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Abstract: In this article we investigate a homogeneous discrete time risk model with a generalized
premium income rate which can be any natural number. We derive theorems and give numerical
examples for finite and ultimate time survival probability calculation for the mentioned model.
Our proved statements for ultimate time survival probability calculation, at some level, are similar to
the previously known statements for non-homogeneous risk models, where required initial values
of survival probability for some recurrent formulas are gathered by certain limit laws. We also give
a simplified proof that a ruin is almost unavoidable with a neutral net profit condition and state
several conjectures on a certain type of recurrent matrices non-singularity. All the research done can
be interpreted as a possibility that symmetric or asymmetric random walk (r.w.) hits (or not) the line
u + κt and that possibility is directly related to the expected value of r.w. generating random variable
which might be equal, above or bellow κ.

Keywords: discrete time risk model; random walk; ruin probability; survival probability;
ultimate time; net profit condition
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1. Introduction

A game of gain and loss occurs in various situations. All individuals have savings, earn income,
and face expenses. Obviously, expenses, being greater than income and savings, cause inconveniences
or bankruptcy. Models, trying to express such situations and measure its likelihood, are often random
walk (sum of certain random variables) based. In general, random walk has various occasions:
pure mathematics, insurance, engineering, computer science, physics, and many others—across all
natural and related sciences. Our work is both pure and insurance mathematics shifted and we
calculate probability that a certain increasing random amount will never hit some selected increasing
threshold. The mentioned event is directly related to some equilibrium conditions which, in separate
cases, might be deemed as axes of symmetry.

One of the most general risk models in collective risk theory is the Sparre Andersen’s risk model
presented in [1]. This model assumes that the insurers surplus process W has the following expression:

W(t) := u + ct−
Θ(t)

∑
i=1

Zi, t > 0, (1)

where:
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• u > 0 denotes the initial insurer’s surplus;
• c > 0 denotes the premium rate per unit of time;
• The cost of claims {Z1, Z2, . . .} are independent copies of a non-negative random variable (r.v.) Z;
• The inter-occurrence times of claims {θ1, θ2, . . .} are another sequence of independent copies of a

non-negative r.v. θ, which is not degenerate at zero;
• The sequences {Z1, Z2, . . .} and {θ1, θ2, . . .} are mutually independent;
• Θ(t) = #{n > 1 : Tn 6 t} is the renewal process generated by r.v. θ, where Tn = θ1 + θ2 + . . . + θn.

Since 1957, when the Sparre Andersen’s risk model (1) was introduced, there occurred a significant
amoutn of research papers across the world on certain versions of the model (1). For example, [2–12]
and many others. An observable break in the subject was achieved when [7,13,14] were published
in 1988.

In this paper, we consider the special case of the general Sparre Andersen’s model. In (1), we set

c = κ ∈ N, θ ≡ 1, and Zi
d
=Xi, i ∈ N, where Xi are independent copies of an integer valued non-negative

r.v. X. Under such restrictions, for the insurers surplus process W, we get the following expression:

W(t) = u + κt−
btc

∑
i=1

Xi, t > 0. (2)

Since a r.v. X is discrete, it is enough to consider u ∈ N0 := {0, 1, . . .} and t ∈ N for the defined
model (2). Therefore, the model we work with is given by the following formula:

W(t) = u + κt−
t

∑
i=1

Xi, u ∈ N0, t, κ ∈ N, Xi
d
=X (3)

and we call it the generalized premium discrete time risk model (GPDTRM). In addition, it is natural
to define that W(0) := u. The finite and ultimate time survival probabilities for the model presented
by (3) are correspondingly defined as:

ϕ(u, T) := P
(

T⋂
t=1
{W(t) > 0}

)
, ϕ(u) := P

(
∞⋂

t=1
{W(t) > 0}

)
, (4)

where T ∈ N.
In addition, for each i ∈ N, let us denote the local probabilities of r.v. X by hi := P(X = i), value of

the accumulated distribution function of X by H(i) := P(X 6 i), and value of the tail distribution of X
by H(i) := 1− H(i) = P(X > i).

The following simple statement provide us the algorithm to calculate values of the finite time
survival probability.

Theorem 1. For GPDTRM presented by Formula (3), the finite time ruin probability satisfies the
following equations:

ϕ(u, 1) = H(u + κ − 1), ϕ(u, T) =
u+κ−1

∑
i=0

ϕ(u + κ − i, T − 1)hi,

where u > 0 and T > 2.
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Proof. For T = 1, the formula follows straightforward by the finite time survival probability definition
(4): ϕ(u, 1) = P (u + κ − X1 > 0) = H(u + κ − 1), and for T = 2, 3, . . . it follows by the law of total
probability and elementary rearrangements:

ϕ(u, T) = P
(

T⋂
t=1

{
u + κt−

t

∑
i=1

Xi > 0

})
= P

(
T⋂

t=2

{
u + κt−

t

∑
i=1

Xi > 0

}
, X1 6 u + κ − 1

)

=
u+κ−1

∑
i=0

P
(

T−1⋂
t=1

{
u + κt + κ − i−

t

∑
i=1

Xi > 0

}
, X1 = i

)
=

u+κ−1

∑
i=0

ϕ(u + κ − i, T − 1) hi.

Our reason to present Theorem 1 is to see the broader view calculating the ultimate time survival
probability in Section 5 below. From definition (4) it is easy to see that ϕ(u, T + 1) 6 ϕ(u, T) and
ϕ(u, T) 6 ϕ(u + 1, T) for all u ∈ N0 and T ∈ N.

Let us turn to the ultimate time survival probability. By similar arguments as in proof of Theorem 1,
the ultimate time survival probability of the model (3) for all u ∈ N0 satisfies the following relation:

ϕ(u) =
u+κ

∑
i=1

hu+κ−i ϕ(i). (5)

Indeed, by the same arguments as in the proof of Theorem 1, we get:

ϕ(u) = P
(

∞⋂
t=1

{
u + κt−

t

∑
i=1

Zi > 0

})

= P
(

∞⋂
t=1

{
u + κt−

t

∑
i=1

Zi > 0

}
, Z1 6 u + κ − 1

)
+ P

(
∞⋂

t=1

{
u + κt−

t

∑
i=1

Zi > 0

}
, Z1 > u + κ − 1

)

=
u+κ−1

∑
i=0

P
(

∞⋂
t−1=1

{
u + κ(t− 1) + κ − Z1 −

t−1

∑
i=1

Zi > 0

}
, Z1 = i

)

=
u+κ−1

∑
i=0

P
(

∞⋂
t=1

{
u + κt + κ − i−

t

∑
i=1

Zi > 0

})
hi =

u+κ−1

∑
i=0

ϕ(u + κ − i) hi =
u+κ

∑
i=1

hu+κ−i ϕ(i).

We can see from the derived recurrence relation (5) that to get the value of ϕ(u + k) we must
know all the previous values ϕ(0), ϕ(1), . . . , ϕ(u + k− 1) even in the case of u = 0. In fact, we further
do spins around the finding of those initial values. But first, we need to describe a net profit condition.

It is said that the net profit condition for the GPDTRM (3) holds if:

EX− κ < 0. (6)

The intuitive explanation of this condition is simple. Let us rewrite the main model Equation (3)
by the form:

W(t) = u +
t

∑
i=1

(κ − Xi).

