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Abstract: We begin by introducing a new procedure for construction of the exact solutions to Cauchy
problem of the real-valued (hyperbolic) Novikov–Veselov equation which is based on the Moutard symmetry.
The procedure shown therein utilizes the well-known Airy function Ai(ξ) which in turn serves as a
solution to the ordinary differential equation d2z

dξ2 = ξz. In the second part of the article we show that
the aforementioned procedure can also work for the n-th order generalizations of the Novikov–Veselov
equation, provided that one replaces the Airy function with the appropriate solution of the ordinary
differential equation dn−1z

dξn−1 = ξz.
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1. Introduction

The Moutard transformation [1] is a very interesting form of discrete symmetry of second-order linear
equations with variable coefficients. Consider the differential equation

∆ψ−U(ξ1, ξ2)ψ = ∆φ−U(ξ1, ξ2)φ = 0, (1)

where ∆ is the two-dimensional Euclidean Laplacian. Let ψ = ψ(ξ1, ξ2) and φ = φ(ξ1, ξ2) be two partial
solutions of this equation, i.e., its solutions for two different Cauchy problems (with different initial conditions).
The function φ we will call the prop solution because it will play the role of a foundation on which we will
build the Moutard’s mathematical apparatus. This apparatus, known as the Moutard symmetry is to be
defined as the following transformation:

ψ→ ψ[1] =
θ[ψ, φ]

φ
, U → U[1] = U − 2∆ ln φ, (2)

where
θ[ψ, φ] =

∫
Γ

dxµεµν (φ∂νψ− ψ∂νφ) , (3)

and we used the following (standard) tensor notations: µ ∈ {1, 2}; ∂µ = ∂/∂ξµ; εµν is a fully antisymmetric
tensor with ε12 = 1; and, as usual, we have a summation over the repeated indices. Note that the one-form
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being integrated in (3) will be closed (i.e its derivative will be equal to zero) when both ψ and φ are
solutions of (2). Hence, the shape of the contour of integration Γ in (3) is irrelevant.

If we switch from (ξ1, ξ2) to the cone variables x and y, then the Equation (1) will take a new form:(
∂2

∂x∂y
+ U(x, y)

)
Ψ(x, y) = 0, (4)

To define the Moutard symmetry in the new cone variables one has to override the closed one-form θ.
Namely, let Ψ = Ψ(x, y) and Φ = Φ(x, y) be two solutions of the (4):

− 1
Ψ

∂2Ψ
∂x∂y

= − 1
Φ

∂2Φ
∂x∂y

= U(x, y). (5)

Define a differential form dθ[Ψ; Φ] such that

dθ[Ψ; Φ] = dx
(

∂Ψ
∂x

Φ− ∂Φ
∂x

Ψ
)
− dy

(
∂Ψ
∂y

Φ− ∂Φ
∂y

Ψ
)

, (6)

and
θ[Ψ; Φ] =

∫
Γ

dθ[Ψ; Φ]. (7)

Note that since by definition both Ψ and Φ are solutions of (5), the one-form is closed too, i.e.,

∂2θ[Ψ; Φ]

∂x∂y
=

∂2θ[Ψ; Φ]

∂y∂x
,

and thus the shape of the contour of integration Γ is irrelevant.
The Moutard symmetry has the form

Ψ→ Ψ[1] =
θ[Ψ; Φ]

Φ
, (8)

U → U[1] = U + 2
∂2

∂x∂y
ln Φ. (9)

It means that

− 1
Ψ[1]

∂2Ψ[1]
∂x∂y

= U[1](x, y). (10)

It is worth pointing out at this step that

Φ[1] =
1
Φ

, (11)

rather then zero.
The Moutard symmetry in usual variables can be formally reduced in a one-dimensional limit to the

