standards Published by ISO/TC268
3.3.1. ISO 37104:2019

ISO 37104:2019 (ISO/TC 98/SC 2) [126] provides general guidance on how to imple-
ment and maintain sustainable development management systems in accordance with
ISO 37101 principles, which can be applied to cities and other forms of settlement. It
should be noted that SHM is important for sustainable development since it can help
buildings to extend their life. Therefore, this code should be paid attention to when de-
signing the SHM system, so that the designed SHM system can fulfill the requirements of
sustainable developments.

3.3.2. ISO 37105:2019

ISO 37105:2019 [127] specifies a descriptive framework for a city, including a struc-
turally related basis for a city or community. When more buildings have installed SHM
systems, it may help to generate sustainable cities. Therefore, this code should also be
followed to achieve the objective.

3.3.3. ISO/TS 37107:2019

ISO/TS 37107:2019 [128], provides a top-level maturity model for Smart Sustainable
Communities (MMSSC) which can be used for self-assessment of individual cities and
communities. A simple way to assess community’s maturity in adopting the good practices
is sketched. In fact, with the development of IoT, the SHM systems can also be connected
to form a network which may perform as an important of smart sustainable communities.
Hence, this code is helpful for integrate multiple SHM systems in the future.

3.4. National Codes

Several national codes on SHM have been published in the past two decades. In
North America, Intelligent Sensing for Innovative Structures of Canada published the
first guideline for SHM, “Guidelines for Structural Health Monitoring” [129] in 2001,
in which the techniques of both static and dynamic structural testing, periodic regular
inspection, and continuous monitoring were presented and summarized. The Federal
Highway Administration, U.S., published guidelines for SHM of bridges and tunnels,
“Development of a Model Health Monitoring Guide for Major Bridges” [130] and “Tunnel
Operations, Maintenance, Inspection, and Evaluation Manual” [131], where the regular
visual inspection is the most important method. The International Federation for Structural
Concrete also published “Monitoring and Safety Evaluation of Existing Concrete Structures”
as a guideline for SHM of existing concrete structures [132], whereas the vibration-based
SHM methods are less important than the quality and durability evaluation of concrete.

In Europe, the Structural Assessment, Monitoring and Control of European Union
developed “Guideline for Structural Health Monitoring” [133] in 2006 to present the basic
regulations and procedures of SHM, including determination of actions, structural condi-
tion analysis, design and operation of monitoring, numerical analysis and general damage
identification. It is comprehensive and provides a framework for the following standards
and codes. The Russian Federation also published its national code, GOSTR 53778-2010,
“Building and structures, technical inspections and monitoring regulations” [134], where
regular visual inspections, modal testing methods, condition classification, and grading
system were presented. Similar to the Federal Highway Administration, U.S., the German
administration also published the codes for SHM of bridges and tunnels, “Quality assur-
ance for structural maintenance, surveillance, checking and assessment of bridges and
tunnels, monitoring of bridges and other engineering structures”, [135] where checking
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procedures and methods were presented. However, it was drafted in German, so it is not
so easy for engineers in other countries to understand.

In Asia, “GB50982-2014 Technical Code for Monitoring of Buildings and Bridge Struc-
tures” [136], was published by Ministry of Housing and Urban-Rural Development of
China. It has nine chapters and covers the basic requirements for SHM systems and general
monitoring methods, and specific methods for high rise buildings, long-span spatial build-
ing, bridge structures, and other structures. For each type of structure, the requirements of
SHM system for both construction stage and operation stage are provided. The monitored
data are mostly vibration related, in addition to temperature and humidity. This is a
comprehensive technical code on SHM, and its supplementary codes “Application and
Analysis of Technical Code for Monitoring of Buildings and Bridge Structures” has also
been published. However, it should be admitted that it can be improved by including more
advanced vibration-based SHM techniques reviewed in Section 2 and more details about
the sensor selection and arrangement.

