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Abstract: The Tibetan Plateau (TP) region contains maximal alpine grassland ecology at the mid-
latitudes. This region is also recognized as an ecologically fragile and sensitive area under the
effects of global warming. Regional climate modeling and ecosystem research depend on accurate
land cover (LC) information. In order to obtain accurate LC information over the TP, the reliability
and precision of five moderate/high-resolution LC products (MCD12Q1, C3S-LC, GlobeLand30,
GLC_FCS30, and ESA2020 in 2020) were analyzed and evaluated in this study. The different LC
products were compared with each other in terms of areal/spatial consistency and assessed with
four reference sample datasets (Geo-Wiki, GLCVSS, GOFC-GOLD, and USGS) using the confusion
matrix method for accuracy evaluation over the TP. Based on the paired comparison of these five
LC datasets, all five LC products show that grass is the major land cover type on the TP, but the
range of grass coverage identified by the different products varies noticeably, from 43.35% to 65.49%.
The fully consistent spatial regions account for 43.72% of the entire region of the TP, while, in the
transition area between grass and bare soil, there is still a large area of medium-to-low consistency.
In addition, a comparison of LC datasets using integrated reference datasets shows that the overall
accuracies of MCD12Q1, C3S-LC, GlobeLand30, GLC_FCS30, and ESA2020 are 54.29%, 49.32%,
53.03%, 53.73%, and 60.11%, respectively. The producer accuracy of the five products is highest
for grass, while glaciers have the most reliable and accurate characteristics among all LC products
for users. These findings provide valuable insights for the selection of rational and appropriate LC
datasets for studying land-atmosphere interactions and promoting ecological preservation in the TP.

Keywords: land cover; multi-source datasets; spatial consistency; accuracy assessment; Tibetan Plateau

1. Introduction

The TP, referred to as the Earth’s ‘Third Pole’, is renowned for its unique topography
and environment, as it contains the alpine ecosystem with the largest area in the world [1].
This unique alpine ecosystem is also considered to be ecologically fragile and sensitive
under the background of global warming [2,3]. Land cover (LC) is an important variable
in describing surface heterogeneity and ecosystem diversity. LC plays an crucial part
in the exchange of energy and matter between the Earth’s surface and the surrounding
atmosphere, which profoundly affects the structure and function of terrestrial processes,
such as vegetation productivity, carbon and water cycling, and energy balance [4–6]. On
the one hand, LC data are important surface parameters for regional climate modeling.
Studies, especially in the TP region, have shown that the uncertainty of LC data affects the
simulation of land-air interactions [7,8], permafrost distribution [9], and local circulation
and precipitation [10]. On the other hand, LC data are important variables for assessing
changes in terrestrial ecosystems. The accuracy of LC data directly affects the assessment
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of surface desertification and ecosystem stability [11], as well as the calculation of the
terrestrial carbon cycle. Therefore, reliable and accurate LC products are essential and
urgently needed for conducting regional climate change studies and developing ecological
conservation measures in the region.

Empirical evidence has demonstrated that remote sensing is a more efficient and
effective approach for obtaining accurate land cover information, compared to the time
consuming and substantial investment required for field surveys [12,13]. Over the past
several decades, satellite sensing technology and algorithms have rapidly developed,
resulting in an increasing number of LC datasets with higher spatial resolution [14,15].
Originally, several LC maps were produced in a 1 km resolution, such as the IGBP DISCover
(1992–1993) [16], the UMD (1992–1993) [17], and the GLC(2000) [18]. Subsequently, several
global LC products have been produced based on MODIS and MERIS satellites at 500 m
and 300 m resolutions, including the MCD12Q1 (2001–present, annually) with a 500 m
resolution [19], and the GlobCover (2005/2009) and the CCI-LC (1992–2015) at 300 m [20,21].
Recently, a series of LC products with enhanced spatial resolutions, such as 30 m and 10 m,
have been released successively. These LC products with a resolution of 30 m encompass
the GlobeLand30 (2000/2010/2020) dataset, developed by the NGCC [22]. Moreover, the
global land-cover product with fine classification system (GLC_FCS30), which covers the
period from 1985 to 2020 with a 5-year update cycle, is also available. This dataset was
developed by the AIR, CAS [23]. Furthermore, Tsinghua University has contributed to
the Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC30,
2015) dataset [24]. In addition, the first 10 m resolution global LC product (FROM-GLC10,
2017) has been successfully realized by Tsinghua University [4], and the latest global
10 m LC datasets have been released by the ESA (ESA2020, 2020) and ESRI (ESRI2020,
2020), respectively [25,26]. The above LC products provide great convenience for scientific
research. Meanwhile, as an increasing variety of these products emerge, it becomes crucial
to prioritize the rational selection and utilization of LC datasets for regional studies.