Darboux transformation (originally introduced in 1882 in article [2] and further developed by Crum in [3]).
In other words, the Moutard symmetry group includes the Darboux transformation group as a subgroup.
This is potentially a very significant observation since the group structure of the Darboux transformation
is associated with a subalgebra of the Kats–Moody algebra of the group SU(2) by means of the following
commutation relation:
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[
Lµ

n , Lν
m

]
= cµν

ρ Lρ
m+n,

where cµν
ρ are the structure constants of the group SU(2) (i.e., the group of unitary 2× 2 matrices with

determinant 1, whose generators are the famous Pauli matrices.) [4]. It is important to note, however, that
while the Darboux transformation is indeed a limit case of the Moutard transformation in the one-dimensional
limit, there still exist a crucial difference between the two. While both require two eigenfunctions to jump start
the process of transformation, in the case of Darboux transformation these eigenfunctions might belong to
different eigenvalues, as long as the prop function is positively defined everywhere (to ensure the regularity
of a new dressed potential). In contrast to that, the Moutard transformation only accepts two eigenfunctions
belonging to the same eigenvalue, which in this paper for simplicity is set equal to zero.

Another interesting property of the Moutard symmetries is that they ((8), (11), (9) or (2), (3)) can be
iterated several times, and the result of their application can be expressed via the corresponding Pfaffian
forms [5]. The Moutard symmetries have a number of interesting physical applications, ranging from the
Maxwell equations in a 2D inhomogeneous medium [6] to the problems of quantum cosmology and the
Wheeler–DeWitt equation [7], as well as the quantum (phantom) modified gravity models [8]. However,
the Moutard transformations are most effective in the theory of integrable evolutionary equations in
(1 + 2) dimensions. And this is a good time to introduce one of these equations, which will be the key
subject of our article. But in order to do tat, we’ll have to take a little detour to very end of XX century.

It was the year 1984, and two Soviet mathematicians, Sergey Novikov and Aleksander Veselov, have made
a very important discovery [9]. At that time they were studying the class of two-dimensional Schrödinger
operators L with a property of a “finite-zoneness w.r.t. a single energy level”, originally introduced in
1976 by Dubrovin, Krichever and Novikov in [10], and is a property of a Schrödinger operator L whose
Bloch functions (i.e., the eigenfunctions that L shares with the periodic operators of spatial translations)
on a single energy level is meromorphic (i.e., holomorphic everywhere except for a few isolated poles)
on a Riemann surface of a finite genus ([10], see also [11]). More specifically, Veselov and Novikov were
interested in those “finite-zone” 2D Schrödinger operators L that are simultaneously real and purely
potential. For that end, a theorem has been proven that for eigenfunction ψ of such an operator to be
meromorphic everywhere except at two points and possess the required asymptotes (see [9] for details),
those eigenfunctions necessarily have to satisfy the following system of equations:

Lψ = ∂∂̄ψ + Vψ = 0,

∂ψ

∂tn
= (An − Ān)ψ,

(12)

where the overhead bar denotes complex conjugate, the operators

An = ∂2n+1 + a2n−1∂2n−1 + ... + a0,

∂ =
1
2

(
∂

∂x
− i

∂

∂y

)
,

(13)

and the coefficients aj and V are uniquely defined by the aforementioned asymptotes.
The pair of operators L and A coupled by the system (12) deeply resembles the famous Lax pair

L,A [12]: two time-dependent operators that satisfy the condition

dL
dt

= [A,L],
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which in turn produces a new (1 + 1)-dimensional differential equation—with such notable examples
as, Korteweg–de Vries (KdV), sine–Gordon and the nonlinear Schrödinger equations (for more details
cf. [5,12], see also [13]). However, in the case of (12) the proper “entanglement” between the L and A
was a tad more complex, and required an additional operator Bn (similar in form to An−1 albeit with its
own coefficients):

dL
dt

= [L, An + Ān] + (Bn + B̄n)L.

In other words, the system (12) was essentially a letter of acquaintance from an infinitely diverse family
of novel (1 + 2) dimensional equations. The very first (and the simplest) member of that very family was
the n = 1 equation (with A1 = ∂3 + 3ω(x, y, t)∂) that has been henceforth known as the Novikov–Veselov
equation (NV) [9]:

ut = ∂3u + (∂̄)3u + 3
(
∂(uω) + ∂̄(uω̄)

)
∂u = ∂̄ω.