From this, it follows that EW(t) = u− t(EX− κ) and only condition EW(t) > 0 allows us to expect
that W(t) > 0 with some non-zero probability for all t ∈ {1, 2, . . .}. In Sections 2 and 3, we assume
the net profit condition be satisfied, and in Section 4 we will prove precisely that ϕ(u) = 0 almost
always if (6) is not fulfillled. Breach of the net profit condition consists from two options too: EX = κ

or EX > κ. Therefore, the whole structure of this paper can be seen as based on the expectation of r.v.
X: on, shift to the left, or to the right comparing to κ ∈ N.
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It is worth mentioning that the exact recursive formulas for the finite time ruin probability
ψ(u, T) := 1− ϕ(u, T) for an even more generalized model than (3), was obtained in [15]. Authors there
derive the finite time ruin probability calculation formulas for the model:

u + t−
t

∑
i=1

Xi, t ∈ N

supposing u ∈ N0 and allowing r.v.s Xi to be a non-negative integer valued and independent, but not
necessary identically distributed. Then, by using certain shifts, the model is generalized for certain
rational values of initial surplus, premium, and claim sizes {X1, X2, . . .}. However, similar tricks
do not work for the ultimate time ruin probability. We complete the introduction section with the
following assertion on a couple of properties of ϕ which will be often used in the later sections.

Lemma 1. For the GPDTRM (3) under the net profit condition EX < κ the following relations hold:

lim
u→∞

ϕ(u) = 1, (7)

lim
v→∞

v+κ

∑
i=0

H(v + κ − i)ϕ(i) = EX. (8)

Proof. The proof of the first property (7) starts with an observation that:

ϕ(u) = P
(

sup
n>1

{
n

∑
i=1

(Xi − κ)

}
< u

)
,

and the strong law of large numbers implies that:

lim
n→∞

∑n
i=1 (Xi − κ)

n
= EX− κ < 0

almost surely. We can now mimic the proof of Theorem 2.3 in [16] and derive that:

lim inf
u→∞

ϕ(u) > 1− ε,

where ε is an arbitrary small positive number. This implies (7).
The second relation of the lemma follows by an observation that the lower and upper bounds of

the sum in (8) are the same. Indeed,

v+κ

∑
i=0

H(v + κ − i)ϕ(i) 6
v+κ

∑
i=0

H(i) →
v→∞

EX.

In addition, for a temporary fixed non-negative M,

v+κ

∑
i=0

H(v + κ − i)ϕ(i) =

(
M

∑
i=0

+
v+κ

∑
i=M+1

)
H(v + κ − i)ϕ(i) > inf

i>M+1
ϕ(i)

v+κ−M−1

∑
i=0

H(i),

where the last term tends to infi>M+1 ϕ(i)EX as v → ∞ and infi>M+1 ϕ(i) tends to unit as M → ∞
due to the derived relation (7). Lemma is proved.

The rest of the paper is organized as follows. In Section 2, the algorithms are presented for the
ultimate time survival probability calculation of the GPDTRM with premium rate κ = 2. Proofs of the
main results for the case κ = 2 are given in Section 6. Additionally, in Section 2, we present one special
observation on the limit behavior of a certain recurrent sequence for the model (3) with κ = 1. Section 3
is dealt with the results on the ultimate time survival probability for model (3) with κ > 3. The proofs
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of these results are presented in Section 7. Section 4 is devoted for the unsatisfied net profit condition
and in Section 5 a numerical calculations are given for some theoretical statements illustration.

2. Particular Cases of GPDTRM

In this section, we investigate in detail the survival probability ϕ for model (3) when κ = 2.
In addition, we derive one interesting recurrent tendency to the expectation EX when κ = 1.

At first suppose κ = 2. According to the main model Equation (3) we have that:

W(t) = u + 2t−
t

∑
i=1

Xi, t ∈ N, (9)

where u ∈ N0 and X1, X2, . . . are independent copies of an integer valued nonnegative r.v. X. Due to (5),
the recursive formula of survival probability ϕ(u) is the following:

ϕ(u) =
u+2

∑
i=1

hu+2−i ϕ(i) =
u+1

∑
i=0

hu−i+1 ϕ(i + 1). (10)

Below we present theorems that can be used to calculate the ultimate time survival probability for
the model (9). The first theorem describes the case h0 = P(X = 0) > 0.

Theorem 2. Let us consider the model (9). If h0 > 0 and EX < 2, then

ϕ(0) =
(ϕ(n + 1)− ϕ(n))− (βn+1 − βn)(2−EX)

αn+1 − αn
, n ∈ N0, (11)

ϕ(1) =
1
h0

(−ϕ(0) + (2−EX)) , (12)

ϕ(u) =
1
h0

(
ϕ(u− 2)−

u−1

∑
k=1

hu−i ϕ(i)

)
, u > 2. (13)

where sequences αn and βn are defined by the following recurrent equalities:

α0 = 1, α1 = − 1
h0

, αn =
1
h0

(
αn−2 −

n−1

∑
i=1

hn−iαi

)
, n > 2,

β0 = 0, β1 =
1
h0

, βn =
1
h0

(
βn−2 −

n−1

∑
i=1

hn−iβi

)
, n > 2.

In addition, for each n ∈ N0, αn+1 − αn 6= 0 and

ϕ(n) = ϕ(0)αn + βn(2−EX). (14)

Remark 1. From the definition of the survival probability (4), it is evident that ϕ(n) 6 ϕ(n + 1) 6 1 and
ϕ(n + 1)− ϕ(n)→ 0 as n→ ∞. Therefore, for practical calculations we assume that ϕ(n + 1)− ϕ(n) ≈ 0 if
n is sufficiently large in Theorem 2.

Remark 2. According to Lemma 1, when the net profit condition holds, ϕ(n)→ 1 as n→ ∞. Therefore, we can
get the value of ϕ(0) using equality (14) of Theorem 2. Indeed, inequalities in (23) ensure that αn 6= 0 for all
n ∈ N0, and consequently the equality (14) implies that ϕ(0) ≈ (ϕ(n)− βn(2− EX))/αn for sufficiently
large n. It is hard to argue which algorithm is better for finding ϕ(0), however one may think that for some
slowly increasing ϕ(n) the assumption ϕ(n+ 1)− ϕ(n) ≈ 0 is more accurate than ϕ(n) ≈ 1. See the Section 5
for more detailed examples on that.

The net profit condition EX < 2 for the model (9) may remain satisfied if h0 = 0 and h1 > 0. If that
happens, the survival probability ϕ(u) for u ∈ N0 can be calculated using the following assertion.
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Theorem 3. If h0 = 0 and EX < 2, then:

ϕ(0) = 2−EX, ϕ(1) =
ϕ(0)
h1

, ϕ(u) =
1
h1

(
ϕ(u− 1)−

u−1

∑
i=1

hu−i+1 ϕ(i)

)
, u > 2.

The first required initial values ϕ(0) and ϕ(1) if h0 > 0, or just ϕ(0) if h0 = 0 and h1 > 0,
needed for the recursive relation (10), may be calculated a bit differently than in Theorems 2 and 3.
This follows from the following assertion.

Theorem 4. Let us consider the model (9).
(i) If h0 > 0 and EX < 2, then:(

α
(0)
n α

(1)
n

α
(0)
n+1 α

(1)
n+1

)
×
(

ϕ(0)
ϕ(1)

)
=

(
ϕ(n)

ϕ(n + 1)

)
,

where

α
(0)
0 = 1, α

(0)
1 = 0, α

(0)
n =

1
h0

(
α
(0)
n−2 −

n−1

∑
i=1

hn−iα
(0)
i

)
, n > 2,

α
(1)
0 = 0, α

(1)
1 = 1, α

(1)
n =

1
h0

(
α
(1)
n−2 −

n−1

∑
i=1

hn−iα
(1)
i

)
, n > 2.