However, the effectiveness of these LC products in specific applications is often
impeded by uncertainties and inconsistencies, such as data source, thematic detail, classifi-
cation scheme, and spatial resolution [27–29]. For example, Quaife et al. showed that the
presence of uncertainty in land cover data derived from satellites significantly impacts the
accuracy of carbon flux estimates based on models [30]. Pan et al. found that uncertainty
in LC data could impact permafrost simulations on the TP [9]. Therefore, the accuracy
assessment of various LC products is particularly essential, as it not only provides valuable
insights for producers to improve future updates but also enables users to use the data
more effectively. At present, numerous researchers have conducted accuracy evaluations
for multiple LC datasets [31–35]. For example, on the global scale, Hansen et al. and Giri
et al. proved that the consistency of IGBP-DIS-Cover and UMD datasets, and the GLC2000
and MODIS land cover data consistency is 49% and 59%, respectively [17,36]. Hua et al.
conducted an analysis on the spatial agreement of five multi-source LC datasets (GLC2000,
CCI-LC, MCD12, GLCNMO, and GLOBCOVER). They found that the global overall con-
sistency of these datasets ranged from 49% to 68% [29]. At the national scale, Bai et al.
compared the consistencies and discrepancies in pairs among five LC datasets in China
(UMD, GLCC, MODIS, GLC2000, and GlobCover), and revealed that large discrepancies
existed in forest, shrub, and wetland [37]. Wang and Jin assessed the uncertainty of MCD12,
ESA CCI, and MEaSURES VCF datasets. Their findings indicate an average difference of 8%
in forest coverage among these three products in China [38]. In addition, to enhance the ef-
ficiency of accuracy assessments across various LC products, several LC reference datasets
have been released, and some researchers have used global or regional reference datasets
to evaluate accuracy, such as Geo-Wiki, GLCVSS, GOFC-GOLD, and LUCAS [15,39–41].
In particular, based on the CHINA2000 reference dataset, Song et al. identified obvious
confusion of grass in China within GLOBCOVER, MODIS2005, MODIS2000, and GLC2000
products. Gao et al. evaluated the capability of three LC datasets by comparing them to
the LUCAS reference dataset across the European Union, and showed that disagreement
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primarily occurred in regions characterized by heterogeneity [27]. The above studies have
drawn useful conclusions by evaluating different LC products in pairs.

So far, no systematic consistency and accuracy assessment has been conducted for the
2020 medium (500 m, 300 m) and high (30 m, 10 m) resolution LC products at the TP. Given
the importance of LC maps in regional climate modeling and alpine ecosystem change
studies, there is an urgent need for a quantitative estimation of the accuracy of commonly
used LCs at the TP. This study compares the distributional characteristics and spatial
consistency among five different LC products in pairs (MCD12Q1, C3S-LC, GlobeLand30,
GLC_FCS30, and ESA2020), and calculates the OA, PA, UA, and Kappa coefficient for
individual LC products from the four integrated reference datasets (Geo-Wiki, GLCVSS,
GOFC-GOLD, and USGS). We aim to provide guidance for the rational utilization of LC
products in ecosystem and climate change studies.

2. Materials and Methods
2.1. Study Area

The TP, situated in the southwestern region of China, boasts an average altitude exceed-
ing 4000 m above sea level and encompasses a vast area of approximately
2.5 million km2, establishing it as the most elevated plateau globally (Figure 1). The
TP is surrounded by various mountain ranges, including the Kunlun Mountains, Tanggula
Mountains, Hengduan Mountains, and Himalaya Mountains. The TP is characterized by
low temperature, low levels of precipitation, and high solar radiation [42,43]. In addition,
except for the poles, the TP region and the adjacent areas boast an extensive concentration
of glaciers, surpassing any other region in terms of quantity. The study area represents the
diverse heterogeneity expressed by different LC classes.
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Figure 1. Digital elevation model (DEM) map and the location of Tibetan Plateau.

2.2. Datasets
2.2.1. Land Cover Datasets

In this study, five free available moderate/high-resolution LC products were selected
for analysis and assessment on the TP (Table 1). Before analyzing and evaluating these
LC products, we need to understand the information related to the generation of these
datasets:

(1) MCD12Q1, produced by NASA, encompasses six categorization frameworks, and
we use the International Geosphere Biosphere Program (IGBP) classification system
(Table 2). It provides global LC data at a medium spatial resolution of 500 m from
2001 to the present [44,45].
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(2) C3S-LC version 2.1.1 is produced by ESA CCI Land Cover project, which provides
annual LC maps from 2016 to 2020 at a 0.002778◦ (approximately 300 m) spatial
resolution. This dataset offers a total of 22 distinct categories for land cover (Table 2).