(14)

Subsequent studies of NV equation has produced a lot of very interesting observation: for example,
in a one-dimensional case (i.e., when both u and ω are independent of y variable) the (14) reduces to
the KdV equation; whereas if we add to (14) one additional term, λ∂ω, and then take a limit λ → ±∞,
we will instead wound up with either one of two Kadomtsev–Petviashvili equations [14]—another famous
(1 + 2) generalization of KdV! In fact, a huge and ever-growing body of works related to the study of NV
equations has been established (see, for example, Refs. [15–18] for a rather extensive review of a recent
literature on the subject). In particular, a lot of spotlight has been focused on the solutions of (14) and (15).
For example, the article [19] shows how the method of superposition originally proposed in [20] can be
used to obtain a 2-solitary wave solution of the Novikov–Veselov equation. The more general N-solitons
solutions were subsequently constructed in [21]. A conspicuous absence of exponentially localized solitons
for NV equation with a positive energy was explored and explained in [22], whereas the impossibility of
such solutions for the negative energy NV was proven in [23]. Many articles were dedicated to unusual and
fascinating properties of the multi-dimensional solutions, including those for seemingly ordinary flat waves.
In particular, in [24] it has been shown that plane wave soliton solutions of NV equation are not stable for
transverse perturbations; the paper [18] demonstrates that NV equation permits such interesting solutions
as multi-solitons, ring solitons, and the breathers; while the authors of [25] construct a Mach-type soliton of
the NV equation. One of the most effective mathematical tools for studying the NV equation is the inverse
scattering method. It was developed and applied in many articles, such as, for example, Refs. [16,26].
We must also mention an important paper [17], which looked at a zero-energy Novikov–Veselov equation
for the initial data of conductivity type. Taking into account that the (1 + 2) nonlinear equations to this
day remain mostly “terra incognita”, it generates a lot of attention when someone manages to establish a
relationship between the various members of a small group of currently known integrable models. As one
such example we can refer to the article [27] which has uncovered a curious relationship between the
hyperbolic NV equation and the stationary Davey–Stewartson II equation—here the adjective “hyperbolic”
simply means that the L Equation (4) is hyperbolic, i.e., that both x and y variables are real (accordingly,
since the “original” NV equation is associated with the system (12), it can be called “elliptic”). Finally, a lot
of literature has been written on the subject of various generalizations of NV equations, of their properties
and of their solutions [28–30], and see also [31], where the analogue of NV equations is shown to arise in
the nonlinear optics in a dispersion-free limit.
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The observant reader will of course notice that one of the most prominent aspects of the majority
of the articles we have mentioned is an almost universal adoption of an inverse scattering method as a
primary tool for conducting the research and finding the exact solutions of NV. However, in this article
we wish to discuss an alternative method of solving the Cauchy problem for NV (the hyperbolic version).
This method, albeit simple in principle, appears to be deep enough to be applicable to a very broad class of
equations, NV being just the first one – just as it is the but a first member of the Novikov–Veselov hierarchy.

The article is organized as follows. In Section 2 we introduce all the necessary ingredients of our proposed
method, namely: the Lax pair for the hyperbolic (real-valued) NV equation, the Moutard transformation
and the Airy functions—and describe how to use them to produce the exact solutions to the NV equation.
In the next section, Section 3, we up the ante by adding the initial conditions into the mix—and show how to
make sure the new solution satisfies those conditions. Finally, in Section 4 we discuss the generalization of
the proposed method to the higher-order equations from the Novikov–Veselov hierarchy.

2. The Moutard Transformation

Let us start by introducing the hyperbolic NV equation:

ut = uxxx + uyyy + 3
(
(au)x + (bu)y

)
ux = ay, uy = bx,

(15)

where from now on the indices will denote the partial derivatives w.r.t. the corresponding variables. This system
allows for a Lax pair of the following type:

Ψxy + uΨ = 0

Ψt = Ψxxx + Ψyyy + 3
(
aΨx + bΨy

)
.