(ii) If h0 = 0 and EX < 2, then ϕ(0) = ϕ(n)/α̂n, where:

α̂0 = 1, α̂1 =
1
h1

, α̂n =
1
h1

(
α̂n−1 −

n−1

∑
i=1

hn+1−iα̂i

)

with property 1 6 α̂n 6 α̂n+1 for all n ∈ N0.

Remark 3. The implication of ϕ(0) and ϕ(1), or just ϕ(1), by Theorem 4 is evident in terms that ϕ(n) ≈ 1
when the net profit condition holds and n is sufficiently large. The remaining values of ϕ(u) when u > 2 are of
course implied by (10). However, the efficiency of Theorem 4 is low when compared to Theorems 2 and 3 due
to the n size to get a sufficient precision initial values ϕ(0) and ϕ(1) (or ϕ(0) only). See Section 5 for some
explicit examples on that.

Remark 4. We can not prove that the matrix in the first part of Theorem 4, formed by coefficients α
(0)
n and α

(1)
n ,

is non-singular for all n ∈ N0. Attempts to prove and calculations with some chosen distributions lead to the
following conjecture.

Let Dn denote determinant of matrix in part (i) of Theorem 4, i.e.

Dn = α
(0)
n α

(1)
n+1 − α

(1)
n α

(0)
n+1.

Conjecture 1. For the defined determinants Dn, it holds that 1 6 D2n 6 D2n+2 and −1/h0 > D2n+1 >
D2n+3 for all n ∈ N0.

Comparing Theorems 2 and 3 to Theorem 4, one may observe that defined recurrent sequences
have some interesting limit properties. For example limn→∞ α̂n = 1/(2−EX). A simple illustration of
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that can be obtained also for the discrete time risk model when we set κ = 1 in (3). It is well known
(see, for example, [17–21]) that for the discrete time risk model with κ = 1

W(t) = u + t−
t

∑
i=1

Xi, u ∈ N0, t ∈ N, Xi
d
=X (15)

the survival probability for u = 0 is ϕ(0) = 1−EX. On the other hand, from (5) with κ = 1, we can
express ϕ(0) via ϕ(n). Such thoughts lead to the following statement.

Theorem 5. For the discrete time risk model (15) with the satisfied net profit condition EX < 1, it holds that:

lim
n→∞

α̃n =
1

1−EX
,

where α̃0 = 1, α̃1 = 1/h0 and α̃n = 1
h0

(
α̃n−1 −∑n−1

i=1 hn−iα̃i

)
for n > 2.

We remind that proofs of statements of this section are given in Section 6 below.

3. General GPDTRMs

In this Section, we proceed to develop statements for the ultimate time survival probability
calculation for model (3) when κ ∈ {3, 4, . . .}. Due to the Remarks 2 and 3 in the previous section
on algorithm efficiency, we will not develop any statements on finding initial values for (5) straight
forward by (5) itself as in Theorem 4. In addition, we will not gather any initial values without setting
differences ϕ(n + 1)− ϕ(n), ϕ(n + 2)− ϕ(n), and so on. The following three theorems provide us an
algorithm to calculate desired values of survival probability.

Theorem 6. Let us consider the general GPDTRM with κ > 3. If h0 > 0 and EX < κ then ϕ(0), . . . , ϕ(κ− 2)
for all n ∈ N0 satisfy the following system of equations:

α
(0)
n+1 − α

(0)
n α

(1)
n+1 − α

(1)
n . . . α

(κ−2)
n+1 − α

(κ−2)
n

α
(0)
n+2 − α

(0)
n α

(1)
n+2 − α

(1)
n . . . α

(κ−2)
n+2 − α

(κ−2)
n

· · · · · · · · · · · ·
α
(0)
n+κ−1 − α

(0)
n α

(1)
n+κ−1 − α

(1)
n . . . α

(κ−2)
n+κ−1 − α

(κ−2)
n

×


ϕ(0)
ϕ(1)
· · ·

ϕ(κ − 2)



+


β̃n+1 − β̃n

β̃n+2 − β̃n

· · ·
β̃n+κ−1 − β̃n

× (κ −EX) =


ϕ(n + 1)− ϕ(n)
ϕ(n + 2)− ϕ(n)

...
ϕ(n + κ − 1)− ϕ(n)

 , (16)

where coefficients α
(i)
n and β̃n for n = 0, . . . , κ − 1 are:

n α
(0)
n α

(1)
n . . . α

(κ−2)
n β̃n

0 1 0 . . . 0 0
1 0 1 . . . 0 0
· · · · · ·

κ − 2 0 0 . . . 1 0
κ − 1 −1/h0 −H(κ − 2)/h0 . . . −H(1)/h0 1/h0
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and for n = κ, κ + 1, . . .

α
(i)
n =

1
h0

(
α
(i)
n−κ −

n−1

∑
m=1

hn−mα
(i)
m

)
, i = 0, . . . , κ − 2, β̃n =

1
h0

(
β̃n−κ −

n−1

∑
m=1

hn−m β̃m

)
.

In addition,

ϕ(κ − 1) =
1
h0

(
−ϕ(0)−

κ−2

∑
i=1

H(κ − 1− i)ϕ(i) + (κ −EX)

)
,

ϕ(u) =
1
h0

(
ϕ(u− κ)−

u−1

∑
i=1

hu−i ϕ(i)

)
, u > κ.

By the same argumentation as in Remark 1, the right hand side of (16) tends to the zero vector as
n→ ∞. Therefore, for numerical calculations we assume that the right hand side of (16) is zero vector
for some sufficiently large n and obtain ϕ(0), . . . , ϕ(κ − 2) by solving the system. For some chosen
distributions and κ we never find the matrix in (16):

α
(0)
n+1 − α

(0)
n α

(1)
n+1 − α

(1)
n . . . α

(κ−2)
n+1 − α

(κ−2)
n

α
(0)
n+2 − α

(0)
n α

(1)
n+2 − α

(1)
n . . . α

(κ−2)
n+2 − α

(κ−2)
n

· · · · · · · · · · · ·
α
(0)
n+κ−1 − α

(0)
n α

(1)
n+κ−1 − α

(1)
n . . . α

(κ−2)
n+κ−1 − α

(κ−2)
n

 (17)

to be singular for any n ∈ N0. However, to give a strict mathematical proof of that is challenging.
The most simple version of (17) is when κ = 3. In this particular case,(

α̇
(0)
n+1 − α̇

(0)
n α̇

(1)
n+1 − α̇

(1)
n

α̇
(0)
n+2 − α̇

(0)
n α̇

(1)
n+2 − α̇

(1)
n

)
, (18)

where

α̇
(0)
0 = 1, α̇

(0)
1 = 0, α̇

(0)
2 = − 1

h0
, α̇

(1)
0 = 0, α̇

(1)
1 = 1, α̇

(1)
2 = −H(1)

h0
.

and, for n > 3,

α̇
(0)
n =

1
h0

(
α̇
(0)
n−3 −

n−1

∑
m=1

hn−mα̇
(0)
m

)
, α̇

(1)
n =

1
h0

(
α̇
(1)
n−3 −

n−1

∑
m=1

hn−mα̇
(1)
m

)
.

Then, for the determinant of matrix (18):∣∣∣∣∣ α̇
(0)
n+1 − α̇

(0)
n α̇

(1)
n+1 − α̇

(1)
n

α̇
(0)
n+2 − α̇

(0)
n α̇

(1)
n+2 − α̇

(1)
n

∣∣∣∣∣ =
∣∣∣∣∣ α̇

(0)
n+1 α̇

(1)
n+1

α̇
(0)
n+2 α̇

(1)
n+2

∣∣∣∣∣+
∣∣∣∣∣ α̇

(0)
n α̇

(1)
n

α̇
(0)
n+1 α̇

(1)
n+1

∣∣∣∣∣−
∣∣∣∣∣ α̇

(0)
n α̇

(1)
n

α̇
(0)
n+2 α̇

(1)
n+2

∣∣∣∣∣
=: Ḋn+1 + Ḋn − D̈n.