(3) GlobeLand30, produced by the NGCC, is a world-wide LC dataset developed by
using multispectral images (TM, Enhanced TM+, HJ-4) for 2000, 2010, and 2020. The
classification system of GlobeLand30 contains 10 LC types. The overall accuracy of
GlobeLand30 is 85.7% [22].

(4) GLC_FCS30 is produced and released by the AIR, CAS. GLC_FCS30-2015 is devel-
oped on the Google Earth Engine platform [23]. Based on GLC_FC30-2015, the new
GLC_FCS30-2020 product has been developed by incorporating the 2019–2020 time
series of reflectance data, global thematic auxiliary datasets, DEM terrain elevation
data, Sentinel-1SAR data, and a prior knowledge dataset. Additional comprehensive
details regarding the GLC_FCS30 can be accessed within the work of Zhang et al. [23].
The GLC_FC30-2020 dataset was chosen for our study, and contains 29 land cover
types [46].

(5) ESA2020 is extracted from ESA at 10 m resolution for 2020. The product is defined
using UN-LCCS and offers a comprehensive range of 11 land cover classifications [25].

Table 1 summarizes the details of the five LC datasets. Considering the close proximity
of the dataset phases, the LC maps evaluated in this study are all from 2020. The Land
Cover Classification Systems (LCCSs) of these five different LC datasets include the IGBP
(The International Geosphere-Biosphere Programme), UN (United Nations), and some
custom classification systems.

Table 1. Detailed information of the five LC datasets.

Land Cover
Products MCD12Q1 C3S-LC GlobeLand30 GLC_FCS30 ESA2020

Spatial Resolution
(m) 500 300 30 30 10

time 2020 2020 2020 2020 2020

Overall Accuracy
(%) 71.6% 70.8% 85.7% 81.4% 74.4%

Satellite Sensor Terra and
Aqua MODIS Sentinel-3 OLCI

Landsat
TM/ETM+/OLI,
HJ-1 A/B, GF-1
multispectral

image

Landsat
TM/ETM+/OLI,
Sentinel-1SAR-C

Sentinel-1 SAR-C,
Sentinel-2 MSI

Classification
Scheme 17 classes 22 classes 10 classes 29 classes 11 classes

Classification
Technique

Supervised
Classification

Supervised and
Unsupervised

Change Detection

POK (based on
pixels, objects, and
knowledge rules)

Random Forest
Model Cat boost

Institution

National
Aeronautics
and Space

Administration
(NASA)

European Space
Agency (ESA)

National
Geomatics Center
of China (NGCC)

Chinese Academy
of Sciences

European Space
Agency (ESA)

Download Link

https://ladsweb.
modaps.eosdis.

nasa.gov (accessed
on 8 January 2023)

https://www.esa-
landcover-cci.org

(accessed on 2
January 2023)

http://www.
globallandcover.
com (accessed on
20 January 2023)

https://data.
casearth.cn/sdo/
detail/5fbc79048
19aec1ea2dd7061
(accessed on 25
January 2023)

https://esa-
worldcover.org/en

(accessed on 16
January 2023)

https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
https://www.esa-landcover-cci.org
https://www.esa-landcover-cci.org
http://www.globallandcover.com
http://www.globallandcover.com
http://www.globallandcover.com
https://data.casearth.cn/sdo/detail/5fbc7904819aec1ea2dd7061
https://data.casearth.cn/sdo/detail/5fbc7904819aec1ea2dd7061
https://data.casearth.cn/sdo/detail/5fbc7904819aec1ea2dd7061
https://data.casearth.cn/sdo/detail/5fbc7904819aec1ea2dd7061
https://esa-worldcover.org/en
https://esa-worldcover.org/en
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Table 2. The initial categorization and identification codes of compared LC datasets.