(16)

If one knows two linearly independent solutions Ψ1(x, y, t) and Ψ2(x, y, t) for (16), then one can
utilize the famous Moutard transformation to construct a new function Ψ[1](x, y, t) that will serve as a
solution to the same Equation (16) albeit with a new potential u[1](x, y, t). The new potential will then
satisfy the relation

u[1] = u + 2∂x∂y ln Ψ1. (17)

Let us assume that u = a = b = 0. Then the entire system (16) simplifies to

Ψxy = 0 (18)

Ψt = Ψxxx + Ψyyy. (19)

The Equation (18) can be resolved by separating the variables. The resulting solution will be of a form:

Ψ1(x, y, t) = A(x, t) + B(y, t), (20)

where A, B are two arbitrary functions that are continuously differentiable by x and y, correspondingly.
Substituting (20) into (17) yields a following post-Moutard form of function u[1](x, y, t):

u[1] = −2
∂x A · ∂yB
(A + B)2 . (21)



Symmetry 2020, 12, 2113 6 of 17

As follows from (21), our next goal should lie in ascertaining the exact forms of the functions A(x, t)
and B(y, t). This task can be accomplished by looking at the Equation (19) which we have ignored so far.
We will rewrite it as a standard Cauchy problem by introducing the initial conditions for A(t, x), B(t, y)

A(0, x) = φ(x), B(0, y) = Φ(y). (22)

and rewriting the (19) as a system

At = Axxx + T(t)

Bt = Byyy − T(t),
(23)

where T = T(t) is an arbitrary time-dependent function. The apparently symmetric nature of (23) allows
us to restrict our attention on just one of the equations therein, namely—the first one.

We begin by introducing the Fourier transform Ã(p, t) of the function A(x, t):

Ã(p, t) =
1√
2π

∞∫
−∞

A(x, t)e−ipxdx.

This transformation is handy because of the identity

A(x, t) =
1√
2π

∞∫
−∞

Ã(p, t)eipxdp, (24)

which, after being substituted into (23), yields the equation

∞∫
−∞

(
∂Ã
∂t

+ ip3 Ã− T
)

eipxdp = 0. (25)

The Equation (25) must be satisfied for all x and p, and therefore leads to:

∂Ã
∂t

+ ip3 Ã = T(t). (26)

(26) is a nonhomogeneous linear O.D.E. of first order. Its general solution is

Ã(p, t) = C(p)e−ip3t +

t∫
0

T(τ)e−ip3(t−τ)dτ, (27)

where C(p) is a function, determinable from the initial conditions (22). Using the inverse Fourier transform (24)
we come to the following conclusion:

A(x, t) =
1√
2π

∞∫
−∞

 t∫
0

T(τ)eip3τdτ + C(p)

eipx−ip3tdp. (28)

According to (22),

φ(x) =
1√
2π

∞∫
−∞

C(p)eipxdp,
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so the unknown C(p) is an inverse Fourier transform of the initial condition φ(x), i.e.,:

C(p) =
1√
2π

∞∫
−∞

φ(x)e−ipxdx.

and we subsequently end up with the following general formula for the function A(x, t):

A(x, t) =
1√
2π

t∫
0

T(τ)dτ

∞∫
−∞

eipx−ip3(t−τ)dp +
1

2π

∞∫
−∞

φ(ξ)dξ

∞∫
−∞

eip(x−ξ)−ip3tdp. (29)

The (29) can be further simplified by pointing out the similarity between the integrals with respect
to variable p and the Airy function Ai(ξ). The Airy function is a particular solution of the eponymous
Airy equation:

d2z
dξ2 = ξz, (30)

that has a following integral representation:

Ai(ξ) =
1√
2π

∞∫
−∞

ei
(

t3
3 +ξt

)
dt. (31)

Using this fact together with the apparent identity:

1√
2π

∞∫
−∞

e−ipa−ip3bdp =
1

3
√

3b
Ai
(

a
3
√

3b

)
,

together with the Equation (29) and the similar one written for B(y, t) finally yields:

A(x, t) =
t∫

0

T(τ)
3
√

3(τ − t)
Ai

(
x

3
√

3(τ − t)

)
dτ +

1√
2π 3
√

3t

∞∫
−∞

φ(ξ)Ai
(

ξ − x
3
√

3t

)
dξ

B(y, t) = −
t∫

0

T(τ)
3
√

3(τ − t)
Ai

(
y

3
√

3(τ − t)

)
dτ +

1√
2π 3
√

3t

∞∫
−∞

Φ(η)Ai
(

η − y
3
√

3t

)
dη.