This leads to the following conjecture, which related versions may also be found in [22].

Conjecture 2. If h0 > 0 and κ ∈ {3, 4, . . .} then the matrix (17) is non-singular for all n ∈ N0. In particular,
if κ = 3, then 0 < Ḋn < Ḋn+1 and D̈n+1 < D̈n < 0.

Let us turn to cases when h0 = 0, but the net profit condition EX < κ is still satisfied. One can
observe that there are κ distinct versions of such a situation. In addition, one may observe that EX > κ

if h0 = . . . = hκ−1 = 0.
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Suppose that h0 = 0 and let l := min{1 6 l 6 κ − 1 : hl > 0}. In other words, we suppose that
h0 = . . . = hl−1 = 0 and hl > 0 when 1 6 l 6 κ − 1. Then, by Lemma 5 in Section 7, it holds that:

ϕ(0) +
κ−1−l

∑
i=1

H(κ − 1− i)ϕ(i) = κ −EX. (19)

Analogically, from (5) it follows that:

ϕ(u) =
u+κ−l

∑
i=1

hu+κ−i ϕ(i). (20)

These two equalities leads to the following assertion on the survival probabilities under
requirements h0 = 0 and EX < κ.

Theorem 7. Let us consider the general GPDTRM with κ > 3. If h0 = . . . = hl−1 = 0 and hl > 0 when
1 6 l 6 κ − 2, and EX < κ then ϕ(0), . . . , ϕ(κ − l − 2) for all n ∈ N0 satisfy the following equalities:

α̂
(0)
n+1 − α̂

(0)
n α̂

(1)
n+1 − α̂

(1)
n . . . α̂

(κ−2−l)
n+1 − α̂κ−2−l

n

α̂
(0)
n+2 − α̂

(0)
n α̂

(1)
n+2 − α̂

(1)
n . . . α̂

(κ−2−l)
n+2 − α̂

(κ−2−l)
n

· · · · · · · · · · · ·
α̂
(0)
n+κ−1−l − α̂

(0)
n α̂

(1)
n+κ−1−l − α̂

(1)
n . . . α̂

(κ−2−l)
n+κ−1−l − α̂

(κ−2−l)
n

×


ϕ(0)
ϕ(1)
· · ·

ϕ(κ − 2− l)



+


β̂n+1 − β̂n

β̂n+2 − β̂n

· · ·
β̂n+κ−1−l − β̂n

× (κ −EX) =


ϕ(n + 1)− ϕ(n)
ϕ(n + 2)− ϕ(n)

...
ϕ(n + κ − 1− l)− ϕ(n)

 , (21)

where coefficients α̂
(i)
n and β̂n for n = 0, . . . , κ − 1− l are:

n α̂
(0)
n α̂

(1)
n . . . α̂

(κ−2−l)
n β̂n

0 1 0 . . . 0 0
1 0 1 . . . 0 0
· · · · · ·

κ − 2− l 0 0 . . . 1 0
κ − 1− l −1/hl −H(κ − 2)/hl . . . −H(l + 1)/hl 1/hl

and for n = κ − l, κ − l + 1, . . .

α̂
(i)
n =

1
hl

(
α̂
(i)
n−k+l −

n−1

∑
m=1

hn+l−mα̂
(i)
m

)
, i = 0, . . . , κ − 2− l, β̂n =

1
hl

(
β̂n−κ+l −

n−1

∑
m=1

hn+l−m β̂m

)
.

In addition,

ϕ(κ − l − 1) =
1
hl

(
−ϕ(0)−

κ−2−l

∑
i=1

H(κ − 1− i)ϕ(i) + (κ −EX)

)
,

ϕ(u) =
1
hl

(
ϕ(u− κ + l)−

u−1

∑
i=1

hu+l−i ϕ(i)

)
, u > κ − l.

Remark 5. For the quadratic matrix in (21) formed by α̂n coefficients for κ − 2− l > 1 we can not prove
its non-singularity. However, we never find it being singular and conjecture that it is non-singular for any
underlying distribution of r.v. X and κ − 2− l > 1.

Our last statement of this section is a generalized version of Theorem 3.
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Theorem 8. If h0 = . . . = hκ−2 = 0 and hκ−1 > 0 and EX < κ then:

ϕ(0) = κ −EX, ϕ(1) =
ϕ(0)
hκ−1

, ϕ(u) =
1

hκ−1

(
ϕ(u− 1)−

u−1

∑
i=1

hu−1+κ−i ϕ(i)

)
, u > 2.

As mentioned, proofs of statements of this section are given in Section 7 below.

4. Survival Probability for GPDTRM with the Unsatisfied Net Profit Condition

This section deals with the following statement.

Theorem 9. Let us consider the general model (3). Then

• ϕ(u) = 0 for all u ∈ N0 if EX > κ,
• ϕ(0) = 0 and ϕ(u) = 1 for all u ∈ N if EX = κ and P(X = κ) = 1,
• ϕ(u) = 0 for all u ∈ N0 if EX = κ and P(X = κ) < 1.

Although the statement of Theorem 9 is known, see for example [23], for the last bullet a certain
simplification of proof is possible. Originally the proof of the last bullet was based on certain properties
of random walk, see for example [20,24,25], or [23]. In [26], authors simplified the proof avoiding a
random walk properties by defining another model, which does satisfy the net profit condition and is
as close as we want to the model which it does not. However, this can be simplified even more. Let us
turn to the proof of Theorem 9.

Proof. The first assertion of the theorem is implied by the strong law of large numbers.
By the same arguments as in the beginning of the proof of Lemma 1 we have ϕ(u) =

P
(

supn>1 {∑
n
i=1(Xi − κ)} < u

)
, and limn→∞ ∑n

i=1 (Xi − κ) /n = EX − κ > 0 almost surely.
Consequently, ϕ(u) = 0 for any fixed u ∈ N0.

The second option of Theorem 9 is straight forward by definitions (3) and (4).
The last option, ϕ(u) = 0 for all u ∈ N0 if EX = κ and P(X = κ) < 1, is implied by the

following logic. Since r.v. X is not degenerate, we can define a random vector (X∗, X), and for X∗,
being dependent on X, we enlarge by a certain size the probability of some smaller value and by the
same size reduce the probability of some larger value. This leads to the satisfied net profit condition
and X∗, being as close as we want to X, does the rest. Such a described proof can be found in [22] for a
different model than what is investigated in this paper. Below we present details of the described proof.

Since r.v. X is not degenerate, it has at least two values i < j with positive probabilities. Let us
define the integer-valued and non-negative vector (X∗, X) by the following table:

X∗\X 0 1 . . . i . . . j . . . Σ
0 h0 0 . . . 0 . . . 0 . . . h0

1 0 h1 . . . 0 . . . 0 . . . h1

· · · · · · · · · · · · · · ·
i 0 0 . . . hi . . . ε/j . . . hi + ε/j
· · · · · · · · · · · · · · ·

j 0 0 . . . 0 . . . hj − ε/j . . . hj − ε/j
· · · · · · · · · · · · · · ·
Σ h0 h1 . . . hi . . . hj . . . 1

where ε is a sufficiently small positive number.
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We have that EX∗ = EX− ε1 = κ− ε1, where ε1 := ε(1− i/j) > 0. If model (3) is generated by X∗,
then this model satisfies the net profit condition EX∗ − κ < 0 and all statements from Sections 2 and 3
hold for such a model. It is evident that P(X∗ 6 X) = 1. In addition,

P (X∗ + X∗ 6 X + X) =
∞

∑
m=0

∞

∑
l=0

P(X∗1 + m 6 X1 + l)P(X∗2 = m, X2 = l)

=
∞

∑
m=0, m 6=j

P(X∗1 + m 6 X1 + m)hm + P(X∗1 + j 6 X1 + j)
(

hj −
ε

j

)
+ P(X∗1 + i 6 X1 + j)

ε

j
= 1.