4. Challenges and Future Development

Many vibration based SHM techniques have been proposed and developed recently,
which have been reviewed in Section 2, however, their real applications in practical build-
ings and structures are rare. Some challenges are summarized as follows:

(1) Although various damage indicators and damage indexes based on vibration param-
eters have been proposed, it should be admitted that the sensitivities of them are
not high enough to detect damage at early stage. Usually, the vibration parameters
related to lower vibration mode can be measured more easily and accurately, but
unfortunately those related to higher vibration mode are more sensitive to minor
local damages. Considering that higher vibration modes can be hardly extracted if
only ambient environmental excitation exists, damage index more sensitive to local
damage at early stage by using lower vibration modes should be investigated in
the future.

(2) The uncertainties of damage detection and evaluation in a SHM system are usually
inevitable due to measurement noise, non-ideal boundary conditions, and ambient
environmental vibrations. It increases the difficulty in extracting modal properties and
calculating damage indicators and sometime the damaged signal can be concealed by
the uncertainties. The statistical signal or statistical damage index may be investigated
to reduce the uncertainties during monitoring.

(3) Data transmission, processing, and storage should also be paid attention to although
it is usually be ignored in many research works. In fact, it is very important for a
practical SHM system in real applications. The collection of the same type of data
should be simultaneous, and they should be transmitted to the local server or cloud
server smoothly. The requirements of hardware should be investigated in the future
so that the proposed vibration based SHM methods can be applied better in practice.

(4) Currently, the benchmarks of SHM systems are lab studies and numerical studies,
which are quite different from actual buildings and structures. Therefore, it is neces-
sary to generate a benchmark study by using real building or structure. In fact, a data
sharing platform is desired to examine the proposed SHM approaches, which may be
helpful for the development and improvement of vibration based SHM methods in
the future.

On the other hand, it can be concluded that although there are some ISO standards
and national codes relevant to vibration based SHM system, unfortunately they cannot
answer the following critical questions well:

(1) What monitoring methods should be used for a given building?
(2) What types of sensors should be used and where are they installed?
(3) How can the health condition of the building be assessed based on the collected data?
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The above issues are important and unavoidable in SHM, since a properly designed
SHM system should provide early warning to potential structural collapse to ensure the
safety of building and residents’ lives. Therefore, it is important to fill the gap in ISO
standards and national codes to clearly specify which monitoring methods should be
adopted for a specific building, where to install the sensors, how to evaluate the health
condition of structures based on the collected data, and how to plan maintenance strategy
and predict the remaining life of the building or structure.

5. Conclusions

The vibration-based SHM techniques and related ISO standards and national codes
have been reviewed. The advantages and drawbacks of each method as well as the ap-
plicability of each standard or code have been presented. For different types of structure,
different vibration-based SHM techniques should be selected. There is no universal ap-
proach for all types of structures and all kinds of damages. Although the standards, codes,
and regulations have provide basic requirements and principles of a SHM system, it is
still difficult for engineers to answer questions such as what types of sensors are to be
used, where to install them, and how to use the monitored data to evaluate the structure
health condition and predict the remaining life for a given structure. Therefore, it is neces-
sary to develop such a code of SHM system construction that can be applied to real civil
engineering structures.
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12. Radzieński, M.; Krawczuk, M.; Palacz, M. Improvement of damage detection methods based on experimental modal parameters.

Mech. Syst. Signal Process. 2011, 25, 2169–2190. [CrossRef]
13. Zhao, J.H.; Zhang, L. Structural damage identification based on the modal data change. Int. J. Eng. Manuf. 2012, 4, 59–66.