MCD12Q1 C3S-LC GlobeLand30 GLC_FCS30 ESA2020

Evergreen Needleleaf
Forests

(1)

Cropland, rainfed
(10)

Cropland
(10)

Rainfed cropland
(10)

Tree cover
(10)

Evergreen Broadleaf
Forests

(2)

Cropland, irrigate or post-flooding
(20)

Forest
(20)

Herbaceous cover
(11)

Shrubland
(20)

Deciduous Needleleaf
Forests

(3)

Mosaic cropland (>50%)/natural
vegetation (tree, shrub,

herbaceous cover)
(30)

Grassland
(30)

Tree or shrub cover
(Orchard)

(12)

Grassland
(30)

Deciduous Broadleaf
Forests

(4)

Mosaic natural vegetation (tree,
shrub, herbaceous cover)
(>50%)/cropland (<50%)

(40)

Shrubland
(40)

Irrigated cropland
(20)

Cropland
(40)

Mixed Forests
(5)

Tree cover, broad-leaved,
evergreen, closed to open (>15%)

(50)

Wetland
(50)

Open/Closed evergreen
broad-leaved forest

(51/52)

Built-up
(50)

Closed Shrublands
(6)

Tree cover, broad-leaved,
deciduous, closed to open (>15%)

(60)

Waterbodies
(60)

Open/Closed deciduous
broad-leaved forest

(61/62)

Barren/sparse
vegetation

(60)

Open Shrublands
(7)

Tree cover, needle-leaved,
evergreen, closed to open (>15%)

(70)

Tundra
(70)

Open/Closed evergreen
needle-leaved forest

(71/72)

Snow and Ice
(70)

Woody Savannas
(8)

Tree cover, needle-leaved,
deciduous, closed to open (>15%)

(80)

Artificial
surface

(80)

Open/Closed deciduous
needle-leaved forest

(81/82)

Open water
(80)

Savannas
(9)

Tree cover, mixed leaf type
(broad-leaved and needle-leaved)

(90)

Bare areas
(90)

Open/Closed mixed leaf
forest (broad-leaved and

needle-leaved
(91/92)

Herbaceous
wetland

(90)

Grasslands
(10)

Mosaic herbaceous cover
(>50%)/herbaceous cover (<50%)

(100)

Glaciers and
permanent

snow
(100)

Shrubland/
Evergreen shrubland/
Deciduous shrubland

(120/121/122)

Mangroves
(95)

Permanent Wetlands
(11)

Mosaic herbaceous cover
(>50%)/tree and shrub (<50%)

(110)

Grassland
(130)

Moss and lichen
(100)

Croplands
(12)

Shrubland
(120)

Lichen and mosses
(140)

Urban and
Built-up Lands

(13)

Grassland
(130)

Sparse vegetation/Sparse
shrubland/Sparse

herbaceous
(150/152.153)

Cropland/Natural
Vegetation Mosaics

(14)

Lichens and mosses
(140)

Wetlands
(180)

Permanent Snow
and Ice

(15)

Sparse vegetation (tree, shrub,
herbaceous cover) (<15%)

(150)

Impervious surfaces
(190)
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Table 2. Cont.

MCD12Q1 C3S-LC GlobeLand30 GLC_FCS30 ESA2020

Barren
(16)

Tree cover, flooded, fresh or
brackish water

(160)

Bare areas/Consolidated
bare areas/Unconsolidated

bare areas
(200/201/202)

Water Bodies
(17)

Tree cover, flooded, saline water
(180)

Water body
(210)

Shrub or herbaceous cover,
flooded, fresh/saline/

brackish water
(180)

Permanent ice and snow
(220)

Urban area
(190)

Bare areas
(200)

Water bodies
(210)

Permanent snow and ice
(220)

2.2.2. Reference Land Cover Datasets

The lack of a common reference dataset is one of the primary limitations in conducting
validation [32]. Nevertheless, new datasets developed in recent years are making validation
data more accessible. This study benefits from the utilization of openly accessible and
publicly shared reference datasets, which have been integrated into a unified dataset
(Figure 2). Further details can be found below and in Table 3.

(1) The Geo-Wiki Global Validation Sample Set (2011–2012) was acquired from the Geo-
Wiki crowdsourcing platform (https://zenodo.org/communities/geo-wiki, accessed
on 6 February 2023), and includes 10 LC types. The Geo-Wiki datasets describe
information on human impacts, LC variability, wilderness, and reference data. These
data can be used as baseline data for worldwide satellite-derived products and for
comprehensive monitoring of terrestrial ecosystems [47,48]. After our processing, a
total of 1491 Geo-Wiki validation samples were obtained for the study area.

(2) The Global Land Cover Validation Sample Set (GLCVSS, 2009–2011) (https://zenodo.
org/record/3551995, accessed on 10 February 2023), was obtained using a random
sampling strategy to ensure equitable distribution across the entire globe. It is based
on the interpretation of Landsat TM and ETM+ images, and several existing reference
datasets (such as the STEP reference dataset, GLCNMO2008 training dataset, Global
cropland reference data, VIIRS reference dataset, and so on [49]). The GLCVSS samples
were obtained from 689 validation samples after processing in the study area.