Assuming that P (∑n
m=1 X∗m 6 ∑n

m=1 Xm) = 1 it follows:

P
(

n+1

∑
m=1

X∗m 6
n+1

∑
m=1

Xm

)
=

∞

∑
m=0, m 6=j

P
(

n

∑
m=1

X∗m 6
n

∑
m=1

Xm

)
hm + P

(
n

∑
m=1

X∗m 6
n

∑
m=1

Xm

)(
hj −

ε

j

)

+ P
(

n

∑
m=1

X∗m + i 6
n

∑
m=1

Xm + j

)
ε

j
= 1.

Therefore, for all u ∈ N0,

ϕ∗(u) := P
(

sup
n>1

{
n

∑
m=1

(X∗m − κ)

}
< u

)
> P

(
sup
n>1

{
n

∑
m=1

(Xm − κ)

}
− u < 0

)
= ϕ(u).

The remaining part of the proof depends on a distribution of X. If, for example, κ = 2, P(X∗ =
0) = 0, and P(X∗ = 1) > 0, then Theorem 3 gives that 0 6 ϕ(0) 6 ϕ∗(0) = ε1. This implies ϕ(0) = 0
due to ε1 being arbitrary small. The remaining equalities ϕ(u) = 0 for u = 1, 2, . . ., are implied by
Theorem 3. The same way of proof could be easily repeated in view of Theorem 2 if κ = 2 and
P(X∗ = 0) > 0. If κ = 3 and P(X∗ = 0) > 0, then by Theorem 6, we get that:(

α̇
(0)
n+1 − α̇

(0)
n α̇

(1)
n+1 − α̇

(1)
n

α̇
(0)
n+2 − α̇

(0)
n α̇

(1)
n+2 − α̇

(1)
n

)(
ϕ∗(0)
ϕ∗(1)

)
+

(
β̃n+1 − β̃n

β̃n+2 − β̃n

)
× ε1 =

(
ϕ(n + 1)− ϕ(n)
ϕ(n + 2)− ϕ(n)

)
. (22)

It is clear that 0 6 ϕ(0) 6 ϕ∗(0), 0 6 ϕ(1) 6 ϕ∗(1) and (ϕ∗(0), ϕ∗(1)) is as close to the point
(0, 0) as we want if n is sufficiently large in (22) and ε1 gets closer to 0. The further consideration is
similar to the case κ = 2.

5. Numerical Examples

First we give numerical examples for statements in Section 2. We compare ϕ(0) calculations by
Formulas (11) and (14) of Theorem 2 then turn to Theorem 4. Let us introduce the following notations:

ϕ∗∗n (0) :=
1− βn(2−EX)

αn
, ϕ∗n(0) :=

−(βn+1 − βn)(2−EX)

αn+1 − αn
,

where coefficients αn and βn are defined in Theorem 2. Since ϕ(n) 6 1 and ϕ(n) 6 ϕ(n + 1),
Theorem 2 implies:

αn ϕ(0) 6 1− βn(2−EX), (αn+1 − αn)ϕ(0) 6 −(βn+1 − βn)(2−EX).

Therefore, by setting ∆∗∗n := |ϕ∗∗n+1(0)− ϕ∗∗n (0)|, ∆∗n := |ϕ∗n+1(0)− ϕ∗n(0)|we can calculate the absolute
difference of lower and upper bounds for ϕ(0) estimate depending on n.

We note that in the below tables, where ϕ(u, T) and ϕ(u) are present, we limit u up to 50 or up to
some lower number if rounded finite time survival probability equals 1. We also limit a variety of T
when some rounded values present no difference.



Symmetry 2020, 12, 2111 12 of 21

Example 1. We say that a r.v. X is geometrically distributed with parameter 0 < p < 1 and denote by
X ∼ G(p) if P(X = m) = p(1− p)m, m ∈ {0, 1, . . .}. Let us consider the model (9) generated by r.v.
X ∼ G

(
101
300

)
.

It is clear that the model satisfies the net profit condition EX = 199
101 < 2, and we can fill Table 1 of

approximate values for ϕ(0) by rounding the numbers up to 15 decimal places.

Table 1. Limit tendency to ϕ(0) with given r.v.

n ϕ∗∗n (0) ϕ∗n(0) ∆∗∗n ∆∗n

0 −0.306963696369636 0.022221673538925 0.521213979113341 0.003671257796475
1 0.214250282743705 0.018550415742450 0.282622680978633 0.001825335523813
2 −0.068372398234928 0.020375751266263 0.134024426188439 0.000908391492999
3 0.065652027953512 0.019467359773264 0.068195457784529 0.000451859303659
4 −0.002543429831018 0.019919219076923 0.033538955167044 0.000224818998900
5 0.030995525336026 0.019694400078023 0.016780308320236 0.000111844141051
6 0.014215217015790 0.019806244219074 0.008324674777041 0.000055643971685
7 0.022539891792831 0.019750600247389 0.004147376229806 0.000027682846108
8 0.018392515563025 0.019778283093497 0.002061894240081 0.000013772394614
9 0.020454409803106 0.019764510698883 0.001026157583478 0.000006851807318
10 0.019428252219628 0.019771362506201 0.000510429310434 0.000003408806392
20 0.019768769544779 0.019769088294605 0.000000474162782 0.000000003166424
30 0.019769085886016 0.019769086182101 0.000000000440448 0.000000000002941
40 0.019769086179864 0.019769086180139 0.000000000000409 0.000000000000003
50 0.019769086180137 0.019769086180137 0 0

100 0.019769086180137 0.019769086180137 0 0

From Table 1 it is easy to see that ∆∗∗n > ∆∗n (except when we compare zeros) for all n being
present in that table. Solutions of the system in Theorem 4 are:

(0.031064536986934, 0.046365746949288) if n = 100,

(0.019769986553721, 0.029507930349202) if n = 1000,

where the first component tends to ϕ(0). However, the convergence is much slower with respect to
that in the previous table. This example illustrates that Theorem 2 is more efficient to estimate ϕ(0).
In Table 2 we present more values of survival probability of finite and ultimate time for model (9) with
X ∼ G

(
101
300

)
according to Theorems 1 and 2. All values in Table 2 are rounded up to 3 decimal places.

Table 2. Finite and ultimate time survival probability for Example 1.

