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Abstract: Nontrivial topological gluon configuration is one of the remarkable features of the Quantum
Chromodynamics (QCD). Due to chiral anomaly, the chiral imbalance between right- and left-hand
quarks can be induced by the transition of the nontrivial gluon configurations between different
vacuums. In this review, we will introduce the origin of the chiral chemical potential and its physical
effects. These include: (1) the chiral imbalance in the presence of strong magnetic and related physical
phenomena; (2) the influence of chiral chemical potential on the QCD phase structure; and (3) the
effects of chiral chemical potential on quark stars. Moreover, we propose for the first time that quark
stars are likely to be a natural laboratory for testing the destruction of strong interaction CP.

Keywords: chiral chemical potential; chiral imbalance; phase diagram; quark star

1. Introduction

1.1. The Ua(1) Problem, Chiral Anomaly, and Instantons

The QCD Lagrangian is given as

LQCD = −1
4

FaµνFa
µν + ψ̄(i /D−M)ψ, (1)

where M is the mass matrix of quarks, Fa
µν, and ψ, respectively, denote the gluon fields and quark fields,

/D = γµDµ is the covariant derivative. Since mu, md � ΛQCD, for the two-flavor Lagrangian, it has an
approximate symmetry SUV(2)×UV(1)× SUA(2)×UA(1). The symmetry SUA(2) and UA(1) are
so-called chiral or axial symmetry. As the appearance of nucleon and pion multiples in the hadrons
spectrum, it has been manifested that, in fact, the isospin and baryonic symmetries SUV(2)×UV(1)
are good approximate symmetry of nature. For the chiral symmetry, it is spontaneously broken
due to the nonzero quark condensations. According to the Goldstone theorem, there should be
four Nambu–Goldstone bosons associated with the broken chiral symmetry. It is believed that
Nambu–Goldstone bosons associated with SUA(2) are the pions which are pseudoscalar light mesons
with isospin I = 1. If UA(1) is also a true symmetry of QCD, the corresponding Nambu–Goldstone
boson is an I = 0 pseudoscalar light meson. However, there is no such candidate because the η meson
is too heavy to be interpreted as a Goldstone Boson.
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This UA(1) problem was resolved by ‘t Hooft [1,2], who was aware of the complexity of
the vacuum structure and took the contributions of topological instantons into account in the
QCD Lagrangian. The existence of the nontrivial topological solutions such as instantons in QCD
make UA(1) not a true symmetry of QCD, although the QCD Lagrangian is invariant under the
UA(1) transformation in the massless limit. ‘t Hooft’s solution to the UA(1) problem relies on two
facts: one is the Adler–Bell–Jackiw anomaly [3,4], another is the existence of instantons in QCD.
The Adler–Bell–Jackiw anomaly identity in massless limit is

∂µ jµ5 =−
g2N f

8π2 Fa
µν F̃bµνTr(Ia Ib)

=−
g2N f N
16π2 Fa

µν F̃aµν,

(2)

where N f is flavor number, F̃aµν = 1
2 εµνρσFa

ρσ is a dual form of gauge field tensor Fa
µν, and Ia, Ib are the

generators of the gauge group which satisfy Tr(Ia Ib) = N/2δab. This chiral anomaly can be obtained
from axial Ward-identity or the path integral method introduced by Fujikawa [5]. The right-hand side
of the Equation (2) can be expressed as a total divergence

Fa
µν F̃aµν = ∂µKµ (3)

where

Kµ =εµνλρ(Aa
νFa

λρ −
g
3

fabc Aa
ν Ab

λ Ac
ρ)

=
2
N

εµνλρTr[AνFλρ + i
2g
3

Aν Aλ Aρ],
(4)

and Aµ = Ia Aa
µ. As we can see, although we can define a current as

j′µ5 = jµ
5 +

g2N f N
16π2 Kµ, (5)

this current j′µ5 is not physical because Kµ is not gauge invariant. Due to the chiral anomaly, under the
UA(1) transformation ψ→ eiβγ5 ψ, the action changes

δS = β
∫

d4x∂µ jµ5 = −β
g2N f N
16π2

∫
d4xFa

µν F̃aµν. (6)

We will see that the instantons with nontrivial topological configuration can make the integral
nonzero, thus breaking the UA(1) symmetry.

For a gauge field with the temporal gauge A0(x, t) = 0, at t→ ±∞, the gauge field is expected to
be vacuum configuration and can be represented as pure gauges:

iA(x, t) = iIaAa(x, t) t→±∞−−−−→ − 1
g

Ω−1
± (x)∇Ω±(x), (7)

where Ω±(x) are elements of gauge group G. Assuming that the gauge field at |x| → ∞ vanishes, so the
space point at infinity is mapped to a constant group element. Therefore, the gauge field A(t = ±∞)

can be regarded as a map A(t = ±∞) : R3 ⋃∞ → G. Considering R3 ⋃∞ ∼= S3, these maps can be
classified by third homotopy group π3(G). In the SU(2) gauge theory, the generators are τa/2 which
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satisfy Tr( τa

2
τb

2 ) = 1
2 δab, the third homotopy group π3(SU(2)) = Z and the topological invariant is

given as [6]

n± =
ig3

24π2 εijk
∫

d3xTr[Ai Aj Ak(x, t = ±∞)] ∈ Z. (8)

If and only if two maps are homotopy equivalent, they have the same topological invariant.
For the SU(2) gauge theory, we have shown that the topological configuration of vacuum can be
classified by an integer which is called winding number. The tunneling events between these vacuums
are called instantons. After the instantons tunneling, the difference of winding number between two
vacuums at t = ±∞ can be expressed as

n+ − n− =
ig3

24π2 εijk
∫

d3xTr[Ai Aj Ak(x, t)]
∣∣∣∣t=+∞

t=−∞

=
g2

32π2

∫
d3xK0

∣∣∣t=+∞

t=−∞

=
g2

32π2

∫
d4xFa

µν F̃aµν

=− 1
2N f

∫
d4x∂µ jµ

5 .

(9)

This identity shows that the chiral charge Q5 = NR − NL is not conserved and changes as

−Q5 = NL − NR = 2N f qw, (10)

where qw = n+ − n− is the winding number of the instanton and we assume NL = NR at t = −∞ .
This identity indicates that the instantons can flip the helicities of quarks from the right hand to the left
hand or vice versa, and the UA(1) symmetry is broken by instantons tunneling.

1.2. θ-Vacuum and Strong CP Problem

The tunneling probability between two different vacuums under semi-classical approximation is

〈n + qw|e−Hτ=+∞|n〉 ∼ e−S[Aqw ], (11)

where Aqw denotes the gauge field configurations with winding number qw. According to
the Bogomol’nyi inequality [7], this tunneling probability is suppressed by a factor
exp(−S[Aqw ]) 6 exp(−8π2|qw|/g2). Since the tunneling between two vacuums with different winding
numbers is possible, we may ask what the true vacuum is. We want to construct a series of vacuums
which are the superposition of those vacuums with certain winding numbers

|θ〉 = ∑
n∈Z

fn(θ)|n〉, (12)

and transitions between these vacuums are forbidden. Thus, we expect these θ bases to satisfy

〈θ′|e−Hτ=+∞|θ〉 =δ(θ′ − θ)I(θ)

= ∑
n,ν∈Z

f ∗n+ν(θ
′) fn(θ)〈n + ν|e−Hτ=+∞|n〉

= ∑
n,ν∈Z

f ∗n+ν(θ
′) fn(θ)

∫
ν
DAe−S[A],

(13)
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which implies

ein(θ′−θ) I(θ) = ∑
ν∈Z

f ∗n+ν(θ
′) fn(θ)

∫
ν
DAe−S[A], (14)

where
∫

νDA means that the integral domain of the functional integral is restricted to the gauge field
configurations with winding number ν, i.e.,

∫
ν
DA =

∫
DAδ

[
ν− g2

32π2

∫
Fa

µν F̃aµνd4x
]

. (15)

It is obvious that we can choose fn(θ) = e−inθ , and the θ-vacuum is defined as
|θ〉 = ∑n e−inθ |n〉 [8]. The true vacuum may be the θ-vacuum which is invariant after the instantons
tunneling. Since the different θ-vacuums do not communicate with each other, we cannot determine
which vacuum our world is in a priori way [8]. In the Minkowski space, the transitions between
θ-vacuums is represented as

〈θ′,+∞|θ,−∞〉 =δ(θ′ − θ) ∑
ν∈Z

eiνθ
∫

ν
DAei

∫
LQCDd4x

=δ(θ′ − θ)
∫
DAei

∫
LQCD+θ

g2

32π2 Fa
µν F̃aµνd4x,

(16)

where ν = n+ − n− is the winding number of instantons which is denoted as Equation (9). This path
integral takes into account the contribution of all the gauge configurations, and it is equivalent to add
a θ-term Lθ = θg2/(32π2)Fa

µν F̃aµν to the QCD Lagrangian. If θ is nonzero, this term breaks the P and
T symmetry, so it violates CP invariance. We can cancel the θ angle by redefining the fermion fields
as ψ f → exp(iγ5α f )ψ f , but at the price of introducing P and CP violating phases in a mass matrix of
fermions [9,10]. Thus, the complex mass of fermions is unphysical and also leads to P and CP violation.
Thus, the basis-independent observable angle of CP violation is defined as

θ̄ = θ + Arg det M, (17)

where M is the mass matrix of fermions. Theoretically, the CP invariance is not a necessary requirement
of QCD theory. Paradoxically, experimentally, there is no obvious signal of the global P and CP violation.
The estimate of the strong CP phase θ̄ from the neutron electric dipole moment (NEDM) is very small
(θ̄ . 10−9∼10−10) [11–13]. This fine-tuning problem of Equation (17) is called a Strong CP Problem.