[CrossRef]
14. Liu, J.; Lu, Z.R.; Yu, M.L. Damage identification of non-classically damped shear building by sensitivity analysis of complex

modal parameter. J. Sound Vib. 2019, 483, 457–475. [CrossRef]
15. Han, J.P.; Zheng, P.J.; Wang, H.T. Structural modal parameter identification and damage diagnosis based on Hilbert-Huang

transform. Earthq. Eng. Eng. Vib. 2013, 13, 101–111. [CrossRef]
16. Salawu, O.S. Detection of structural damage through changes in frequency: A review. Eng. Struct. 1997, 19, 718–723. [CrossRef]
17. Gillich, G.R.; Furdui, H.; Wahab, M.A.; Korka, Z.I. A robust damage detection method based on multi-modal analysis in variable

temperature conditions. Mech. Syst. Signal Process. 2019, 115, 361–379. [CrossRef]
18. Ratcliffe, C.P. Damage detection using a modified Laplacian operator on mode shape data. J. Sound Vib. 1997, 204, 505–517.

[CrossRef]
19. Zhang, Y.; Wang, L.Q.; Xiang, Z.H. Damage detection by mode shape squares extracted from a passing vehicle. J. Sound Vib. 2012,

331, 291–307. [CrossRef]
20. Khiem, N.T.; Tran, H.T. A procedure for multiple crack identification in beam-like structures from natural vibration mode. J.

Sound Vib. 2014, 20, 1417–1427. [CrossRef]
21. Capecchi, D.; Ciambella, J.; Pau, A.; Vestroni, F. Damage identification in a parabolic arch by means of natural frequencies, modal

shapes and curvatures. Meccanica 2016, 51, 2847–2859. [CrossRef]
22. Yang, Y.; Cheng, Q.; Zhu, Y.; Wang, L.; Jin, R. Feasibility study of tractor-test vehicle technique for practical structural condition

assessment of beam-like bridge deck. Remote Sens. 2020, 12, 114. [CrossRef]
23. Yang, Y.; Xiang, C.; Jiang, M.; Li, W.; Kuang, Y. Bridge damage identification method considering road surface roughness by

using indirect measurement technique. China J. Highw. Transp. 2019, 32, 99–106.
24. Yang, Y.; Liang, J.; Yuan, A.; Lu, H.; Luo, K.; Shen, X.; Wan, Q. Bridge element bending stiffness damage identification based on

new indirect measurement method. China J. Highw. Transp. 2021, 34, 188–198.
25. Friswell, M.; Mottershead, J.E. Finite Element Model Updating in Structural Dynamics; Kluwer Academic Publishers:

Dordrecht, The Netherlands, 1995.
26. Sanayei, M.; AliKhaloo, A.; Gul, M.; Catbas, F.N. Automated finite element model updating of a scale bridge model using

measured static and modal test data. Eng. Struct. 2015, 102, 66–79. [CrossRef]
27. Suzuki, A.; Kurata, M.; Li, X.H.; Shimmoto, S. Residual structural capacity evaluation of steel moment-resisting frames with

dynamic-strain-based model updating method. Earthq. Eng. Struct. Dyn. 2017, 46, 1791–1810. [CrossRef]
28. Weng, S.; Xia, Y.; Xu, Y.L.; Zhu, H.P. An iterative substructuring approach to the calculation of eigen-solution and eigen-sensitivity.

J. Sound Vib. 2011, 330, 3368–3380. [CrossRef]
29. Weng, S.; Xia, Y.; Zhou, X.Q.; Xu, Y.L.; Zhu, H.P. Inverse substructure method for model updating of structures. J. Sound Vib. 2012,

331, 5449–5468. [CrossRef]
30. Li, J.; Law, S.S.; Ding, Y. Substructure damage identification based on response reconstruction in frequency domain and model

updating. Eng. Struct. 2012, 41, 270–284. [CrossRef]
31. Papadimitriou, C.; Papadioti, D.C. Component mode synthesis techniques for finite element model updating. Comput. Struct.