(32)

So, we end up with both the solution Ψ1 = A + B of the Lax pair (18), (19), and, as a courtesy of
Moutard transform (17), with a solution u[1] of the NV Equation (15) as well. In other words, to find a
non-zero solution of the NV equation, it will suffice to start with u ≡ 0, impose the boundary conditions (22)
on the Lax pair (18), (19), use (32) to find its solution and conclude the calculations by finding a function
u[1] via the Moutard transformation (17). As straightforward as it is, there is one question we should ask:
what would happen should we try to invert the process and instead start out with he boundary conditions
for the NV equation itself?

3. The Cauchy Problem for the Novikov–Veselov Equation

In the previous chapter we have shown that there shall exist a solution u[1](x, y, t) to the NV equation,
whose exact form can be derived via the Moutard transformation (21) from the solutions of the system (18)
and (19), provided we are given the initial conditions (22). What would happen if the exact forms of the
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functions φ(x) and Φ(y) are unknown and we are instead given the initial conditions for the NV equation
itself, and would it still be possible to find the required u[1]? In other words, is it possible to find an
analytic solution to the Cauchy problem for the NV equation provided we only know that the solution has
a general structure (21)? In short, the answer is “yes”.

Let us start by introducing the set of initial and boundary conditions for the NV equation:

u[1](x, y, 0) = u0(x, y)

u0(x, 0) = A1(x)

u0(0, y) = B1(y)

A1(0) = B1(0) = C,

(33)

where C ∈ R is some constant that is given to us together with the boundary conditions A1 and B1.
Since we know that u[1] satisfies the Moutard transformation, we also know that:

u0(x, y) = −2
φ′(x) · Φ̇(y)

(φ(x) + Φ(y))2 , (34)

where φ and Φ are defined as in Section 2, and ′ and · denote the partial derivatives with respect to x and
y variables correspondingly. From (34) and (33) it immediately follows that

A1(x) = −2
φ′(x) · Φ̇(0)

(φ(x) + Φ(0))2

B1(y) = −2
φ′(0) · Φ̇(y)

(φ(0) + Φ(y))2

C = −2
φ′(0) · Φ̇(0)

(φ(0) + Φ(0))2 .

(35)

The first two differential equations in (35) can be easily integrated; for example, the first one after the
integration with respect to the variable x yields

Φ̇(0)
φ(x) + Φ(0)

=
1
2

x∫
0

A1(ξ)dξ +
Φ̇(0)

φ(0) + Φ(0)
,

which leads us to the following conclusion:

φ(x) =
2Φ̇0

x∫
0

A1(ξ)dξ + 2Φ̇0
φ0+Φ0

−Φ0

φ′(x) =
−2Φ̇0 A1(x)(

x∫
0

A1(ξ)dξ + 2Φ̇0
φ0+Φ0

)2 ,
(36)

where we have introduced the notation: φ(0) = φ0, Φ(0) = Φ0, φ′(0) = φ′0 and Φ̇(0) = Φ̇0. In a similar
fashion, the boundary condition Φ(y) and its derivative will satisfy:
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Φ(y) =
2φ′0

y∫
0

B1(ζ)dζ +
2φ′0

φ0+Φ0

− φ0

Φ̇(y) =
−2φ′0B1(y)(

y∫
0

B1(ζ)dζ +
2φ′0

φ0+Φ0

)2 .
(37)

The system (36) and (37) depends on four constants: φ0, Φ0, φ′0 and Φ̇0. Three of them can be chosen
arbitrarily, whereas the fourth one would have to satisfy the Equation (35), namely:

−2
φ′0 · Φ̇0

(φ0 + Φ0)2 = C.

Curiously, this choice does not affect the Cauchy problem of the NV equation in the least, for it can be
shown by direct substitution into (34) that:

u0(x, y) =
4CA1(x)B1(y)(

x∫
0

y∫
0

A1(ξ)B1(ζ)dζdξ + 2C

)2 , (38)

i.e., the initial condition u0(x, y) depends only on the known initial boundary conditions A1(x), B1(y) and C.
We are now ready to answer the question posed in the beginning of this section: provided we know the

initial conditions (38), how do we solve the corresponding Cauchy problem of the hyperbolic real-valued
Novikov–Veselov equation? The answer lies in repeating the Moutard transformation process we described
in Section 2! Indeed, since the unknown functions φ(x) and Φ(y) satisfy the relations (36) and (37), all we
really have to do is substitute them into the system (32), derive A(x, t) and B(y, t), and substitute them in
Equation (21) to find out the sought after u[1](x, y, t), which will conclude the problem.