T\u 0 1 2 3 4 5 10 20 30 40 50

1 0.560 0.708 0.806 0.872 0.915 0.943 0.993 1 1 1 1
2 0.430 0.578 0.692 0.776 0.839 0.885 0.980 0.999 1 1 1
3 0.362 0.502 0.615 0.706 0.777 0.833 0.964 0.999 1 1 1
4 0.319 0.449 0.560 0.652 0.727 0.788 0.946 0.997 1 1 1
5 0.289 0.411 0.517 0.608 0.685 0.749 0.927 0.996 1 1 1
6 0.266 0.381 0.484 0.573 0.650 0.715 0.909 0.994 1 1 1
7 0.248 0.357 0.456 0.543 0.620 0.686 0.890 0.991 0.999 1 1
8 0.233 0.338 0.433 0.518 0.593 0.659 0.873 0.988 0.999 1 1
9 0.221 0.321 0.413 0.496 0.570 0.636 0.856 0.984 0.999 1 1

10 0.211 0.307 0.395 0.476 0.550 0.615 0.839 0.981 0.998 1 1
20 0.153 0.226 0.295 0.361 0.423 0.481 0.713 0.933 0.988 0.998 1
30 0.127 0.188 0.247 0.304 0.359 0.411 0.631 0.882 0.971 0.994 0.999
40 0.112 0.166 0.218 0.269 0.318 0.366 0.573 0.836 0.949 0.987 0.997
50 0.101 0.150 0.198 0.245 0.290 0.334 0.529 0.796 0.926 0.977 0.994
∞ 0.020 0.030 0.039 0.049 0.058 0.067 0.113 0.197 0.273 0.342 0.405
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Example 2. We say that a r.v. X is the shifted version of geometric distribution with parameter 0 < p < 1
(denote by X ∼ Gshi f t(p)) if P(X = m) = p(1− p)m−1, m ∈ {1, 2, . . .}. Let X ∼ Gshi f t

(
101
200

)
and let us

consider the model (9) with the satisfied net profit condition EX = 200
101 < 2.

The advantage of finding ϕ(0) by Theorem 3 against the equality of part (ii) in Theorem 4 is not
questionable. Theorem 4 gives the results being presented in Table 3.

Table 3. Approximations of ϕ(0) in Example 2.

n 0 1 2 3 4 5 50 300 1000

1/α̂n 1 0.5050 0.3400 0.2575 0.2081 0.1751 0.0310 0.0199 0.0198

In Table 4, values of survival probability (finite and ultimate time) are presented for the model in
Example 2. To calculate these values we used Theorem 1 and Theorem 3. All values are rounded up to
3 decimal places.

Table 4. Finite and ultimate time survival probabilities for the model in Example 2.

T\u 0 1 2 3 4 5 10 20 30 40 50

1 0.505 0.755 0.879 0.940 0.970 0.985 1.000 1 1 1 1
2 0.381 0.632 0.788 0.880 0.933 0.963 0.998 1 1 1 1
3 0.319 0.556 0.720 0.827 0.896 0.938 0.996 1 1 1 1
4 0.281 0.502 0.666 0.782 0.861 0.913 0.993 1 1 1 1
5 0.254 0.462 0.624 0.744 0.829 0.888 0.989 1 1 1 1
7 0.217 0.405 0.559 0.681 0.774 0.843 0.980 1 1 1 1
9 0.194 0.365 0.512 0.632 0.728 0.802 0.968 1 1 1 1

10 0.185 0.350 0.492 0.611 0.708 0.784 0.962 0.999 1 1 1
20 0.134 0.260 0.375 0.479 0.571 0.651 0.894 0.995 1 1 1
30 0.112 0.218 0.318 0.410 0.494 0.570 0.832 0.985 0.999 1 1
40 0.098 0.193 0.282 0.366 0.444 0.515 0.780 0.972 0.998 1 1
50 0.089 0.175 0.257 0.334 0.407 0.475 0.737 0.956 0.995 1 1
∞ 0.020 0.030 0.039 0.049 0.058 0.067 0.113 0.197 0.273 0.342 0.405

We now turn to illustrations of the statements from Section 3. For this we present three
additional examples.

Example 3. Let X ∼ G
(

101
300

)
again as in Example 1 and let us consider the model (3) with κ = 3.

Due to Theorems 1 and 6 we fill Table 5 with the values of ϕ(u) by rounding values of survival
probability up to 3 decimal places.

Table 5. Finite and ultimate time survival probabilities for the model in Example 3.

T\u 0 1 2 3 4 5 10 20 30 40

1 0.708 0.806 0.872 0.915 0.943 0.963 0.995 1 1 1
2 0.622 0.730 0.808 0.865 0.905 0.933 0.989 1 1 1
3 0.580 0.689 0.771 0.833 0.878 0.911 0.983 0.999 1 1
4 0.555 0.663 0.747 0.811 0.859 0.895 0.978 0.999 1 1
5 0.538 0.646 0.730 0.795 0.845 0.883 0.973 0.999 1 1
7 0.518 0.624 0.708 0.774 0.825 0.865 0.965 0.998 1 1
9 0.506 0.611 0.695 0.761 0.813 0.854 0.959 0.997 1 1

10 0.502 0.607 0.690 0.756 0.809 0.850 0.957 0.997 1 1
20 0.485 0.588 0.670 0.736 0.789 0.832 0.946 0.995 1 1
30 0.482 0.584 0.666 0.732 0.785 0.827 0.943 0.994 0.999 1
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Table 5. Cont.

T\u 0 1 2 3 4 5 10 20 30 40

40 0.481 0.583 0.665 0.731 0.784 0.826 0.942 0.994 0.999 1
50 0.480 0.582 0.664 0.730 0.783 0.826 0.942 0.993 0.999 1
∞ 0.480 0.582 0.664 0.730 0.783 0.825 0.941 0.993 0.999 1

Example 4. We say that a r.v. X follows the Pascal distribution with parameters 0 < p < 1 and natural
number N (denote by X ∼ P(N, p)) if:

P(X = m) =

(
m− 1
N − 1

)
pN(1− p)m−N , m ∈ {N, N + 1, . . .}

Parameter N in Pascal distribution describes a required number of successes performing an independent
experiments with success probability p each. Let us consider the model (3) with κ = 8 and X ∼ P(4, 3/5).

Then we have that EX = 6 + 2/3 < 8 and, according to Theorems 1 and 7 we can fulfilll the
Table 6 with the values of ϕ(u) (rounded up to 3 decimal places as usual).

Table 6. Finite and ultimate time survival probabilities for the model in Example 4.

T\u 0 1 2 3 4 5 10 18

1 0.710 0.826 0.901 0.945 0.971 0.985 1 1
2 0.646 0.770 0.857 0.914 0.949 0.971 0.999 1
3 0.618 0.744 0.834 0.895 0.935 0.961 0.997 1
4 0.603 0.729 0.820 0.884 0.926 0.954 0.996 1
5 0.594 0.720 0.812 0.876 0.920 0.949 0.995 1
10 0.579 0.703 0.796 0.862 0.908 0.939 0.993 1
20 0.575 0.699 0.792 0.858 0.904 0.936 0.992 1
∞ 0.575 0.699 0.791 0.858 0.904 0.935 0.991 1

Example 5. Let us consider the GPDTRM with κ = 8 and X ∼ P(7, 22/25).

In the case, we have EX = 7.95 . . . < 8. Therefore, according to Theorems 1 and 8 we fulfill
Table 7 with the values of ϕ(u).

Table 7. Survival probability for model in Example 5.

T\u 0 1 2 3 4 5 10 20 30 40 50

1 0.409 0.752 0.917 0.976 0.994 0.999 1 1 1 1 1
2 0.307 0.633 0.838 0.937 0.978 0.993 1 1 1 1 1
3 0.259 0.559 0.775 0.897 0.957 0.983 1 1 1 1 1
4 0.229 0.509 0.725 0.860 0.934 0.971 1 1 1 1 1

10 0.155 0.366 0.556 0.706 0.813 0.886 0.995 1 1 1 1
20 0.118 0.283 0.442 0.579 0.691 0.778 0.971 1 1 1 1
30 0.101 0.245 0.386 0.512 0.619 0.707 0.940 0.999 1 1 1
40 0.091 0.222 0.352 0.469 0.571 0.658 0.910 0.998 1 1 1
50 0.085 0.206 0.327 0.438 0.536 0.621 0.883 0.995 1 1 1
∞ 0.045 0.111 0.179 0.242 0.301 0.356 0.570 0.809 0.915 0.962 0.983

An impact of r.v. X to survival probabilities ϕ(u, T) and ϕ(u) is well seen when comparing the
last two tables. Roughly, the closer EX to κ is, the lower values of survival probabilities we get.