There are main three possible solutions to the strong CP problem: massless up quark solution,
Peccei–Quinn (PQ) mechanism [14,15], and the Nelson–Barr mechanism [16,17]. For the first solution,
if the up quark is massless, we can always redefine the fermions field to cancel the θ-term without any
influence, thus there is no strong CP problem. Unfortunately, the ‘t Hooft determinantal interaction
may generate a mass for up quark even if the bare mass of up quark is zero [18]. Thus, this solution
is ruled out. For the Peccei–Quinn mechanism, a global chiral U(1)PQ symmetry is introduced and
θ̄ is suggested to be a dynamical field called axion, which is the Nambu–Goldstone boson of the
broken U(1)PQ symmetry [19,20]. In addition, at the minimum of the effective potential for the axion,
the θ̄-term is canceled out and CP is conserved [21]. The last scenario proposes that the CP symmetry
is an exact symmetry at a very high scale, and θ-term is forbidden there. Then, CP symmetry is broken
spontaneously, and it will generate a large CKM angle and a small strong CP violation angle [22,23].

Although several solutions have been proposed to explain the strong CP problem, there is no
direct evidence for which one is right. So far, the strong CP problem remains a mystery in physics.

1.3. Event by Event P and CP Violation and Chiral Chemical Potential

In recent years, the topological fluctuation effects induced by nontrivial gauge configurations
(instantons or sphalerons) have attracted much attention. Although the global strong CP violation has
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not been observed, the topological fluctuation in hot matter provides the possibility to observe the
local P and CP violation.

As mentioned above, the QCD vacuums have a lot of topological structures which are classified
by integers called winding numbers. In addition, each of them is separated from the others by a
potential barrier of scale ΛQCD. At low temperatures, a transition between different vacuums depends
on instantons tunneling. The instantons density with winding number |qw| = 1 at zero temperature
was given in Refs. [24]

n0(ρ) =
0.0015

ρ5 (
8π

g2 )
6exp(− 8π2

g2(ρ)
), (18)

where ρ is the size of instantons, and g(ρ) denotes the renormalized coupling constant. At the finite
temperature because of the Debye screening and asymptotic freedom, contributions from large size
instantons are ignored, and the coupling constant g(ρ) gradually goes to zero as temperature increases.
Thus, raising the temperature will lead to the decrease of instantons density. Instantons density at a
finite temperature is specifically calculated in Ref. [25]

nT(ρ) = n0(ρ)exp(−2λ2 − 3A(λ)/2), (19)

where λ = πρT and A(λ) ≈ ln(1 + λ2/3) − 0.1548(1 + 0.1586λ−3/2)−8. At high temperatures,
although the instantons density is extremely low, the actual transition rate between different vacuums
increases instead of decreasing due to the sphaleron configurations in hot QCD [26]. If the temperature
is high enough, the sphalerons can have enough energy to leap over the potential barrier, and then
dramatically increase the transition rate. In Ref. [27], the sphaleron rate is estimated to be

Γsphal ∼ 40α4
s T4, (20)

where αs = g2/(4π).
In the quark–gluon plasma (QGP), these gluon configurations with nonzero winding numbers can

be generated anywhere at anytime. Once this gluon configuration is excited at some space-time
point, the topological charge of the vacuum around that point will be changed by these gluon
configurations. Due to the chiral anomaly in Equations (9) and (10), this process will lead to chiral
imbalance between left-hand and right-hand quarks. Local chiral imbalance means the CP is broken
locally. Since there is no global P and CP violation, gluon configurations with negative and positive
winding numbers have the same possibility to be excited, so the average chirality of many events
vanishes. Therefore, we can say that the P and CP violation caused by nontrivial gluon configurations
is local and event-by-event [28]. The spontaneous parity violation in hot QCD was proposed in
Refs. [29–32], which argues that the P-odd metastable vacuum state can be produced in the vicinity
of the deconfinement phase transition. It is also suggested in Refs. [33,34] that an arbitrary induced
θ-vacuum state should be created in heavy-ion collisions through a non-equilibrium phase transition.
We can imagine that, in heavy-ion collisions, some P-odd bubbles are produced, and θ is nonzero
inside these bubbles but zero outside. Such bubbles may also be regarded as the space-time regions
filled by gauge field configurations with a nontrivial winding number.

In order to mimic the local P and CP violation and the topological fluctuation, we assume that the
θ angle in the Lagrangian depends on the space-time [28,35,36], i.e.,

Lθ =
g2

32π2 θ(x, t)Fa
µν F̃aµν. (21)

The θ-term can be canceled out by performing an axial U(1) transformation on fermion fields

ψ f (x, t) −→ exp[iθ(x, t)γ5/(2N f )]ψ f (x, t), (22)
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and, due to the chiral anomaly, the Lagrangian changes as follows:

L = LQCD +
g2

32π2 θ(x, t)Fa
µν F̃aµν −→ L = LQCD +

1
2N f

∂µθ(x, t)ψ̄γµγ5ψ. (23)

Thus, the local θ-term is equivalent to a fermionic contribution. If we further assume that the θ

angle is only or mainly dependent on time, i.e., |∇θ| � θ̇, we can define a chiral chemical potential µ5

as µ5 = ∂0θ/(2N f ) [37]. In addition, then the Lagrangian can be written as

L = LQCD + µ5ψ†γ5ψ. (24)

The chiral chemical potential µ5 is coupling to the chiral charge density operator ψ†γ5ψ.
In addition, just like the chemical potential being able to reflect the quark number density, the chiral
chemical potential can also mimic the chiral charge density. However, the chiral charge is not conserved
because of the chiral anomaly, and we cannot treat µ5 as a true chemical potential. The chiral chemical
potential is nothing but an indication of the magnitude of the chiral imbalance. Although chiral
chemical potential µ5 is generated by the topological charge fluctuation, we are concerned with the
effects of the chiral imbalance rather than these dynamical processes, so we treat it as a free, dynamically
independent parameter. Moreover, it is very convenient for us to study the chiral imbalanced systems
by adding the chiral chemical potential into the Lagrangian.

2. The Effects of Chiral Imbalance

2.1. The Charge Separation Effect (CSE) and Chiral Magnetic Effect (CME)

Relativistic heavy-ion collisions can produce a fireball with energy density of 5 GeV/fm3 [38,39],
which is already above the predicted energy density 1 GeV/fm3 of the deconfinement phase transition.
Some experimental evidence suggests that the quark–gluon plasma has been produced in relativistic
heavy-ion collisions [39,40]. In the hot matter created in heavy-ion collisions, chiral imbalance is
more obvious because of the sphaleron-like transition at high temperature [26,27]. In the non-central
heavy-ion collisions, the fast-moving spectator protons can produce a strong magnetic field perpendicular
to the reaction plane on the B∼1014 Tesla scale [41]. Due to the high energy density and strong magnetic
field, heavy-ion collisions can provide an excellent environment for the observation of local P and
CP violation.