Lets summarize everything we have said so far. In order to find an exact solution u(x, y, t) to the
hyperbolic real-valued Novikov–Veselov equation

ut = uxxx + uyyy, (39)

with the given initial boundary conditions

u(x, 0, 0) = A1(x), u(0, y, 0) = B1(y), u(0, 0, 0) = C,

that correspond to the initial condition

u0(x, y) =
4CA1(x)B1(y)(

x∫
0

y∫
0

A1(ξ)B1(ζ)dζdξ + 2C

)2 ,

one shall:
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1. Choose a differentiable function T(t) and four numbers α, β, γ and δ that satisfy the condition,

−2
γ · δ

(α + β)2 = C.

2. Find two support function φ(x) and Φ(y) via the formulas

φ(x) =
2δ

x∫
0

A1(ξ)dξ + 2δ
α+β

− β

Φ(y) =
2γ

y∫
0

B1(ζ)dζ + 2γ
α+β

− α.

3. Substitute φ(x) and Φ(y) into the equations

A(x, t) =
t∫

0

T(τ)
3
√

3(τ − t)
Ai

(
x

3
√

3(τ − t)

)
dτ +

1√
2π 3
√

3t

∞∫
−∞

φ(ξ)Ai
(

ξ − x
3
√

3t

)
dξ

B(y, t) = −
t∫

0

T(τ)
3
√

3(τ − t)
Ai

(
y

3
√

3(τ − t)

)
dτ +

1√
2π 3
√

3t

∞∫
−∞

Φ(η)Ai
(

η − y
3
√

3t

)
dη.

(40)

4. Substitute the new functions A(x, t) and B(y, t) into the equation

u = −2
∂x A · ∂yB
(A + B)2 . (41)

The resulting function u(x, y, t) will be a proper solution of the Cauchy problem since by construction
it will satisfy both the NV Equation (39), and the initial conditions u(x, y, 0) = u0(x, y). We would like to
emphasize here that this procedure does not involve anything more complicated than partial differentiation
and integration and can therefore be used for both the analytic study of the properties of the solutions of
NV equation and the corresponding numerical calculations.

Before we conclude this section, we would like to offer two interesting examples of Cauchy problems
that might be used for the algorithm we have described above and that serve as the proof that even the
seemingly simple case of (18) with u = 0 can lead to some rather interesting problems.

The first is based on the solution of (20) of the form: Ψ1(x, y, 0) = cosh(x − x0) + cosh(y − y0),
where x0, y0 6= 0. According to (21) it corresponds to the following dromion solution:

u0(x, y) =
2 sinh(x− x0) · sinh(y− y0)

(cosh(x− x0) + cosh(y− y0))2 , (42)

depicted on Figure 1. It is important to note that x0 and y0 must be non-zero constants, otherwise the functions
φ(x) = u0(x, 0) and Φ(y) = u0(0, y) in (40) will be identically zero. Any other choice for x0, y0 ∈ R, however,
would be fine and will result in nontrivial solutions of the NV equation. Additionally, a little note is in
order. The solution we have just produced is the exponentially exponentially localized soliton localized
on the 2D plane. The solutions of this have been previously constructed for the Davey–Stewartson-I (DS)
equation in [32–34], while the term “dromion” itself stems from the 1989 paper by Fokas and Santini [35].
The DS equations describe two interacting fields, and in the case of the dromion on of them describes a
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certain exponentially localized (on a plane) structure, while the other has orthogonal equipotential lines.
It is thanks to this very property that we are at liberty to call the solution (42) a “dromion”.

Figure 1. The dromion-type Cauchy problem (42) for u0(x, y) with x0 = y0 = −1. There are two equipotential
lines at y− y0 = ±(x− x0).

The second solution is based on the function: Ψ1(x, y, 0) = e(x−x0)
2
+ e−(y−y0)

2
, where x0, y0 6= 0.

The solution u0(x, y) then has the form:

u0(x, y) =
8er2

(x− x0)(y− y0)

(1 + er2)2
, r2 = (x− x0)

2 + (y− y0)
2. (43)

depicted on Figure 2, and it is easy to see that on the plane 0xy it describes an exponentially localized
structure, centered around the point (x0, y0).
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Figure 2. A sample of localized Cauchy problem (43) with x0 = y0 = −1.