(3) The Global Observation for Forest Cover and Land Dynamics (GOFC-GOLD) has established
a data access portal (http://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php,
accessed on 15 February 2023) which provides various validation datasets. After pro-
cessing the GOFC-GOLD global validation samples, a combined sum of 6 validation
samples were obtained for the study area.

(4) The US Geological Survey (USGS) Global Land Cover Reference Dataset was produced
to offer a comprehensive collection of thematic classes for the purpose of supplying
reference data in thematic classifications [50] (https://www.sciencebase.gov/catalog/
item/6116c890d34e3267c611bfdd, accessed on 21 February 2023). After processing the
USGS reference samples, we obtained 413 validation samples covering the study area.

https://zenodo.org/communities/geo-wiki
https://zenodo.org/record/3551995
https://zenodo.org/record/3551995
http://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php
https://www.sciencebase.gov/catalog/item/6116c890d34e3267c611bfdd
https://www.sciencebase.gov/catalog/item/6116c890d34e3267c611bfdd
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Table 3. The initial categorization and identification codes of land cover reference datasets.

Geo-Wiki GLCVSS GOFC-GOLD USGS

Tree Cover
(1)

Rainfed cropland
(10)

Evergreen Needleleaf Trees
(1)

Trees
(1)

Shrub Cover
(2)

Herbaceous cover
(11)

Evergreen Broadleaf Trees
(2)

Water
(2)

Herbaceous
Vegetation/Grassland

(3)

Tree or shrub cover (Orchard)
(12)

Deciduous Needleleaf Trees
(3)

Barren
(3)

Cultivated and Managed
(4)

Irrigated cropland
(20)

Deciduous Broadleaf Trees
(4)

Other Vegetation
(4)

Mosaic: Cultivated and
Managed/Natural Vegetation

(5)

Evergreen broad-leaved forest
(50)

Mixed/Other Trees
(5)

Cloud
(5)

Regularly Flooded/Wetland
(6)

Deciduous broad-leaved forest
(60)

Shrubs
(6)

Shadow
(6)
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Table 3. Cont.

Geo-Wiki GLCVSS GOFC-GOLD USGS

Urban/Built up
(7)

Evergreen needle-leaved forest
(70)

Herbaceous vegetation
(7)

No Data
(7)

Snow and Ice
(8)

Deciduous needle-leaved forest
(80)

Cultivated and managed
vegetation/agriculture

(incl. mixtures)
(8)

Ice and Snow
(8)

Barren
(9)

Mixed leaf forest (broad-leaved
and needle-leaved)

(90)

Other shrub/
herbaceous vegetation

(9)

Open Water
(10)

Shrubland/Evergreen shrubland/
Deciduous shrubland

(120/121/122)

Other Land (Urban, open
Water, Snow and Ice)

(10)

Grassland
(130)

Barren
(11)

Wetlands
(180)

Impervious surfaces
(190)

Lichens and mosses
(140)

Sparse vegetation/Sparse
shrubland/Sparse herbaceous cover

(150,152,153)

Bare areas/Consolidated bare
areas/Unconsolidated bare areas

(200/201/202)

Water body
(210)

Permanent ice and snow
(220)

2.3. Land Cover Data Processing and Analysis Method
2.3.1. Preprocessing

Due to their different geographic systems and spatial resolutions, the original datasets
were preprocessed before analysis and assessment. This preprocessing mainly included
data splicing and clipping, projection transformation, spatial scale conversion, classification
system unification among the different products, and error processing. The specific steps
were as follows: (1) All datasets were uniformly spliced and clipped for the TP region
to get LC datasets and reference datasets with consistent boundaries. (2) The geometric
correction method was employed in the initial data processing stage. All datasets were
unified into the coordinate system of WGS 1984 and Albers Equal-Area conical projection
to prevent area distortion. After performing unified projection and re-interpolation pro-
cesses, the Georeferencing function of ArcGIS was automatically applied to ensure grid
alignment. (3) Since the five land cover products had different resolutions, the maximum
area aggregation was used to convert all datasets to a resolution of 500 m. This method
is also considered to be a reliable method for the aggregation of LC datasets [31,37]. (4) A
standardized classification system is an essential prerequisite for the comparison of LC
products from multiple sources, and simplified categories can mitigate uncertainties arising
from the diversification of detailed LC types. The five LC products employ distinct clas-
sification systems. Given that the GlobeLand30 classification system consists of only one
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level, the classification systems were merged under the same classification benchmarks (the
classification scheme of GlobeLand30) to comparatively evaluate the different LC products.
According to a previous study, the individual classifications in different LC and reference
datasets were reclassified into nine types [51] (Tables 4 and 5). (5) When a missing raster
was identified in a dataset, the corresponding raster in all LC datasets was excluded from
analysis. According to our statistics, the total number of missing pixel points is 691, which
represents a negligible proportion of only 6 out of 100,000 pixels.