The chiral imbalanced system has many interesting effects, especially when a magnetic field is
applied. Considering a system in which both strong and electromagnetic interactions are involved,
the Lagrangian of the SU(3)×U(1) gauge theory is

L = −1
4

Fa
µνFaµν − 1

4
FµνFµν + ∑

f
ψ̄ f

[
iγµ(∂µ − ig

λa

2
Aa

µ − iq f Aµ)−m f

]
ψ f +

g2θ(x, t)
32π2 Fa

µν F̃aµν, (25)

where Aa
µ and Aµ are, respectively, the gluon fields and photon field, λa

2 are the generators of SU(3)

gauge group which satisfy Tr( λa

2
λb

2 ) = 1
2 δab, and we assume that the θ angle is local. Through the

triangle diagram of the chiral anomaly, the electromagnetic field and the Chern–Simons current
are coupled together. Therefore, we introduce an effective Lagrangian which is used in axion
electrodynamics [42],

Le f f = −
1
4

FµνFµν +
κ

4
θ(x, t)Fµν F̃µν − Aµ Jµ, (26)

where

κ =
Nc

N f
∑

f

q2
f

4π2 , (27)
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and Nc represents the color number. As shown in Equation (3), Fµν F̃µν can be represented as a total
divergence of Chern–Simons current,

Fµν F̃µν =∂µKµ

=∂µ(ε
µνλρ AνFλρ).

(28)

By subtracting a total divergence term ∂µ[θ(x, t)Kµ], then the Lagrangian (26) can be written as

Le f f = −
1
4

FµνFµν −
κ

2
∂µθ(x, t)Aν F̃µν − Aµ Jµ. (29)

In addition, the following form of the Euler–Lagrange equation can be obtained by the variation
of the effective Lagrangian (29):

∂µFµν = Jν + κ∂µθ(x, t)F̃µν. (30)

Due to the Jacobi identity [Dµ, [Dν, Dλ]] + [Dν, [Dλ, Dµ]] + [Dλ, [Dµ, Dν]] = 0, the other pair of
Maxwell equations does not change:

∂µFνλ + ∂νFλµ + ∂λFµν = 0. (31)

Then, the axion Maxwell Equations (30) and (31) can be written in terms of electromagnetic fields
E and B : 

∇× B− ∂E
∂t

= J− κ(θ̇B +∇θ × E),

∇ · E = ρ + κ∇θ · B,

∇× E +
∂B
∂t

= 0,

∇ · B = 0.

(32)

One can see from the above equations that the local CP violation angle θ(x, t) leads to significant
alteration of Maxwell equations. The local θ angle will induce a four-dimension current density

Jind = (κ∇θ · B,−κθ̇B− κ∇θ × E). (33)

It indicates that, in the case of a strong electromagnetic field, the local P and CP violation can have
observable effects.

In the extremely strong magnetic field, all charged particles stay at the lowest Landau level. Let us
assume that the magnetic B is uniform and points in a certain direction. The spins of positively charged
particles point in the direction of the magnetic field, while the spins of negatively charged particles
point in the opposite direction. For massless fermions, the momentum and spin of the right-hand
particle point in the same direction, and the momentum and spin of left-hand particle point in opposite
directions. Therefore, for positively charged particles such as u quarks, right-hand u quarks will move
in the direction of magnetic field, while left-hand u quarks move in the opposite direction. At the
same time, for the negatively charged particles such as d quarks, left-hand d quarks will move in the
direction of a magnetic field, while right-hand d quarks move in the opposite direction. Thus, the total
net charge moving in the direction of magnetic field is

Q = ∑
f
(N f

R − N f
L)|q f |, (34)

where f is the flavor index, and q f is the charge of quarks. Because of the chiral imbalance induced by
the nontrivial gauge field configurations (see the Equation (10)), the total net charge is nonzero and
can be represented as
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Q = −2qw ∑
f
|q f |, (35)

where qw denotes the wind number of these nontrivial gauge field configurations. It indicates that,
in the case of strong magnetic, the chiral imbalance can induce an electric current along the direction
of magnetic field. This phenomenon is called a chiral magnetic effect [28,35–37]. In addition, at the
boundary of the chiral imbalanced domain, a charge difference can be produced between the two
boundaries perpendicular to the magnetic field. This is called charge separation effect [28,36,43].
This process is illustrated in Figure 1.

Figure 1. The illustration of the charge separation effect and chiral magnetic effect. The blue arrows and
the red arrows respectively denote the spin and the momentum of quarks. (1) At the beginning, the u
and d quarks are all in the lowest Landau level and can only move along the direction of the magnetic
field. (2) The quarks interact with a nontrivial gauge configuration with qw. Assuming qw = −1,
this gauge configuration can convert the chiralities of quarks from left-hand to right-hand. It will
lead to the chiral imbalance between the left- and right-hand quarks. (3) In the presence of a strong
magnetic, the u quarks (or d quark) with different chiralities move in different directions. Due to the
chiral imbalance, the total net charge moving along the direction of the magnetic is Q = 2e. In addition,
it will result in a charge difference between two domain walls perpendicular to the magnetic field.
Reprinted from [28], with permission from Elsevier.

Let us revisit this process in terms of the axion Maxwell Equations (32). As mentioned above,
the local chiral imbalanced domains can be regarded as the P-odd bubbles occupied by nontrivial gluon
configurations. The θ angle inside these bubbles is nonzero, but zero outside. We assume that the
external magnetic field is uniform and points in a certain direction, so ∇× B = 0, and there is no
external electric field. If the θ angle is static, θ̇ = 0, from the second equation of Equation (32), we can
immediately obtain that a non-vanishing charge appears on the θ-domain-walls (see Figure 2) [28,36,43]:

Qind = ±κθBS, (36)

where ± correspond to the opposite two domain walls perpendicular to the magnetic field and S
is their area. If the θ angle is mainly dependent on time, i.e., |∇θ| � θ̇, from the first equation of
Equations (32), we can see that there is an induced electric current (see Figure 3):

Jind = κθ̇B. (37)

Considering the chiral chemical potential which is defined as µ5 = θ̇/2N f (see Equation (24)),
we can represent the induced current as
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Jind =2N f κµ5B

=Nc ∑
f

q2
f

2π2 µ5B.
(38)

In Ref. [37], the same result is obtained by calculating the thermodynamic potential for chiral
fermions in the case of finite chiral chemical potential and strong magnetic field.

Figure 2. Charge separation effect—the regions inside the domain walls with θ 6= 0, outside with θ = 0.
The domain walls is charged in the case of a strong magnetic field, with the surface charge density
∼ e2θB

2π2 . Reprinted from [36], with permission from Elsevier.

Figure 3. Chiral magnetic effect—in the case of a strong magnetic field, in the region with θ̇ 6= 0,
an electric current J ∼ e2 θ̇B

2π2 is induced. Reprinted from [36], with permission from Elsevier.

2.2. The Effects of Chiral Chemical Potential on QCD Phase Structure

As the temperature increases, the strong interaction matter will undergo a deconfinement phase
transition from hadronic matter to quark–gluon plasma [44,45]. Since the nontrivial gauge field
configurations interact with the fermions and flip the helicities of fermions, the chiral charge Q5 may
be generated during the phase transition. Some studies show that, in heavy-ion collisions, chiral charge
density reaches equilibrium shortly after the collision and keep equilibrium for a comparatively long
period of time [46–48]. Therefore, to better understand the phase transition in heavy-ion collisions, it is
necessary to study the effects of chiral imbalance on the QCD phase structure. As mentioned above,
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we can introduce the chiral chemical potential µ5 to mimic the chiral imbalance between right- and
left-hand quarks. In terms of Lagrangian, the following term should be added:

µ5ψ̄γ0γ5ψ. (39)

By solving the Dirac equation, we can get the energy spectrum of the free fermions

ωs(p) =
√
(p + sµ5)2 + m2, (40)

where s = ±1 denotes helicity eigenstates of fermions and p = |p|. The energy spectrum shows
that, after the introduction of chiral chemical potential µ5, the the degeneracy of helicity is relieved.
For massless particles and antiparticles, there are some corresponding relations between chirality and
helicity eigenstates: right-hand particle—positive helicity, left-hand particle—negative helicity and
right-hand antiparticle—negative helicity, left-hand antiparticle—positive helicity. Thus, the chiral
chemical potential can make a difference in the numbers of modes with left- and right-hand chirality
below the Fermi-surface, so there is a chiral imbalance. In addition, we can obtain the thermodynamic
potential density

Ω = − ∑
s=±1

∫ ∞

0

dp
2π2 p2

{
ωs + T ln

[
1 + e−β(ωs+µ)

]
+ T ln

[
1 + e−β(ωs−µ)

]}
. (41)

The chiral charge density can be expressed as

ρ5 = ∑
s=±1

∫ ∞

0

dp
2π2 p2 µ5 + sp

ωs
[1− f (ωs − µ)− f (ωs + µ)] , (42)

where f (ω) is the Fermi–Dirac distribution represented as f (ω) = [1 + exp(βω)]−1. In the massless
limit, the chiral charge density ρ5 can be simplified as [37]

ρ5 =
µ3

5
3π2 +

µ5

3
(T2 +

µ2

π2 ). (43)

The vacuum contribution to the chiral charge density at µ5 = 0 and T = 0 is non-vanishing.
In massless limit, the vacuum contribution is finite; however, for massive fermions, the vacuum
contribution is divergent, ρ5 ∼ µ5m2logΛ2 [48].