2013, 126, 15–28. [CrossRef]
32. Liu, Y.; Sun, H.; Wang, D.J. Updating the finite element model of large-scaled structures using component mode synthesis

technique. Intell. Autom. Soft Comput. 2013, 19, 11–21. [CrossRef]
33. Yu, J.X.; Xia, Y.; Lin, W.; Zhou, X.Q. Element-by-element model updating of large-scale structures based on component mode

synthesis method. J. Sound Vib. 2016, 362, 72–84. [CrossRef]
34. Wang, T.; He, H.; Yan, W.; Chen, G.P. A model-updating approach based on the component mode synthesis method and

perturbation analysis. J. Sound Vib. 2018, 433, 349–365. [CrossRef]
35. Weng, S.; Zhu, H.P.; Xia, Y.; Li, J.J.; Tian, W. A review on dynamic substructuring methods for model updating and damage

detection of large-scale structures. Adv. Struct. Eng. 2020, 23, 584–600. [CrossRef]
36. Rucevskis, S.; Sumbatyan, M.A.; Akishin, P.; Chate, A. Tikhonov’s regularization approach in mode shape curvature analysis

applied to damage detection. Mech. Res. Commun. 2015, 65, 9–16. [CrossRef]
37. Wang, S.Q.; Xu, M.Q.; Xia, Z.P.; Li, Y.C. A novel Tikhonov regularization-based iterative method for structural damage identifica-

tion of offshore platforms. J. Mar. Sci. Technol. 2019, 24, 575–592. [CrossRef]
38. Bao, Y.Q.; Li, H.; Ou, J.P. Emerging data technology in structural health monitoring: Compressive sensing technology. J. Civ.

Struct. Health Monit. 2014, 4, 77–90. [CrossRef]
39. Meruane, V.; Heylen, W. An hybrid real genetic algorithm to detect structural damage using modal properties. Mech. Syst. Signal

Process. 2011, 25, 1559–1573. [CrossRef]

http://doi.org/10.1177/1475921720935585
http://doi.org/10.1061/(ASCE)0733-9445(1995)121:4(599)
http://doi.org/10.1016/j.ymssp.2011.01.007
http://doi.org/10.5815/ijem.2012.04.08
http://doi.org/10.1016/j.jsv.2018.09.022
http://doi.org/10.1007/s11803-014-0215-3
http://doi.org/10.1016/S0141-0296(96)00149-6
http://doi.org/10.1016/j.ymssp.2018.05.037
http://doi.org/10.1006/jsvi.1997.0961
http://doi.org/10.1016/j.jsv.2011.09.004
http://doi.org/10.1177/1077546312470478
http://doi.org/10.1007/s11012-016-0510-3
http://doi.org/10.3390/rs12010114
http://doi.org/10.1016/j.engstruct.2015.07.029
http://doi.org/10.1002/eqe.2882
http://doi.org/10.1016/j.jsv.2011.02.001
http://doi.org/10.1016/j.jsv.2012.07.011
http://doi.org/10.1016/j.engstruct.2012.03.035
http://doi.org/10.1016/j.compstruc.2012.10.018
http://doi.org/10.1080/10798587.2013.771457
http://doi.org/10.1016/j.jsv.2015.10.019
http://doi.org/10.1016/j.jsv.2018.07.026
http://doi.org/10.1177/1369433219872429
http://doi.org/10.1016/j.mechrescom.2015.01.006
http://doi.org/10.1007/s00773-018-0579-6
http://doi.org/10.1007/s13349-013-0064-1
http://doi.org/10.1016/j.ymssp.2010.11.020


Symmetry 2021, 13, 1998 15 of 18

40. Liu, H.B.; Jiao, Y.B. Application of genetic algorithm-support vector machine (GA-SVM) for damage identification of bridge. Int.
J. Comput. Intell. Appl. 2011, 10, 383–397. [CrossRef]

41. Amiri, G.; Seyed Razzaghi, S.A.; Bagheri, A. Damage detection in plates based on pattern search and Genetic algorithms. Smart
Struct. Syst. 2011, 7, 117–132. [CrossRef]

42. Beygzadeh, S.; Salajegheh, E.; Torkzadeh, P.; Salajegheh, J.; Naseralavi, S.S. An improved genetic algorithm for optimal sensor
placement in space struc- tures damage detection. Int. J. Space Struct. 2014, 29, 121–136. [CrossRef]