Table 4. Classification standardization of the five LC products. Refer to Table 2 for the original
classification and code.

Standardization MCD12Q1 C3S-LC GlobeLand30 GLC_FCS30 ESA2020

Forest 1/2/3/4/5
50/60/61/62/

70/71/72/80/81/82/
90/100/160/170

20 12/51/52/61/62/
71/72/81/82 10

Shrub 6/7 120/121 40 120/121/122 20
Grass 8/9/10 40/110/130/140 30/70 11/130/140 30/100
Crop 12/14 10/11/12/20/30 10 10/20 40

Wetland 11 180 50 180 90
Water 17 210 60 210 80

Buildings 13 190 80 190 50
Glacier 15 220 100 220 70

Bare soil 16 150/152/153/200/201/202 90 150/200/201/202 60

Table 5. Classification standardization of the LC reference datasets. Refer to Table 3 for the original
classification and code.

Standardization Geo-Wiki GLCVSS GOFC-GOLD USGS

Forest 1 1 1
Shrub 2 120 6
Grass 3 130 7 4
Crop 4/5

Wetland 6 180
Water 10 210 2

Buildings 7
Glacier 8 220 8

Bare soil 9 200/201/202 11 3

2.3.2. Areal Comparison Analysis

The deviation coefficient (D) can effectively measure the classification accuracy of
different LC types in multiple sets of data products [52]. First, we counted the area of each
LC type in LC products and calculated the deviation coefficient of different products for
the same LC type by taking the mean area of the same LC type in all products as standard.

Dxk =

(
kx

k
− 1

)
× 100 (1)

where x stands for multiple sets of data products; kx represents the area of x product of type
k; various types of multiple sets of products; k denotes the mean value of type k among
multiple sets of products; and Dxk represents the coefficient of area variation for x product
of k type.

In order to quantitatively assess the area similarity of LC types among products,
we calculated the area of individual LC types for five products, and then calculated the
coefficients of area correlation for the area series of LC between each dataset [13]. The
formula is shown below:
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Ri =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
∑n

i=1
(
Yi − Y

)2
(2)

where Ri represents the coefficient of area correlation; i represents the LC type; Xi represents
the total number of pixels of LC type i in dataset X; Yi represents the total number of type i
in dataset Y; X represents the mean of the total number of pixels of all types in dataset X;
Y represents the mean number of pixels across all types in dataset Y; and n is the number
of LC types.

2.3.3. Spatial Distribution Evaluation

In order to visualize the consistency of the spatial distributions, the spatial superposi-
tion method of the ArcGIS platform was used to summarize the results into five situations:
(1) Complete Inconsistency: the five datasets exhibit completely different indication types
within a given raster; (2) Low Consistency: two products have the same LC type in the
given pixel; (3) Moderate Consistency: three products have the same LC type in the given
pixel; (4) High Consistency: four products show the same type in the given pixel; and
(5) Complete Consistency: the five datasets have the same LC type in a given raster.

2.3.4. Accuracy Assessment

The confusion matrix is an effective tool used to evaluate LC datasets. Based on this
method, the overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), and
Kappa coefficients were computed to express the LC data accuracy [53,54]. The formulas of
these are as follows:

OA =
∑m

i=1 xii

n
× 100% (3)

PA =
xii
x+i

× 100% (4)

UA =
xii
xi+

× 100% (5)

Kappa =
n·∑m

i=1 xii − ∑m
i=1(xi+·x+i)

n2 − ∑m
i=1(xi+·x+i)

(6)

where n represents the number of pixels; m indicates the number of land cover types;
xii stands for the number of correctly categorized pixels for class i; x+i is the number of
pixels for class i in the reference data; and xi+ is the number of pixels for class i in the LC
datasets to be assessed.