In the following, we focus on discussing the effects of the chiral chemical potential on the phase
diagram of the strong interaction. Since the introduction of chiral chemical potential does not increase
the sign problem, we can study the phase transition of the chiral imbalanced QCD matter by the
lattice simulation [49–51]. The results of lattice simulation show that the chiral chemical potential plays
the role of a catalyst of spontaneous chiral symmetry breaking and enhance the chiral condensate of
quarks [50–52]. This result also appears in the model analyses [52–55]. Moreover, the critical temperature
of deconfinement phase transition increases with chiral chemical potential increasing [50,51]. In the
case of finite chemical potential, the sign problem will occur in the lattice calculation. In order to study
the phase diagram at finite chemical potential, we need to apply the effective model, and some of
the results we obtained is model dependent. The Nambu–Jona–Lasinio (NJL) model analyses on the
effects of chiral chemical potential are provided in Refs. [52,54,56,57]. The results of Refs. [54,56] show
that the chiral chemical potential can reduce the chemical potential of deconfinement phase transition
at low temperature and finite density. In Ref. [57], different regularization schemes of the NJL model
are employed to study the phase transition at finite chiral chemical potential and temperature. At high
temperature and low density, in different regularization schemes, the trend of critical temperature
changes with chiral chemical potential is different [54,57].
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Recently, we proposed a self-consistent mean-field approximation method for the NJL
model [58–62]. This method introduces a free parameter α to mimic the weight between the direct
channels contributions and the exchange channels contributions when applying the mean-field
approximation. In addition, the Lagrangian can be written in a more general form:

LR = ψ̄ (i/∂ −m)ψ + (1− α)G
[
(ψ̄ψ)2 + (ψ̄iγ5τττψ)2

]
+ αF

{
G
[
(ψ̄ψ)2 + (ψ̄iγ5τττψ)2

]}
, (44)

where F{} denotes the Fierz transformation of the interaction terms. Because the Fierz transformation
is a mathematically equivalent transformation, this redefined Lagrangian is equal to original
Lagrangian where α = 0. The parameter α cannot be determined by a priori and should be regarded as a
free parameter. In the case of finite chemical potential, the vector channel in the Fierz transformed terms
should be taken into consideration [58,63]. Thus, the axial-vector channel in the Fierz transformed
terms cannot be ignored when we study the phase transition at finite chiral chemical potential [54].
Within the self-consistent mean field model, we found that the location of CEP in the QCD phase
diagram strongly depends on the values of chiral chemical potential. For example, the baryon chemical
potential of CEP decreases with increasing the chiral chemical potential [54]. When α is larger than
0.71 and µ5 = 0, there has no critical endpoint (CEP) in the QCD phase diagram; however, with the
chiral chemical potential increasing, the CEP will reappear [54,58]. Moreover, the temperature of the
CEP shows a nonmonotonic dependence on the chiral chemical potential with a long plateau around
the maximum [54].

Theoretically, fluctuations of conserved charges (such as charge, baryon number, and strangeness)
are expected to be sensitive to the correlation length of the system, which will diverge near the
CEP. During the last few decades, the measurements of higher-order cumulants of net-charge [64],
net-proton [65–67], and net-kaon [68] multiplicity distributions have been carried out in heavy-ion
collisions by the STAR experiment in the first phase of beam energy scan (BES-I, 2010–2017) program at
Relativistic Heavy Ion Collider (RHIC). The fourth-order net-proton fluctuations exhibit non-monotonic
behaviors as a function of

√
sNN, with a 3.1 σ significance [69]. To further confirm this non-monotonic

behavior, RHIC started the second phase of beam energy scan program (BES-II), focusing on the
collision energies below 27 GeV. From the year of 2018 to 2020, the STAR experiment has collected
the high statistics data of Au+Au collision at

√
sNN = 9.2, 11.5, 14.6, 19.6 and 27 GeV under collider

mode and
√

sNN = 3.0–7.7 GeV under a fixed target mode. It will allow us to map the QCD phase
diagram with the baryon chemical potential up to µB ≈ 720 MeV. Current experimental strategies of
CEP search are mainly focusing on varying the temperature and baryon chemical potential of the hot
dense nuclear matter created in heavy-ion collisions. This theoretical model study could motivate
experimentalists to think about the possibility and importance to vary the chiral chemical potential in
the future heavy-ion collisions experiment by placing some special experimental selections.

In Refs. [53,70–74], the Polyakov-loop-modified Nambu–Jona–Lasinio models (PNJL) are
employed to study the effects of the chiral chemical potential. At high temperature and low density,
the results of the PNJL model show that the chiral chemical potential can reduce the critical temperature
of phase transition [70,71]. This result is consistent with the calculations of NJL model [57] and
linear sigma model coupled to Polyakov loop (PLSMq) [75]. Moreover, the phase diagram on µ5–T
plane have a CEP5 (the critical endpoint on µ5–T plane at µ = 0), and the CEP on µ–T plane can
consecutively move to the CEP5 on the µ5–T plane [70,71]. This conclusion is consistent with the
result of the quark–meson model (QM) [71] and PLSMq [75], but disagrees with the calculation of the
NJL model [54], Dyson–Schwinger equations (DSEs) [55,72,76] and lattice simulation [50,51]. In the
NJL model and DSEs, the trajectory of CEPs cannot extend to the µ5–T plane, and there is no CEP5

on µ5–T plane [54,55,72,76]. The contradiction between the PNJL model and lattice calculation about
the existence of CEP5 is resolved in Ref. [72]. If we apply a regularization scheme to suppress the
contribution of high-momentum quark modes in the effective potential connected with the PNJL
models, the chemical potential of CEP cannot decrease to zero, so there is no CEP5.
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Within the framework of Dyson–Schwinger equations, the effects of chiral chemical potential
on the phase diagram and CEP are studied in Refs. [55,72,76–78]. All the studies of DSEs show that
there is no CEP5 on the µ5–T plane. This is consistent with the result of lattice QCD. As the chiral
chemical potential increases, the chemical potential of CEP decreases at first, and then keeps constant
at large µ5 [55,72]. In addition, the lowest chemical potential of CEP is in the range 40∼60 MeV.
The temperature of CEP always increases with chiral chemical potential increasing [55,72,76].

Finite-volume effects on the phase diagram should be taken into account when we study the
small fireball produced in heavy ion collisions. The finite-volume effects on phase diagram with a
chiral chemical potential are studied in Refs. [55,73,74]. It is shown in the PNJL model analyses that
the chiral chemical potential can shift the location of CEP significantly but does not change the critical
exponents [73]. Moreover, the smaller system size will result in smaller chiral charge density ρ5 [74].
However, we obtain the opposite result in DSEs. The results of DESs indicate that, in the smaller
system size, the chiral charge density becomes larger [55].

2.3. The Effects of Chiral Chemical Potential on Quark Stars

As shown in Ref. [74], at nonzero chiral chemical potential, the chiral charge density ρ5 rapidly
increases with chemical potential µ in the deconfinement phase. It indicates that the chiral imbalance
is more significant in the dense QCD matter. Therefore, neutron stars are a natural object to study the
effects of chiral chemical potential because their density and magnetic fields are much higher than
those produced in the laboratory. As mentioned above, we can introduce the chiral chemical potential
µ5 to the equation of state (EOS) to see whether the chiral chemical potential has effects on quark stars.

We applied the self-consistent mean field approximation method of NJL model to study the
effects of chiral chemical potential on the phase diagram in Ref. [54]. The Lagrangian of this model is
represented as Equation (44). In this subsection, we will discuss this method in more detail and use it
to explore the effects of chiral chemical potential on quark stars.

As proposed by Witten [79], strange quark matter might be the ground state of strong interaction
matter. However, recent studies demonstrated that up-down quark matter could be more stable
than the strange quark matter and the ordinary nuclear matter [62,80]. Accordingly, it has been
proposed that the compact stars involved in the binary merger events GW170817 and GW190814 may
be the up-down quark stars (nonstrange quark stars) [59,81–84]. Since theoretical predictions and
astronomical observations cannot rule out the existence of non-strange quark stars, we will discuss the
influence of chiral chemical potential on quark stars in the two flavor case.