6. Proofs of Theorems 2–5

The proofs of theorems we begin with the auxiliary lemmas.
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Lemma 2. Let us consider the model (9). If EX < 2, then ϕ(0) + h0 ϕ(1) = 2−EX.

Proof. Summing up the both sides of (10) by u from 0 up to some sufficiently large positive integer v,
we get:

v

∑
u=0

ϕ(u) =
v

∑
u=0

u+1

∑
i=0

hu−i+1 ϕ(i + 1) =
0

∑
i=0

v

∑
u=0

hu−i+1 ϕ(i + 1) +
v+1

∑
i=1

v

∑
u=i−1

hu−i+1 ϕ(i + 1)

= (H(v + 1)− h0)ϕ(1) +
v

∑
i=0

H(v− i)ϕ(i + 2).

Therefore,

v+2

∑
i=0

ϕ(i)H(v− i + 2)− ϕ(v + 1)− ϕ(v + 2) = (H(v + 1)− h0)ϕ(1)− H(v + 2)ϕ(0)− H(v + 1)ϕ(1).

Due to Lemma 1 and condition EX < 2, by supposing v → ∞, we derive from the last
equation that:

ϕ(0) + h0 ϕ(1) = 2−EX.

By setting u = 0, 1 . . . , n− 2 into (10) we may get the following sequence of equations:

ϕ(0)− h1 ϕ(1)− h0 ϕ(2) = 0,

ϕ(1)(1− h2)− h1 ϕ(2)− h0 ϕ(3) = 0,
...

ϕ(n− 2)−
n

∑
i=1

hn−i ϕ(i) = 0.

This, together with Lemma 2, allows us to express ϕ(0) via ϕ(n), n ∈ N0. Such an expression is
presented in the following lemma.

Lemma 3. Let us consider the model (9). If h0 > 0 and EX < 2, then,

ϕ(n) = αn ϕ(0) + βn(2−EX), n ∈ N0,

where sequences αn and βn are defined in Theorem 2

Proof. We use induction. For n = 0, 1, 2 the statement is obvious or follows by (10) and Lemma 2.
For n = 3, 4, . . ., by (10) and the induction hypothesis, it follows that:

ϕ(n + 1) =
1
h0

(
ϕ(n− 1)−

n

∑
i=1

hn+1−i ϕ(i)

)

=
1
h0

(
αn−1 ϕ(0) + βn−1(2−EX)−

n

∑
k=1

hn+1−i (αi ϕ(0) + βi(2−EX))

)

=
1
h0

(
ϕ(0)

(
αn−1 −

n

∑
i=1

hn+1−iαi

)
+ (2−EX)

(
βn−1 −

n

∑
i=1

hn+1−iβi

))
= αn+1 ϕ(0) + βn+1(2−EX).
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Lemma 4. For coefficients αn defined in Theorem 2 it holds that |αn+1 − αn| > 2 for all n ∈ N0.

Proof. Let us observe that the statement follows from inequalities:

α2n+2 > α2n > 1 and α2n+3 6 α2n+1 6 −1, n ∈ N0. (23)

Indeed, if n is even, then n + 1 is odd and:

|αn+1 − αn| = αn − αn+1 > 2.

And conversely, if n is odd, then n + 1 is even and:

|αn+1 − αn| = αn+1 − αn > 2.

It remains to show that inequalities in (23) are correct. For this, we use induction. For n = 0 we
have that:

α2 =
1
h0

(
1 +

h1

h0

)
> 1 = α0,

and

α3 =
1
h0

(α1 − h2α1 − h1α2) 6 −
1
h0

(
1 + h1 − h2

h0

)
6 − 1

h0
= α1 6 −1.

In general,

α2n =
1
h0

(
α2n−2 −

2n−1

∑
i=1

h2n−iαi

)
=

1
h0

(
α2n−2 −

2n−1

∑
i=1

hiα2n−i

)

=
1
h0

(α2n−2 − (h1α2n−1 + h3α2n−3 + . . . + h2n−1α1)− (h2α2n−2 + h4α2n−4 + . . . + h2n−2α2))

>
1
h0

(α2n−2 + (h1 + h3 + . . . + h2n−3)− α2n−2(h2 + h4 + . . . + h2n−2))

>
α2n−2(1− h1 − h2 − . . .)

h0
= α2n−2.

and

α2n+1 =
1
h0

(
α2n−1 −

2n

∑
i=1

h2n+1−iαi

)
=

1
h0

(
α2n−1 −

2n

∑
i=1

hiα2n+1−i

)

=
1
h0

(α2n−1 − (h1α2n + h3α2n−2 + . . . + h2n−1α2)− (h2α2n−1 + h4α2n−3 + . . . + h2nα1))

6
1
h0

(α2n−1 − (h1 + h3 + . . . + h2n−1)− α2n−1(h2 + h4 + . . . + h2n))

6
α2n−1(1− h1 − h2 − . . .)

h0
= α2n−1.

We note that a similar technique as in Lemmas 3 and 4, but for a different model, was used in [16].
We now prove all theorems from Section 2.

Proof of Theorem 2. The equality (14) follows from Lemma 3 directly, and the expression (11) for
ϕ(0) is implied by Lemma 3 by setting the difference ϕ(n + 1)− ϕ(n). Lemma 4 ensures that there
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is no division by zero. Two remaining expressions of ϕ(1) and ϕ(u), u > 2 follow by Lemma 2 and
Equation (10) accordingly.

Proof of Theorem 3. is straightforward in view of Lemma 2 and (10).

Proof of Theorem 4. The equality (i) of Theorem 4 is evident if n = 0. The general case of this equality
for an arbitrary non-negative n follows by a similar arguments as in Lemma 3, where we expressed
ϕ(0) via ϕ(n). Let us show that:

ϕ(n) = α
(0)
n ϕ(0) + α

(1)
n ϕ(1).

By (10), we obtain:

ϕ(n + 1) =
1
h0

(
ϕ(n− 1)−

n

∑
i=1

hn+1−i ϕ(i)

)

=
1
h0

(
α
(0)
n−1 ϕ(0) + α

(1)
n−1 ϕ(1)−

n

∑
i=1

hn+1−i

(
α
(0)
i ϕ(0) + α

(1)
i ϕ(1)

))

=
1
h0

(
ϕ(0)

(
α
(0)
n−1 −

n

∑
i=1

hn+1−iα
(0)
i

)
+ ϕ(1)

(
α
(1)
n−1 −

n

∑
i=1

hn+1−iα
(1)
i

))
= α

(0)
n+1 ϕ(0) + α

(1)
n+1 ϕ(1).

The equality (ii) of Theorem 4 follows also by (10) and induction for n ∈ N0,

h1 ϕ(n + 1) = ϕ(n)−
n

∑
i=1

hn+2−i ϕ(i) = α̂n ϕ(0)−
n

∑
i=1

hn+2−iα̂i ϕ(i) = h1α̂n+1 ϕ(0).

It remains to show that α̂n 6= 0, n ∈ N0. This follows immediately by inequalities 1 6 α̂n 6 α̂n+1 which
can be derived by mathematical induction again:

α̂n+1 =
1
h1

(
α̂n −

n

∑
i=1

hn+2−iα̂i

)
>

1
h1

(
α̂n − α̂n

n

∑
i=1

hn+2−i

)
> α̂n > 1, n ∈ N0.

7. Proofs of Theorems 6–8.

We start with an analog of Lemma 2 which relates ϕ(0), . . . , ϕ(k− 1) values.