43. Hou, R.R.; Xia, Y.; Xia, Q.; Zhou, X.Q. Genetic algorithm based optimal sensor placement for L1-regularized damage detection.
Struct. Control Health Monit. 2019, 26, e2274. [CrossRef]

44. Saeed, R.A.; Galybin, A.N.; Popov, V. Crack identification in curvilinear beams by using ANN and ANFIS based on natural
frequencies and frequency response functions. Neural Comput. Appl. 2012, 21, 1629–1645. [CrossRef]

45. Neves, A.C.; González, I.; Leander, J.; Karoumi, R. Structural health monitoring of bridges: A model-free ANN-based approach to
damage detection. J. Civil. Struct. Health Monit. 2017, 7, 689–702. [CrossRef]

46. Guo, H.Y.; Li, Z.L. Structural damage identification based on evidence fusion and improved particle swarm optimization. J. Vib.
Control. 2014, 20, 1279–1292. [CrossRef]

47. Chen, Z.P.; Yu, L. A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function.
Struct. Eng. Mech. 2017, 63, 825–835.

48. Ding, Z.H.; Yao, R.Z.; Li, J.; Lu, Z.R. Structural damage identification based on modified Artificial Bee Colony algorithm using
modal data. Inverse Probl. Sci. Eng. 2017, 26, 422–442. [CrossRef]

49. Ding, Z.H.; Lu, Z.R.; Huang, M.; Liu, J. Improved artificial bee colony algorithm for crack identification in beam using natural
frequencies only. Inverse Probl. Sci. Eng. 2017, 25, 218–238. [CrossRef]

50. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006.
51. Bakhary, N.; Hao, H.; Deeks, A.J. Structure damage detection using neural network with multi-stage substructuring. Adv. Struct.

Eng. 2010, 13, 95–110. [CrossRef]
52. Jiang, S.F.; Zhang, C.M.; Zhang, S. Two-stage structural damage detection using fuzzy neural networks and data fusion techniques.

Expert Syst. Appl. 2011, 38, 511–519. [CrossRef]
53. Hakim, S.J.S.; Razak, H.A. Structural damage detection of steel bridge girder using artificial neural networks and finite element

models. Steel Compos. Struct. 2013, 14, 367–377. [CrossRef]
54. Hakim, S.J.S.; Razak, H.A. Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial neural networks (ANNs) for structural

damage identification. Struct. Eng. Mech. 2013, 45, 779–802. [CrossRef]
55. Bandara, R.P.; Chan, T.H.T.; Thambiratnam, D.P. Frequency response function based damage identification using principal

component analysis and pattern recognition technique. Eng. Struct. 2014, 66, 116–128. [CrossRef]
56. Kourehli, S.S. LS-SVM regression for structural damage diagnosis using the iterated improved reduction system. Int. J. Struct.

Stab. Dyn. 2016, 16, 1550018. [CrossRef]
57. Gui, G.Q.; Pan, H.; Lin, Z.B.; Li, Y.H.; Yuan, Z.J. Data-driven support vector machine with optimization techniques for structural

health monitoring and damage detection. KSCE J. Civ. Eng. 2017, 21, 523–534. [CrossRef]
58. Ye, X.W.; Jin, T.; Yun, C.B. A review on deep learning based structural health monitoring of civil infrastructures. Smart Struct.

Syst. 2019, 24, 567–586.
59. Figueiredo, E.; Radu, L.; Worden, K.; Farrar, C.R. A Bayesian approach based on a Markov-chain Monte Carlo method for damage

detection under unknown sources of variability. Eng. Struct. 2014, 80, 1–10. [CrossRef]
60. Lam, H.F.; Hu, Q.; Wong, M.T. The Bayesian methodology for the detection of railway ballast damage under a concrete sleeper.