3. Results
3.1. Comparison of Land Cover Composition

Figure 3 shows the spatial patterns of LC types for the five products in 2020. In
summary, the spatial pattern over the TP is obvious at a regional level, with a clear transition
from bare soil to grass and then to forest from northwest to southeast. Every LC dataset
accurately represents the grass widely distributed in the central part of the country, forest
heavily distributed in the eastern part of the country, and wetland or water scattered
sporadically over the TP. However, the land coverage for each type displays remarkable
discrepancies among the different maps based on visual comparison in several local regions.
For example, C3S-LC has less bare soil in the northern part of the TP than MCD12Q1,
GlobLand30, GLC-FCS30, and ESA2020, while ESA2020 has less grass in the central TP
than MCD12Q1, C3S-LC, GlobeLand30, and GLC_FCS30. Furthermore, GlobeLand30
identifies additional glacier coverage at the mountain Nyenchen Tanglha.
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3.2. Evaluation of Areal Consistency

From the five LC datasets, the LC compositions of the TP are shown in Figure 4. In
general, these five LC datasets are consistent in the LC characterization on the TP: it is
principally dominated by grass, followed by bare soil, forest, glacier, water, crop, and shrub;
wetland and buildings are very small.
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Furthermore, Table 6 presents the statistics of area percentage and deviation coefficient
of LC types from five datasets. For grass, the area percent among MCD12Q1 (54.26%), Glo-
beLand30 (54.60%), and GLC_FCS30 (57.34%) are particularly similar, and their deviation
coefficients are −1.36%, −0.74%, and 4.24%, respectively. In contrast, the area difference
between C3S-LC (65.49%) and ESA2020 (43.35%) is quite large, and their deviation coef-
ficients are 19.05% and −21.19%. For bare soil, large discrepancies in areas exist in the
five datasets (18.29~43.30%). The area percentage of bare soil of GlobeLand30 (26.36%)
is similar to GLC_FC30 (23.90%). ESA2020 has the largest bare soil area, accounting for
43.30%. For forest, the area percentage is the largest in GLC_FC30 (10.51%), which is higher
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than other LC datasets (5.04~9.58%). The percentages of glacier for the five datasets are
between 1.39% to 3.83%. The shrub, crop, wetland, water, and building coverage for all LC
datasets in this study are uniformly extremely low.

Table 6. Area percentage (AP) and deviation coefficient (DC) of LC types of five datasets (%).

Classes
MCD12Q1 C3S-LC GlobeLand30 GLC_FCS30 ESA2020

AP (%) DC (%) AP (%) DC (%) AP (%) DC (%) AP (%) DC (%) AP (%) DC (%)

Forest 5.04 −40.38 9.00 6.49 9.58 13.30 10.51 24.25 8.15 −3.66
Shrub 0.29 −66.34 0.37 −58.02 1.69 93.64 1.80 106.82 0.21 −76.10
Grass 54.26 −1.36 65.49 19.05 54.60 −0.74 57.34 4.24 43.35 −21.19
Crop 0.29 −71.96 2.70 159.71 1.05 1.37 0.81 −22.19 0.34 −66.93

Wetland 0.07 −69.18 0.23 −5.11 0.56 132.28 0.19 −21.30 0.15 −36.69
Water 1.32 −32.76 1.75 −11.12 2.19 11.21 2.20 11.85 2.38 20.83

Buildings 0.04 −38.52 0.04 −42.16 0.13 95.64 0.04 −42.69 0.08 27.73
Glacier 1.39 −44.98 2.14 −15.23 3.83 52.01 3.22 27.48 2.04 −19.27

Bare soil 37.29 25.02 18.29 −38.69 26.36 −11.61 23.90 −19.88 43.30 45.17

By computing the area correlation among the five products to quantitively measure
the areal consistency (Table 7), we found that the correlation coefficients between different
LC datasets are above 0.9, except for the coefficients between C3S-LC/GLC_FCS30 and
ESA2020 (0.831/0.896). The correlation between GlobeLand30 and GLC_FC30 is the greatest
(0.998), suggesting a high degree of similarity between the two products for the LC types of
the study region. The correlation between C3S-LC and GLC_FCS30 is second greatest at
0.990; the correlations between MCD12Q1 and the other four products are all above 0.972;
and the correlations between C3S-LC and GlobeLand30, and GlobeLand30 and ESA2020
are in the middle, ranging from 0.922 to 0.980.

Table 7. Area correlation coefficients among the five LC products.

MCD12Q1 C3S-LC GlobeLand30 GLC_FCS30 ESA2020

MCD12Q1 1.000
C3S-LC 0.927 1.000

GlobeLand30 0.979 0.980 1.000
GLC_FCS30 0.965 0.990 0.998 1.000

ESA2020 0.976 0.831 0.922 0.896 1.000

3.3. Consistency Analysis of Spatial Distribution

The level of confusion of land cover types in different LC products was analyzed,
and the results are presented in Figure 5. Pure grids are those where the LC type on the
abscissa matches the land type on the ordinate, while confused grids are those where
they do not match. For instance, the x-coordinate represents the LC types of C3S-LC, and
the y-coordinate denotes the percentages of multi-type pixels in MCD12Q1 within a type
of C3S-LC.