In the case of finite chiral chemical potential and finite chemical potential, the effective Lagrangian
of Equation (44) is expressed as

Leff =ψ̄ (i/∂ −m)ψ + (1− α)G
[
(ψ̄ψ)2 + (ψ̄iγ5τττψ)2

]
+ αF

{
G
[
(ψ̄ψ)2 + (ψ̄iγ5τττψ)2

]}
+ µψ†ψ + µ5ψ†γ5ψ,

(45)

where F{} denotes the Fierz transformation of the interaction terms and can be represented as

F
{

G
[
(ψ̄ψ)2 + (ψ̄iγ5τττψ)2

]}
=

G
8Nc

[
2(ψ̄ψ)2 + 2 (ψ̄iγ5τττψ)2 − 2(ψ̄τττψ)2 − 2 (ψ̄iγ5ψ)2

−4 (ψ̄γµψ)2 − 4 (ψ̄iγµγ5ψ)2 + (ψ̄σµνψ)2 − (ψ̄σµντττψ)2
]

.
(46)

If we set α = 0, the redefined Lagrangian is reduced to the original Lagrangian

LNJL = ψ̄ (i/∂ −m)ψ + G
[
(ψ̄ψ)2 + (ψ̄iγ5τττψ)2

]
+ µψ†ψ + µ5ψ†γ5ψ. (47)

Considering the Fierz transformation is a mathematical identity transformation, the redefined
Lagrangian Equation (45) is equal to the original Lagrangian Equation (47). As mentioned above,
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when we perform the mean field approximation for the effective Lagrangian, the scalar, vector, and
axial-vector interaction channels in the Fierz transformed terms should be taken into account. By the
mean field approximation and the self-consistent thermodynamic relations, we can obtain the
gap equations: 

m′ = m− 2G
(

1− α +
α

4Nc

)
〈ψ̄ψ〉

µ′f = µ f −
αG
Nc
〈ψ†ψ〉 ( f = u, d)

µ′5 = µ5 +
αG
Nc
〈ψ†γ5ψ〉

(48)

and 

〈ψ̄ψ〉 = − ∑
f=u,d

m′
Nc

2π2 ∑
s=±1

∫ Λ

0
dp

p2

ωs
[1− f (ωs − µ′f )− f (ωs + µ′f )]

〈ψ†ψ〉 = ∑
f=u,d

Nc

2π2 ∑
s=±1

∫ Λ

0
dpp2[ f (ωs − µ′f )− f (ωs + µ′f )]

〈ψ†γ5ψ〉 = ∑
f=u,d

Nc

2π2 ∑
s=±1

∫ Λ

0
dpp2 µ′5 + sp

ωs
[1− f (ωs − µ′f )− f (ωs + µ′f )],

(49)

where m′, µ′f , µ′5 are respectively the constituent quark mass, the effective chemical potential,

the effective chiral chemical potential, f (ω) = [1 + exp(βω)]−1 is the Fermi–Dirac distribution

function, ωs =
√
(µ′5 + sp)2 + m′2 with s = ±1 denoting the helicity eigenstates of quarks, G and Λ

are respectively coupling constant and cut-off parameters which are fixed by fitting the experimental
results [63]. We can see that, although the redefined Lagrangian Equation (45) is equal to the original
Lagrangian Equation (47) of the NJL model, the introduction of α leads to essential modifications of the
gap equations. If we set α = 0, the gap equations Equations (48) are reduced to the conventional gap
equation which contains only the constituent quark mass equation. It indicates that the conventional
gap equation obtained from the original Lagrangian where α is zero only takes the direct contributions
into consideration when performing the mean field approximation. However, at the level of mean
field approximation, the exchange contributions from the Fierz transformed term are as important as
the direct contributions, and there is no physical reason to ignore the contribution from the exchange
channels when we apply the mean field approximation. Therefore, the parameter α is necessary to
be introduced to mimic the proportion between the direct and exchange contributions. Since the
parameter α cannot be determined theoretically, and we lack the experimental data at finite density to
fix it, α is treated as a free parameter.

Because of the electromagnetic repulsion and the electro-weak reaction d� u+ e−+ ν̄e, the charge
neutrality, i.e.,

2
3

ρd =
1
3

ρu + ρe (50)

and the chemical equilibrium relation
µd = µu + µe (51)

should be imposed on the gap equations Equations (48) and (49) when studying the quark star.
Solve Equations (48)–(51) at zero temperature simultaneously, then we can obtain the solutions which
satisfy the charge neutrality condition and the chemical equilibrium relation. At zero temperature,
the pressure and energy density can be expressed asP(µ, µ5) = −B +

∫ (µ,µ5)

(0,0)
ρdµ + ρ5dµ5

ε(µ, µ5) = −P(µ, µ5) + µρ + µ5ρ5,
(52)
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where B is the bag constant of MIT bag model [59,81,85]. Plugging the solutions we obtained into
Equation (52), we can get the EOSs of quark stars. Then, the mass–radius relation of quark star can be
obtained by solving the Tolman–Oppenheimer–Volkoff equations with these EOSs,

dP(r)
dr

= −G(M + 4πr3P)(ε + P)
(r− 2GM)r

dM(r)
dr

= 4πr2ε,

(53)

where G is the gravitational constant and M(r) is the total mass within radius r.
Our previous works have investigated the effects of α on the EOS and the properties of quark

stars [59,81,85]. The larger α leads to stiffer EOS and larger maximum mass of quark star. When α

is larger than 0.9, the results of our self consistent NJL model meet the astronomical observations
very well.

According to Ref. [59], when α = 0.9 and B
1
4 = 90 MeV, the maximum mass of two flavor quark

star can reach 2 M�, and the mass–radius relation is consistent with the observation of neutron star
merger GW170817. We plot the mass–radius relation of quark star with different chiral chemical
potential at α = 0.9 and B

1
4 = 9 MeV in Figure 4. Since the global CP violation is very weak in the real

world, it is reasonable for us to keep chiral chemical potential below 50 MeV in quark stars. As shown
in Figure 4, the chiral chemical potential can significantly reduce the maximum mass of quark stars.
The observations of gravitational wave (GW) give the constraint not only on the mass–radius relation
but also on the tidal deformability [86]. See Ref. [87] for the calculation method of tidal deformability.
The tidal deformabilities of 1.4–solar–mass quark stars at different chiral chemical potential are shown
in Table 1. We can see from Table 1 that not only the maximum mass but also the tidal deformability of
quark star decrease with chiral chemical potential.

Figure 4. The mass–radius relation of quark star with different chiral chemical potential at α = 0.9 and
B

1
4 = 90 MeV.



Symmetry 2020, 12, 2095 15 of 19

Table 1. The maximum mass Mmax of quark star with different µ5 are shown. In addition, the tidal
deformabilities of the 1.4-solar-mass stars are also listed.

µ5 (MeV) Mmax(M�) Λ1.4

0 1.96 236
10 1.79 221
20 1.71 204
30 1.61 150
40 1.53 104

The results in Figure 4 and Table 1 indicate that the quark star with smaller mass can have larger
chiral chemical potential. For a quark star with mass around 2 M�, the chiral chemical potential is
zero. In contrast, for a quark star with mass around 1.5 M�, the chiral chemical potential can be as
high as 40 MeV. The chiral imbalance is more obvious in the quark star with smaller mass which means
that the effects of CP violation are more easily observed in smaller mass stars. Moreover, among the
quark stars with the same mass, those with chiral chemical potential have smaller tidal deformabilities
than those without. If we observe a quark star that not only has a small mass but also small tidal
deformability, it may indicate that the quark star has large chiral chemical potential. Therefore, it is
possible to search for the evidence of CP violation from the astronomical observation of quark stars.