4. Generalization of the Method: The Higher-Order Equations

Let us now say a few words about the more general problem. First of all, let us look at the following
operator-type Lax pair:

∂x∂yΨ + uΨ = 0

∂tΨ = ∂n
xΨ + ∂n

y Ψ,
(44)

where n ∈ N+ in some non-zero natural number. This system will correspond to a family of Lax equations,
with the special case n = 3 corresponding to the hyperbolic NV equation. It will still allow for the Moutard
transformation, and therefore the crux of our discussion would still be applicable for arbitrary n. However, one
thing that must change is the exact form of the equations for A(x, t) and B(y, t). This is due to a very simple
reason: the Fourier transform Ã(p, t) for the function A(x, t) had to satisfy the Equation (26), where one of
the terms had a specific factor ip3. It is this very factor that had allowed us to introduce the Airy function
and derive the exact formula for A(x, t). Unfortunately, this very factor is endemic to the Veselov–Novikov
equation, and in the more general case of (44) it must be replaced with the factor −(ip)n—destroying any
relationship with the Airy function proper. As a result, the entire formula (40) becomes no longer applicable
for the general case and thus should be properly replaced. In order to find out the suitable replacement, we
shall separately consider two alternative cases: when n is odd and when n is even.
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Case 1: Odd n. Let n = 2m + 1, where m ≥ 0. Following our previous discussion, let us consider the
special case u ≡ 0. Then the system (44) turns into

∂x∂yΨ = 0

∂tΨ = ∂n
xΨ + ∂n

y Ψ.

Since the first equation requires that Ψ = A(x, t) + B(y, t), the system subsequently splits into the
following equations:

∂t A2m+1 = ∂2m+1
x A2m+1, ∂tB2m+1 = ∂2m+1

y B2m+1,

where for simplicity we have omitted the arbitrary function T(t). Using the Fourier transformation

Ã2m+1(p, t) =
1√
2π

∞∫
−∞

A2m+1(x, t)e−ipxdx,

we end up with the differential equation

∂t Ã2m+1 = (ip)2m+1 Ã2m+1 = i(−1)m p2m+1 Ã2m+1.

Solving it and returning back to A(x, t) as described in Section 2 yields

A2m+1(x, t) =
1√
2π

∞∫
−∞

dξ φ(ξ)
1√
2π

∞∫
−∞

dp ei(p(x−ξ)+(−1)m p2m+1t). (45)

As we know, in the special case m = 1 (i.e., n = 3) the inner integral in (48) can be rewritten in terms
of the Airy function

Ai(ξ) =
1√
2π

∞∫
−∞

ei
(

t3
3 +ξt

)
dt =

√
2
π

∞∫
0

cos
(

ξt +
t3

3

)
dt,

which serves as a solution to the Airy equation

d2z
dξ2 = ξz,

and is easily derived using either Fourier or Laplace transformation; in case of the Laplace transformation
the contour of integration must be chosen lying inside of a sector where the polar angle θ satisfies the
condition cos(3θ) > 0.

Similarly, it is easy to show that one of a solutions to a more general equation

d2mz
dξ2m = ξz,

will be a higher-order generalization of the Airy function:

Ai2m+1(ξ) =
1√
2π

∞∫
−∞

ei
(

ξt− (−1)m
2m+1 t2m+1

)
dt =

√
2
π

∞∫
0

cos
(

ξt− (−1)m

2m + 1
t2m+1

)
dt, (46)



Symmetry 2020, 12, 2113 14 of 17

which means that the required functions A2m+1 and B2m+1 can be derived from the initial conditions φ(x)
and Φ(y) by the following formulas:

A2m+1(x, t) =
1

2m+1
√
(2m + 1)t

∞∫
−∞

dξ φ(ξ) Ai2m+1

(
ξ − x

2m+1
√
(2m + 1)t

)
,

B2m+1(x, t) =
1

2m+1
√
(2m + 1)t

∞∫
−∞

dζ Φ(ζ) Ai2m+1

(
ζ − y

2m+1
√
(2m + 1)t

)
.