Lemma 5. Let us consider the general model (3) with κ > 3. If EX < κ then:

ϕ(0) +
κ−1

∑
i=1

H(κ − 1− i)ϕ(i) = κ −EX.

Proof. We sum up the both sides of (5) by u from 0 up to some sufficiently large non-negative integer v

v

∑
u=0

ϕ(u) =
v

∑
u=0

u+κ

∑
i=1

hu+κ−i ϕ(i) =
κ−1

∑
i=1

v

∑
u=0

hu+κ−i ϕ(i) +
v+κ

∑
i=κ

v

∑
u=i−κ

hu+κ−i ϕ(i)

=
κ−1

∑
i=1

(H(v + κ − i)− H(κ − i− 1)) ϕ(i) +
v+κ

∑
i=κ

H(v + κ − i)ϕ(i)

=
v+κ

∑
i=1

H(v + κ − i)ϕ(i)−
κ−1

∑
i=1

H(κ − i− 1)ϕ(i).
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From this

v+κ

∑
i=0

H(v + κ − i)ϕ(i)−
v+κ

∑
i=v+1

ϕ(i) = −H(v + κ)ϕ(0)−
κ−1

∑
i=1

H(κ − i− 1)ϕ(i).

If EX < κ and v→ ∞, in view of Lemma 1, we get the desired result from the last equation.

The same way as we expressed ϕ(0) via ϕ(n) in Lemma 3, we now express
ϕ(0), . . . , ϕ(κ − 2) via ϕ(n) for n ∈ N0. This, in turn, is dependent on the first non-negative value of
r.v. X which occurs with a positive probability. First, we consider the case h0 > 0.

Lemma 6. Suppose that h0 > 0 and EX < κ in the model (3) with κ > 3. Then for all n ∈ N0

ϕ(n) =
κ−2

∑
i=0

α
(i)
n ϕ(i) + β̃n(κ −EX),

where coefficients α
(i)
n and β̃n are defined in Theorem 6.

Proof. The statements follows by induction. For n = 0, . . . , κ− 2 it is obvious and follows by Lemma 5
for n = κ − 1. Let n > κ. Then, by (5) and induction hypothesis we have:

ϕ(n + 1) =
1
h0

(
ϕ(n + 1− κ)−

n

∑
m=1

hn+1−m ϕ(m)

)

=
1
h0

(
κ−2

∑
i=0

α
(i)
n+1−κ ϕ(i) + β̃n+1−κ(κ −EX)−

n

∑
m=1

hn+1−m

(
κ−2

∑
i=0

α
(i)
m ϕ(i) + β̃m(κ −EX)

))

=
1
h0

(
κ−2

∑
i=0

ϕ(i)

(
α
(i)
n+1−κ −

n

∑
m=1

hn+1−mα
(i)
m

)
+ (κ −EX)

(
β̃n+1−κ −

n

∑
m=1

hn+1−m β̃m

))

=
κ−2

∑
i=0

α
(i)
n+1 ϕ(i) + β̃n+1(κ −EX). �

Proof of Theorem 6. follows now from Lemma 6 and recurrence relation (5).

Lemma 7. Let us consider the general model (3) with κ > 3 . If h0 = . . . = hl−1 = 0 and hl > 0 for some
1 6 l 6 κ − 2, and EX < κ then:

ϕ(n) =
κ−2−l

∑
i=0

α̂
(i)
n ϕ(i) + β̂n(κ −EX) (24)

for all n ∈ N0, where coefficients α̂
(i)
n and β̂n are defined in Theorem 7.

Proof. In a similar way as is Lemma 6, the proof follows by induction. Proposition is obvious for
n = 0, . . . , κ − 2− l and follows by (19) for n = κ − 1− l. Let n > κ − l. Then, from (20) we get:

ϕ(u + κ − l) =
1
hl

(
ϕ(u)−

u+κ−l−1

∑
i=1

hu+κ−i ϕ(i)

)
.
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Substituting u = n − κ + l + 1 into the last expression above and assuming induction hypothesis
we obtain:

ϕ(n + 1) =
1
hl

(
ϕ(n− κ + l + 1)−

n

∑
m=1

hn+l+1−m ϕ(m)

)

=
1
hl

(
κ−2−l

∑
i=0

α̂
(i)
n+1−κ+l ϕ(i) + β̂n+1−κ+l(κ −EX)−

n

∑
m=1

hn+l+1−m

(
κ−2−l

∑
i=0

α̂
(i)
m ϕ(i) + β̂m(κ −EX)

))

=
1
hl

(
κ−2−l

∑
i=0

ϕ(i)

(
α̂
(i)
n+1−κ+l −

n

∑
m=1

hn+l+1−mα̂
(i)
m

)
+ (κ −EX)

(
β̂n+1−κ+l −

n

∑
m=1

hn+l+1−m β̂m

))

=
κ−2−l

∑
i=0

α̂
(i)
n+1 ϕ(i) + β̂n+1(κ −EX).

Hence, the equality (24) holds, and the lemma is proved.

Proof of Theorems 7 and 8. follow from Lemma 7 and relations (19), (20).

8. Discussion

The development of collective risk models is closely related to a random walk (r.w.), which is
understood as a sum ∑t

i=1 Xi, where Xi are i.i.d. and t ∈ N. The analogous description of ruin
(or survival) probability is that a certain version of r.w. hits (or does not) some threshold for at least
one (or none) t ∈ N. As mentioned, our study of a certain version of r.w. in this work are both pure and
insurance mathematics shifted. On the other hand, the range of r.w. applications is wide. Not repeating
possible r.w. applications, mentioned in Introduction, we could add an example of some ecosystem
where a certain amount individuals live, reproduce, and die with some level of randomness.

The split between finite and ultimate t is crucial. For example, for the model being investigated it
holds that:

W(t) = u + κt−
t

∑
i=1

Xi = u + t−
t

∑
i=1

X′i ,

where Xi
d
=X′i + κ − 1. The last change of r.v. can be well utilized in view of that what is known for

discrete time risk model survival or ruin probability calculation, see Section 5 in [15]. However, for finite
time only.

Our obtained results apparently are similar to previously known non-homogeneous risk models,
see [16,22,27–30], where certain convolutions of random variables occur and initial values for
recurrent formulas are needed. Namely, convolutions of distinct r.v.s generating some discrete
time non-homogeneous risk model is the reason for not allowing to easily express ultimate time
survival probability. Furthermore, most likely it will spin around ultimate time survival probability
of non-homogeneous risk models incorporating the generalized premium rate studied in this work.
In addition, properties of determinants, defined by a certain "long memory" recurrent sequences,
at some level, forms a new research branch.

9. Materials and Methods

Theoretical statements of this paper are obtained mainly using the strong law of large numbers,
total probability and other technics from probability theory, mathematical induction, and elementary
rearrangements. The computational part was carried out by program Mathematica and codes,
on demand, are available from the authors. Our chosen claim distributions and other model inputs,
used in numerical examples section, are purely theoretically driven.
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10. Conclusions

In this work, we derived an exact formulas of survival probability calculation for the homogeneous
discrete time risk model with generalized premium rate, which can be any natural number. In other
words, it was proved and demonstrated via examples statements for likelihood that a certain random
amount would never hit some threshold. The main focus, of course, was the ultimate time. This work
supplements the research being done in the resent years by the same authors and others mentioned in
the list of references. Our derived statements are mainly dependent on random variable and premium
income rate κ generating the model. Of course, from a practical point of view, model inputs must be
aligned with a situation where the model is being applied. A range of possible applications seems to
be wide—just anywhere of what is expressible by increasing amount, decreasing amount, and level of
randomness.
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read and agreed to the published version of the manuscript.
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