3. Conclusions

In this paper, we have made a brief review for the origin of chiral chemical potential µ5 and its
physical effects. The UA(1) problem has been resolved by the realization of the more complex structure
of QCD vacuum. Since the nontrivial gauge field configurations can travel between different vacuums,
the UA(1) is not a true symmetry of QCD. Considering the instantons tunneling, the real vacuum
should be the θ–vacuum. In addition, a θ term that breaks the P and T symmetry should be introduced
into the Lagrangian. However, the experimental estimate of the θ angle is very small, which raises
another problem: the strong CP problem. Despite years of efforts, the strong CP problem remains a
mystery. Fortunately, the topological fluctuations in the heavy-ion collisions open another door for
us to study the strong CP violation. In hot QCD, the sphalerons can leap over the potential barrier
and enormously increase the transition rate between different vacuums. This will cause a significant
fluctuation of the topological charge of vacuum. Because of the chiral anomaly, this process results in
local chiral imbalance. In order to mimic the local CP violation and chiral imbalance, we assume that
the θ angle depends on space-time. In addition, it is equivalent to add the chiral chemical potential term
µ5ψ†γ5ψ to the Lagrangian if |∇θ| � θ̇. In the case of a strong magnetic field, the chiral imbalance can
induce an electromagnetic current along the magnetic. In addition, a charge separation is generated
between the two domain-walls perpendicular to the magnetic field. The influence of chiral chemical
potential on the phase diagram includes many aspects. We display the results of lattice simulation
and model analyses. The results of the NJL model, self consistent NJL model, PNJL model, and DSEs
are discussed in detail in this paper. Some results are model independent. For example, the chiral
chemical potential can increase the chiral condensate of quarks, and there is no CEP5 on the µ5–T
plane. Other results may be model dependent, such as the trajectory of CEP. Finally, we discussed
the application of the self-consistent mean field approximation method of the NJL model to study
the effects of chiral chemical potential on the properties of quark stars. It was found that the chiral
chemical potential can reduce not only the maximum mass but also the tidal deformability of quark
stars, which indicates that the signal of strong CP violation could be more easily observed in smaller
mass stars. For these reasons, the quark stars may be a natural laboratory for testing the destruction of
strong interaction CP.



Symmetry 2020, 12, 2095 16 of 19

Author Contributions: Conceptualization, L.-K.Y. and H.-S.Z.; formal analysis, L.-K.Y.; writing—original draft
preparation, L.-K.Y., X.-F.L., J.S. and H.-S.Z.; writing—review and editing, L.-K.Y., X.-F.L., J.S. and H.-S.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is supported in part by the National Natural Science Foundation of China (under Grants
No. 12075117, No. 11475085, No. 11535005, and No. 11690030) and by the Nation Major State Basic Research and
Development of China (2016YFE0129300). X.-F.L. is supported by the National Key Research and Development
Program of China (2018YFE0205201) and the National Natural Science Foundation of China (Grants No. 11828501,
No. 11575069, No. 11890711, and No. 11861131009). Jorge Segovia is supported by Ministerio Español de Ciencia
e Innovación, Grant No. PID2019-107844GB-C22; and Junta de Andalucía, contract Nos. P18-FRJ-1132 and
Operativo FEDER Andalucía 2014-2020 UHU-1264517.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hooft, G.T. Symmetry Breaking through Bell-Jackiw Anomalies. Phys. Rev. Lett. Phys. 1976, 37, 8–11.
[CrossRef]

2. Hooft, G.T. Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D
1976, 14, 3432–3450. [CrossRef]

3. Adler, S.L. Axial-Vector Vertex in Spinor Electrodynamics. Phys. Rev. 1969, 177, 2426–2438. [CrossRef]
4. Bell, J.S.; Jackiw, R. A PCAC puzzle: π0γγ in the σ-model. Nuovo Cimento A Ser. 1969, 60, 47–61. [CrossRef]
5. Fujikawa, K. Path-Integral Measure for Gauge-Invariant Fermion Theories. Phys. Rev. Lett. 1979, 42, 1195–1198.

[CrossRef]
6. Crewther, R.J. Effects of Topological Charge in Gauge Theories. Act. Phys. Austriaca Suppl. 1978, 19, 47–153.
7. Bogomolny, E.B. Stability of Classical Solutions. Sov. J. Nucl. Phys. 1976, 24, 449.
8. Callan, C.G.; Dashen, R.F.; Gross, D.J. The structure of the gauge theory vacuum. Phys. Lett. B 1976,

63, 334–340. [CrossRef]
9. Jackiw, R.; Rebbi, C. Vacuum Periodicity in a Yang-Mills Quantum Theory. Phys. Rev. Lett. 1976, 37, 172–175.

[CrossRef]
10. Weinberg, S. The Quantum Theory of Fields; Volume 2: Modern Applications; Cambridge University Press:

Cambridge, UK, 2013; pp. 455–461.
11. Baker, C.A.; Doyle, D.D.; Geltenbort, P.; Green, K.; Van der Grinten, M.G.D.; Harris, P.G.; Iaydjiev, P.;

Ivanov, S.N.; May, D.J.R.; Pendlebury, J.M.; et al. Improved Experimental Limit on the Electric Dipole
Moment of the Neutron. Phys. Rev. Lett. 2006, 97, 131801. [CrossRef]

12. Baluni, V. CP-nonconserving effects in quantum chromodynamics. Phys. Rev. D 1979, 19, 2227–2230.
[CrossRef]

13. Crewther, R.; Vecchia, P.D.; Veneziano, G.; Witten, E. Chiral estimate of the electric dipole moment of the
neutron in quantum chromodynamics. Phys. Lett. B 1979, 88, 123–127. [CrossRef]

14. Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Pseudoparticles. Phys. Rev. Lett. 1977,
38, 1440–1443. [CrossRef]

15. Peccei, R.D.; Quinn, H.R. Constraints imposed by CP conservation in the presence of pseudoparticles.
Phys. Rev. D 1977, 16, 1791–1797. [CrossRef]

16. Barr, S.M. Solving the Strong CP Problem without the Peccei–Quinn Symmetry. Phys. Rev. Lett. 1984,
53, 329–332. [CrossRef]

17. Nelson, A. Naturally weak CP violation. Phys. Lett. B 1984, 136, 387–391. [CrossRef]
18. Kim, J.E.; Carosi, G. Axions and the Strong CP Problem. Rev. Mod. Phys. 2010, 82, 557–602. [CrossRef]
19. Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978,

40, 279–282. [CrossRef]
20. Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [CrossRef]
21. Peccei, R.D. The Strong CP Problem and Axions. In Axions: Theory, Cosmology, and Experimental Searches;

Kuster, M., Raffelt, G., Beltrán, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–17.
22. Cheng, H.Y. The strong CP problem revisited. Phys. Rep. 1988, 158, 1–89. [CrossRef]
23. Schwartz, M.D. Quantum Field Theory and the Standard Model; Cambridge University Press: Cambridge, UK,

2014; pp. 609–613.

http://dx.doi.org/10.1103/PhysRevLett.37.8
http://dx.doi.org/10.1103/PhysRevD.14.3432
http://dx.doi.org/10.1103/PhysRev.177.2426
http://dx.doi.org/10.1007/BF02823296
http://dx.doi.org/10.1103/PhysRevLett.42.1195
http://dx.doi.org/10.1016/0370-2693(76)90277-X
http://dx.doi.org/10.1103/PhysRevLett.37.172
http://dx.doi.org/10.1103/PhysRevLett.97.131801
http://dx.doi.org/10.1103/PhysRevD.19.2227
http://dx.doi.org/10.1016/0370-2693(79)90128-X
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevD.16.1791
http://dx.doi.org/10.1103/PhysRevLett.53.329
http://dx.doi.org/10.1016/0370-2693(84)92025-2
http://dx.doi.org/10.1103/RevModPhys.82.557
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1016/0370-1573(88)90135-4


Symmetry 2020, 12, 2095 17 of 19

24. Bernard, C. Gauge zero modes, instanton determinants, and quantum-chromodynamic calculations.
Phys. Rev. D 1979, 19, 3013–3019. [CrossRef]

25. Pisarski, R.D.; Yaffe, L.G. The density of instantons at finite temperature. Phys. Lett. B 1980, 97, 110–112.
[CrossRef]

26. McLerran, L.; Mottola, E.; Shaposhnikov, M.E. Sphalerons and axion dynamics in high-temperature QCD.
Phys. Rev. D 1991, 43, 2027–2035. [CrossRef] [PubMed]

27. Moore, G.D.; Tassler, M. The sphaleron rate in SU(N) gauge theory. J. High Energy Phys. 2011, 2, 105.
[CrossRef]

28. Kharzeev, D.E.; McLerran, L.D.; Warringa, H.J. The Effects of topological charge change in heavy ion
collisions: ‘Event by event P and CP violation’. Nucl. Phys. A 2008, 803, 227–253. [CrossRef]

29. Kharzeev, D.; Pisarski, R.D.; Tytgat, M.H. Possibility of Spontaneous Parity Violation in Hot QCD.
Phys. Rev. Lett. 1998, 81, 512–515. [CrossRef]

30. Kharzeev, D. Parity violation in hot QCD: Why it can happen, and how to look for it. Phys. Lett. B 2006,
633, 260–264. [CrossRef]

31. Kharzeev, D.; Krasnitz, A.; Venugopalan, R. Anomalous chirality fluctuations in the initial stage of heavy ion
collisions and parity odd bubbles. Phys. Lett. B 2002, 545, 298–306. [CrossRef]

32. Kharzeev, D.E.; Pisarski, R.D.; Tytgat, M.H. Aspects of parity, CP, and time reversal violation in hot QCD.
arXiv 2001, arXiv:2000.12012.