(47)

Side note: We would like to remind the reader that in literature the term generalized Airy function is
commonly assigned to the solutions of the second order O.D.E. w′′(x) = xnw(x); hence the addition of the
term-order in our case is necessary to avoid a possible confusion.

Case 2: Even n. Let n = 2m, where m ≥ 0. This time let us utilize not a Fourier but a Laplace transform:

A2m(x, t) =
∞∫
−∞

Ã2m(p, t)epxdx,

where we have introduced the equation for Ã(p, t) is

∂Ã2m

∂t
= p2m Ã2m,

so the required function A(x, t) will satisfy the equation

A2m(x, t) =
∞∫
−∞

dξ φ(ξ)

∞∫
−∞

dp ep(x−ξ)+p2mt. (48)

It is not difficult to show that the Laplace transformation method applied to the ordinary differential equation

d2m−1z
dξ2m−1 = ξz,

will yield a following solution

Ai2m(ξ) =

∞∫
−∞

exp
(

ξt− t2m

2m

)
dt, (49)

and so the even case produces the formulas that are quite similar to the old ones, namely:

A2m(x, t) =
1

2m
√
−2mt

∞∫
−∞

dξ φ(ξ) Ai2m

(
x− ξ

2m
√
−2mt

)
,

B2m(x, t) =
1

2m
√
−2mt

∞∫
−∞

dζ Φ(ζ) Ai2m

(
y− ζ

2m
√
−2mt

)
.

(50)

Note the appearance of a negative sign under the root in (50), which serves as a indication of an
ill-posedness of our problem for t > 0.
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Side note: The choice of the lower limit in the Laplace transform being equal to−∞ is neither random nor
capricious—it is necessary so that during the integration by parts (which is required to get the solution (49))
all the boundary terms will vanish.

In order to conclude this section, we have to produce a sample of a differential equation that allows
for a Moutard transformation and whose Lax pair reduces to (44) when u = 0. It is possible to demonstrate
that no such equation exists for n = 4, which gives a very strong indication that the method is intricately
tied up to the Novikov–Veselov hierarchy. Indeed, if we consider the following Lax pair:

Ψxy = −uΨ

Ψt = Ψ5x + Ψ5y + 5
(
ωyyΨyy

)
y + 5 (ωxxΨxx)x + aΨy + bΨx,

(51)

with the functions a, b and ω satisfying the conditions:

ωxy = u

ax = 5uyyy + 5
(
uωyy

)
y + 10uyωyy

by = 5uxxx + 5 (uωxx)x + 10uxωxx,

(52)

then we end up with the second equation from the Novikov–Veselov hierarchy, which has the following form:

ut = u5x + u5y + 5
(
(ωyyuy)yy + (ωxxux)xx

)
+ (au)y + (bu)x, (53)

which exactly satisfies both of our underlying assumptions whenever we set ω = 0, or, more generally,
choose ω = c1x + c2y + c3, where c1, c2, c3 ∈ R. Subsequent application of the proposed method to this
equation (plus the initial conditions) for the case u = 0 we leave to the reader.

5. Conclusions

At last, let us reflect on the results we have gained. The main aim of the article was to demonstrate that
the Moutard symmetry is not only well-suited to construct explicit partial solutions of nonlinear partial
differential equations such as Novikov–Veselov equation, but it is also versatile enough to solve the Cauchy
problems like (33). This is a very important and useful property of the Moutard symmetry, because the
common way to solve the Cauchy problem invokes the inverse scattering method whose applications for
the (1 + 2)-dimensional equations remains far from being completely understood. Another interesting
application of the Moutard symmetry may be connected with the construction of so-called dressing chains
of discrete symmetries. Such chains connect different integrable hierarchies and in the long run suggest
that potentially all the nonlinear integrable equations might be different manifestations of one unique
integrable differential equation, but simply written in different calibrations (see, for example, Ref. [36]).

Another interesting open question is the evolution of initially exponentially localized structures. There
is a set of theorems that explicitly forbids the existence of exponentially localized solitons of NV equation
(see the discussion in Section 1), so we shall expect that the evolution of such structures as (42) and (43)
will destroy the localization and transform the solution into some other type of structure. Our approach
opens the window of opportunity to study these complex processes analytically.
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