Eng. Struct. 2014, 81, 289–301. [CrossRef]
61. Behmanesh, I.; Moaveni, B. Probabilistic identification of simulated damage on the Dowling Hall footbridge through Bayesian

finite element model updating. Struct. Control Health Monit. 2015, 22, 463–483. [CrossRef]
62. Behmanesh, I.; Moaveni, B.; Papadimitriou, C. Probabilistic damage identification of a designed 9-story building using modal

data in the presence of modeling errors. Eng. Struct. 2017, 131, 542–552. [CrossRef]
63. Yin, T.; Jiang, Q.H.; Yuen, K.V. Vibration-based damage detection for structural connections using incomplete modal data by

Bayesian approach and model reduction technique. Eng. Struct. 2017, 132, 260–277. [CrossRef]
64. Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244.
65. Wipf, D.P.; Rao, B.D. Sparse Bayesian learning for basis selection. IEEE Trans. Signal Process. 2004, 52, 2153–2164. [CrossRef]
66. Williams, O.; Blake, A.; Cipolla, R. Sparse Bayesian learning for efficient visual tracking. IEEE Trans. Pattern Anal. Mach. Intell.

2005, 27, 1292–1304. [CrossRef]
67. Ji, S.; Xue, Y.; Carin, L. Bayesian compressive sensing. IEEE Trans. Signal Process. 2008, 56, 2346–2356. [CrossRef]
68. Zhang, Z.; Rao, B.D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE J. Sel.

Top. Signal Process. 2011, 5, 912–926. [CrossRef]
69. Lin, J.; Nassar, M.; Evans, B.L. Impulsive noise mitigation in powerline communications using sparse Bayesian learning. IEEE J.

Sel. Areas Commun. 2013, 31, 1172–1183. [CrossRef]
70. Yoon, M.K.; Heider, D.; Gillespie, J.W., Jr.; Ratcliffe, C.P.; Crane, R.M. Local damage detection with the global fitting method using

mode shape data in notched beams. J. Nondestruct. Eval. 2009, 28, 63–74. [CrossRef]

http://doi.org/10.1142/S1469026811003215
http://doi.org/10.12989/sss.2011.7.2.117
http://doi.org/10.1260/0266-3511.29.3.121
http://doi.org/10.1002/stc.2274
http://doi.org/10.1007/s00521-011-0716-1
http://doi.org/10.1007/s13349-017-0252-5
http://doi.org/10.1177/1077546312469422
http://doi.org/10.1080/17415977.2017.1310855
http://doi.org/10.1080/17415977.2016.1160391
http://doi.org/10.1260/1369-4332.13.1.95
http://doi.org/10.1016/j.eswa.2010.06.093
http://doi.org/10.12989/scs.2013.14.4.367
http://doi.org/10.12989/sem.2013.45.6.779
http://doi.org/10.1016/j.engstruct.2014.01.044
http://doi.org/10.1142/S0219455415500182
http://doi.org/10.1007/s12205-017-1518-5
http://doi.org/10.1016/j.engstruct.2014.08.042
http://doi.org/10.1016/j.engstruct.2014.08.035
http://doi.org/10.1002/stc.1684
http://doi.org/10.1016/j.engstruct.2016.10.033
http://doi.org/10.1016/j.engstruct.2016.11.035
http://doi.org/10.1109/TSP.2004.831016
http://doi.org/10.1109/TPAMI.2005.167
http://doi.org/10.1109/TSP.2007.914345
http://doi.org/10.1109/JSTSP.2011.2159773
http://doi.org/10.1109/JSAC.2013.130702
http://doi.org/10.1007/s10921-009-0048-6


Symmetry 2021, 13, 1998 16 of 18

71. Yoon, M.K.; Heider, D.; Gillespie, J.W., Jr.; Ratcliffe, C.P.; Crane, R.M. Local damage detection with the global fitting method using
operating deflection shape data. J. Nondestruct. Eval. 2010, 29, 25–37. [CrossRef]
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