33. Buckley, K.; Fugleberg, T.; Zhitnitsky, A. Can Induced Θ Vacua be Created in Heavy-Ion Collisions?
Phys. Rev. Lett. 2000, 84, 4814–4817. [CrossRef]

34. Buckley, K.; Fugleberg, T.; Zhitnitsky, A. Induced θ-vacuum states in heavy ion collisions: A possible
signature. Phys. Rev. C 2001, 63, 034602. [CrossRef]

35. Kharzeev, D.E. Chern–Simons current and local parity violation in hot QCD matter. Nucl. Phys. A 2009,
830, 543c–546c. [CrossRef]

36. Kharzeev, D.E. Topologically induced local P and CP violation in QCD× QED. Ann. Phys. 2010, 325, 205–218.
[CrossRef]

37. Fukushima, K.; Kharzeev, D.E.; Warringa, H.J. Chiral magnetic effect. Phys. Rev. D 2008, 78, 074033.
[CrossRef]

38. Jacobs, P. Measurements of high density matter at RHIC. eConf 2002, C020805, TTH05.
39. Arsene, I.; Bearden, I.G.; Beavis, D.; Besliu, C.; Budick, B.; Bøggild, H.; Chasman, C.; Christensen, C.H.;

Christiansen, P.; Cibor, J.; et al. Quark gluon plasma and color glass condensate at RHIC? The Perspective
from the BRAHMS experiment. Nucl. Phys. A 2005, 757, 1–27. [CrossRef]

40. Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.;
Badyal, S.K.; Bai, Y.; Balewski, J.; et al. Experimental and theoretical challenges in the search for the
quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions.
Nucl. Phys. A 2005, 757, 102–183. [CrossRef]

41. Zhao, J.; Wang, F. Experimental searches for the chiral magnetic effect in heavy-ion collisions. Prog. Part.
Nucl. Phys. 2019, 107, 200–236. [CrossRef]

42. Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 1987, 58, 1799–1802. [CrossRef]
43. Kharzeev, D.; Zhitnitsky, A. Charge separation induced by P-odd bubbles in QCD matter. Nucl. Phys. A 2007,

797, 67–79. [CrossRef]
44. Collins, J.C.; Perry, M.J. Superdense Matter: Neutrons or Asymptotically Free Quarks? Phys. Rev. Lett. 1975,

34, 1353–1356. [CrossRef]
45. Meyer-Ortmanns, H. Phase transitions in quantum chromodynamics. Rev. Mod. Phys. 1996, 68, 473–598.

[CrossRef]
46. Ruggieri, M.; Peng, G.X.; Chernodub, M. Chiral relaxation time at the crossover of quantum chromodynamics.

Phys. Rev. D 2016, 94, 054011. [CrossRef]
47. Ruggieri, M.; Peng, G.X. Quark matter in a parallel electric and magnetic field background: Chiral phase

transition and equilibration of chiral density. Phys. Rev. D 2016, 93, 094021. [CrossRef]
48. Ruggieri, M.; Chernodub, M.N.; Lu, Z.-Y. Topological susceptibility, divergent chiral density, and phase

diagram of chirally imbalanced QCD medium at finite temperature. Phys. Rev. D 2020, 102, 014031.
[CrossRef]

http://dx.doi.org/10.1103/PhysRevD.19.3013
http://dx.doi.org/10.1016/0370-2693(80)90559-6
http://dx.doi.org/10.1103/PhysRevD.43.2027
http://www.ncbi.nlm.nih.gov/pubmed/10013580
http://dx.doi.org/10.1007/JHEP02(2011)105
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.298
http://dx.doi.org/10.1103/PhysRevLett.81.512
http://dx.doi.org/10.1016/j.physletb.2005.11.075
http://dx.doi.org/10.1016/S0370-2693(02)02630-8
http://dx.doi.org/10.1103/PhysRevLett.84.4814
http://dx.doi.org/10.1103/PhysRevC.63.034602
http://dx.doi.org/10.1016/j.nuclphysa.2009.10.049
http://dx.doi.org/10.1016/j.aop.2009.11.002
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1016/j.nuclphysa.2005.02.130
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085
http://dx.doi.org/10.1016/j.ppnp.2019.05.001
http://dx.doi.org/10.1103/PhysRevLett.58.1799
http://dx.doi.org/10.1016/j.nuclphysa.2007.10.001
http://dx.doi.org/10.1103/PhysRevLett.34.1353
http://dx.doi.org/10.1103/RevModPhys.68.473
http://dx.doi.org/10.1103/PhysRevD.94.054011
http://dx.doi.org/10.1103/PhysRevD.93.094021
http://dx.doi.org/10.1103/PhysRevD.102.014031


Symmetry 2020, 12, 2095 18 of 19

49. Yamamoto, A. Chiral Magnetic Effect in Lattice QCD with a Chiral Chemical. Phys. Rev. Lett. 2011,
107, 031601. [CrossRef] [PubMed]

50. Braguta, V.V.; Goy, V.A.; Ilgenfritz, E.M.; Kotov, A.Y.; Molochkov, A.V.; Müller-Preussker, M.; Petersson, B.
Two-Color QCD with Chiral Chemical Potential. J. High Energy Phys. 2015, 2015, 94. [CrossRef]

51. Braguta, V.V.; Ilgenfritz, E.-M.; Kotov, A.Y.; Petersson, B.; Skinderev, S.A. Study of the QCD phase diagram
with a nonzero chiral chemical potential. Phys. Rev. D 2016, 93, 034509. [CrossRef]

52. Braguta, V.V.; Kotov, A.Y. Catalysis of dynamical chiral symmetry breaking by chiral chemical potential.
Phys. Rev. D 2016, 93, 105025. [CrossRef]

53. Fukushima, K.; Ruggieri, M.; Gatto, R. Chiral magnetic effect in the Polyakov–Nambu–Jona–Lasinio model.
Phys. Rev. D 2010, 81, 114031. [CrossRef]

54. Yang, L.K.; Luo, X.; Zong, H.S. QCD phase diagram in chiral imbalance with self-consistent mean field
approximation. Phys. Rev. D 2019, 100, 094012. [CrossRef]

55. Shi, C.; He, X.-T.; Jia, W.-B.; Wang, Q.-W.; Xu, S.-S.; Zong, H.-S. Chiral transition and the chiral charge density
of the hot and dense QCD matter. J. High Energy Phys. 2020, 2020, 122. [CrossRef]

56. Shi, C.; He, X.-T.; Jia, W.-B.; Wang, Q.-W.; Xu, S.-S.; Zong, H.-S. QCD phase diagram with a chiral chemical
potential. Phys. Rev. D 2016, 93, 074037.

57. Yu, L.; Liu, H.; Huang, M. Effect of the chiral chemical potential on the chiral phase transition in the NJL
model with different regularization schemes. Phys. Rev. D 2016, 94, 014026. [CrossRef]

58. Wang, F.; Cao, Y.; Zong, H. Novel self-consistent mean field approximation and its application in strong
interaction phase transitions. Chin. Phys. C 2019, 43, 084102. [CrossRef]

59. Zhao, T.; Zheng, W.; Wang, F.; Li, C.M.; Yan, Y.; Huang, Y.F.; Zong, H.S. Do current astronomical observations
exclude the existence of nonstrange quark stars? Phys. Rev. D 2019, 100, 043018. [CrossRef]

60. Su, L.-Q.; Shi, C.; Xia, Y.-H.; Zong, H. Color superconductivity in a self-consistent NJL-type model.
Phys. Rev. D 2020, 102, 054028. [CrossRef]

61. Wu, Z.-Q.; Shi, C.; Ping, J.-L.; Zong, H.-S. Contributions of the vector-channel at finite isospin chemical
potential with the self-consistent mean field approximation. Phys. Rev. D 2020, 101, 074008. [CrossRef]

62. Wang, Q.; Zhao, T.; Zong, H. On the stability of two-flavor and three-flavor quark matter in quark stars
within the framework of NJL model. Mod. Phys. Lett. A 2020, 2020, 2050321. [CrossRef]

63. Klevansky, S.P. The Nambu—Jona–Lasinio model of quantum chromodynamics. Rev. Mod. Phys. 1992,
64, 649–708. [CrossRef]

64. Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.;
Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. Beam energy dependence of moments of the net-charge
multiplicity distributions in Au+Au collisions at RHIC. Phys. Rev. Lett. 2014, 113, 092301. [CrossRef]
[PubMed]

65. Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.V.; Alekseev, I.; Alford, J.; Anderson, B.D.; Arkhipkin, D.;
Averichev, G.S.; Balewski, J.; Barnby, L.S.; et al. Higher Moments of Net-proton Multiplicity Distributions at
RHIC. Phys. Rev. Lett. 2010, 105, 022302. [CrossRef] [PubMed]

66. Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.;
Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. Energy Dependence of Moments of Net-proton Multiplicity
Distributions at RHIC. Phys. Rev. Lett. 2014, 112, 032302. [CrossRef] [PubMed]

67. Luo, X. Exploring the QCD Phase Structure with Beam Energy Scan in Heavy-ion Collisions. Nucl. Phys. A
2016, 956, 75–82. [CrossRef]

68. Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Ajitan, N.N.;
Alekseev, I.; Anderson, D.M.; Aoyama, R.; et al. Collision Energy Dependence of Moments of Net-Kaon
Multiplicity Distributions at RHIC. Phys. Lett. B 2018, 785, 551–560. [CrossRef]

69. Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.;
Alekseev, I.; Anderson, D.M.; Aparin, A.; et al. Net-proton number fluctuations and the Quantum
Chromodynamics critical point. arXiv 2020, arXiv:2001.02852.

70. Gatto, R.; Ruggieri, M. Hot quark matter with an axial chemical potential. Phys. Rev. D 2012, 85, 054013.
[CrossRef]

71. Ruggieri, M. Critical end point of quantum chromodynamics detected by chirally imbalanced quark matter.
Phys. Rev. D 2011, 84, 014011. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.107.031601
http://www.ncbi.nlm.nih.gov/pubmed/21838347
http://dx.doi.org/10.1007/JHEP06(2015)094
http://dx.doi.org/10.1103/PhysRevD.93.034509
http://dx.doi.org/10.1103/PhysRevD.93.105025
http://dx.doi.org/10.1103/PhysRevD.81.114031
http://dx.doi.org/10.1103/PhysRevD.100.094012
http://dx.doi.org/10.1007/JHEP06(2020)122
http://dx.doi.org/10.1103/PhysRevD.94.014026
http://dx.doi.org/10.1088/1674-1137/43/8/084102
http://dx.doi.org/10.1103/PhysRevD.100.043018
http://dx.doi.org/10.1103/PhysRevD.102.054028
http://dx.doi.org/10.1103/PhysRevD.101.074008
http://dx.doi.org/10.1142/S0217732320503216
http://dx.doi.org/10.1103/RevModPhys.64.649
http://dx.doi.org/10.1103/PhysRevLett.113.092301
http://www.ncbi.nlm.nih.gov/pubmed/25215979
http://dx.doi.org/10.1103/PhysRevLett.105.022302
http://www.ncbi.nlm.nih.gov/pubmed/20867702
http://dx.doi.org/10.1103/PhysRevLett.112.032302
http://www.ncbi.nlm.nih.gov/pubmed/24484135
http://dx.doi.org/10.1016/j.nuclphysa.2016.03.025
http://dx.doi.org/10.1016/j.physletb.2018.07.066
http://dx.doi.org/10.1103/PhysRevD.85.054013
http://dx.doi.org/10.1103/PhysRevD.84.014011


Symmetry 2020, 12, 2095 19 of 19

72. Cui, Z.-F.; Cloët, I.C.; Lu, Y.; Roberts, C.D.; Schmidt, S.M.; Xu, S.-S.; Zong, H.-S. Critical end point in the
presence of a chiral chemical potential. Phys. Rev. D 2016, 94, 071503. [CrossRef]

73. Pan, Z.; Cui, Z.-F.; Chang, C.-H.; Zong, H.-S. Finite-volume effects on phase transition in the Polyakov-loop
extended Nambu–Jona–Lasinio model with a chiral chemical potential. Int. J. Mod. Phys. A 2017, 32, 1750067.
[CrossRef]

74. Liu, R.-L.; Lai, M.-Y.; Shi, C.; Zong, H.-S. Finite volume effects on QCD susceptibilities with a chiral chemical
potential. Phys. Rev. D 2020, 102, 014014. [CrossRef]

75. Chernodub, M.N.; Nedelin, A.S. Phase diagram of chirally imbalanced QCD matter. Phys. Rev. D 2011,
83, 105008. [CrossRef]

76. Xu, S.-S.; Cui, Z.-F.; Wang, B.; Shi, Y.-M.; Yang, Y.-C.; Zong, H.-S. Chiral phase transition with a chiral chemical
potential in the framework of Dyson-Schwinger equations. Phys. Rev. D 2015, 91, 056003. [CrossRef]

77. Wang, B.; Wang, Y.-L.; Cui, Z.-F.; Zong, H.-S. Effect of the chiral chemical potential on the position of the
critical endpoint. Phys. Rev. D 2015, 91, 034017. [CrossRef]

78. Tian, Y.-L.; Cui, Z.-F.; Wang, B.; Shi, Y.-M.; Yang, Y.-C.; Zong, H.-S. Dyson–Schwinger Equations of Chiral
Chemical Potential. Chin. Phys. Lett 2015, 32, 081101. [CrossRef]

79. Witten, E. Cosmic separation of phases. Phys. Rev. D 1984, 30, 272–285. [CrossRef]
80. Holdom, B.; Ren, J.; Zhang, C. Quark Matter May Not Be Strange. Phys. Rev. Lett. 2018, 120, 222001.

[CrossRef]
81. Wang, Q.; Shi, C.; Zong, H.-S. Nonstrange quark stars from an NJL model with proper-time regularization.

Phys. Rev. D 2019, 100, 123003. [CrossRef]
82. Zhang, C. Probing up-down quark matter via gravitational waves. Phys. Rev. D 2020, 101, 043003. [CrossRef]
83. Zhang, C.; Mann, R.B. Unified Interacting Quark Matter and its Astrophysical Implications. arXiv 2020,

arXiv:2009.07182.
84. Cao, Z.; Chen, L.W.; Chu, P.C.; Zhou, Y. GW190814: Circumstantial Evidence for Up-Down Quark Star.

arXiv 2020, arXiv:2009.00942.
85. Li, C.-M.; Zuo, S.-Y.; Yan, Y.; Zhao, Y.-P.; Wang, F.; Huang, Y.-F.; Zong, H.-S. Strange quark stars within

proper time regularized (2 + 1)-flavor NJL model. Phys. Rev. D 2020, 101, 063023. [CrossRef]
86. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;

Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star
Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [CrossRef] [PubMed]

87. Hinderer, T.; Lackey, B.D.; Lang, R.N.; Read, J.S. Tidal deformability of neutron stars with realistic equations
of state and their gravitational wave signatures in binary inspiral. Phys. Rev. D 2010, 81, 123016. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevD.94.071503
http://dx.doi.org/10.1142/S0217751X17500671
http://dx.doi.org/10.1103/PhysRevD.102.014014
http://dx.doi.org/10.1103/PhysRevD.83.105008
http://dx.doi.org/10.1103/PhysRevD.91.056003
http://dx.doi.org/10.1103/PhysRevD.91.034017
http://dx.doi.org/10.1088/0256-307X/32/8/081101
http://dx.doi.org/10.1103/PhysRevD.30.272
http://dx.doi.org/10.1103/PhysRevLett.120.222001
http://dx.doi.org/10.1103/PhysRevD.100.123003
http://dx.doi.org/10.1103/PhysRevD.101.043003
http://dx.doi.org/10.1103/PhysRevD.101.063023
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://www.ncbi.nlm.nih.gov/pubmed/29099225
http://dx.doi.org/10.1103/PhysRevD.81.123016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Ua(1) Problem, Chiral Anomaly, and Instantons
	 -Vacuum and Strong CP Problem
	Event by Event P and CP Violation and Chiral Chemical Potential

	The Effects of Chiral Imbalance 
	The Charge Separation Effect (CSE) and Chiral Magnetic Effect (CME)
	The Effects of Chiral Chemical Potential on QCD Phase Structure
	The Effects of Chiral Chemical Potential on Quark Stars

	Conclusions
	References