In various dataset combinations, water, buildings, and glaciers are identified correctly
on the grid and confusion is low with other LC types. Secondly, wetland, forest, crop, and
bare soil have a medium degree of confusion, and shrub and grass have the poorest purity.

Specifically, the proportion of these LC types remains a huge discrepancy in the pair
of comparison of the multiple LC products. Among them, buildings have the lowest confu-
sion, and a minimal number of pixels are misinterpreted as crop. The purity of the water
and glacier also is also high, and the confusion pixels are mainly identified as wetland. The
degree of crop consistency is between 29% and 72%, and the GlobeLand30/GLC_FCS30
combination has the highest consistency while the C3S-LC/ESA2020 combination has
the lowest consistency. The classification errors mainly arise from the misclassification of
buildings. The range of the degree of consistency in wetland is spread over 10% to 96%,
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and the consistency degrees of the C3S-LC/GlobeLand30, the C3S-LC/ESA2020, and the
GlobeLand30/GLC_FCS30 are greater than 90%. For forest, the combinations in the pair-
wise comparisons of the five LC datasets are more than 50%, and the GLC_FC30/ESA2020
combination has the highest degree of consistency for forest identification, exceeding 81%.
For bare soil, the consistency degree is between 26% and 64%, and the MCD12Q1/C3S-LC
and MCD12Q1/GlobeLand30 combinations have the highest bare soil identification accu-
racies, at 64% and 62%, respectively. For shrub, the C3S-LC/GLC_FCS30 combination has
a high consistency at 77%, and the others have a low degree of consistency.
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Figure 6a exhibits the consistency of the identification of various LC types among
the five LC datasets acquired using the spatial overlay analysis. We found that the five
datasets were highly consistent in the northern and the east-central areas of the TP, while
they showed moderate to low consistency or complete inconsistency in the complex terrain
areas in the western and southern areas. Figure 6b shows the proportion of LC consistency
for different altitudes. It can be seen that the consistency is higher at areas below 1000 m,
with an area proportion of more than 70%. From Figure 1, we can see that the low-altitude
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regions are largely found in the Yarlung Tsangpo River valley area in the southern part of
the TP. This means that the data consistency in this river valley region is high. As altitude
increases, the proportion of completely consistent areas decreases, while the proportion of
low consistency areas gradually increases. In the areas with an altitude of more than 5000 m,
which is mainly in the western areas of the TP, the proportion of moderate consistency
areas is more than 36%, while the proportion of complete consistency areas decreases to
about 30%.
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Figure 6. (a) Distribution of consistency of five LC products on the TP, and (b) percentage of spatial
consistency at different elevations.

Statistically, 43.72% of the total area is completely consistent for the five LC products
on the TP. The chief LCs are grass, bare soil, forest, and water in these areas (Figure 7).
Highly consistent areas accounted for 27.753% of the total area, and the dominant LC types
are grass, bare soil, forest, and water in these areas. The areas with moderate consistency
account for 25.494% of the TP region, and are dominated by bare soil, grass, and buildings.
The low-consistency areas only account for 3.021%, including bare soil, grass, buildings,
and so on. There are scarcely any completely inconsistent of areas in all regions (0.008%),
and those that do exist are mainly attributed to shrub, wetland, and crop (Table 8).

Table 8. The proportion of the degree of consistency in different LC datasets.

LC Type Complete
Inconsistency (%)

Low
Consistency (%)

Moderate
Consistency (%)

High
Consistency (%)

Complete
Consistency (%)

Forest 27.39 12.37 11.43 17.67 31.14
Shrub 96.72 3.26 0.02 0 0
Grass 16.50 15.47 15.09 18.31 34.64
Crop 82.75 8.51 4.37 3.01 1.36

Wetland 87.36 9.04 3.46 0.14 0
Water 17.60 8.80 13.10 14.44 46.06

Buildings 73.74 14.46 5.77 3.72 2.31
Glacier 55.93 12.93 9.36 9.64 12.15

Bare soil 22.45 20.62 20.49 18.25 18.19

We specifically analyzed the spatial distribution of low-to-medium consistency areas
of grass types, shown in in Figure 8. From Figure 8a and Table 8, the low- and medium-
inconsistency regions in the TP account for a larger proportion of grass cover types, reaching
47.06%. Among the three types of regions of complete inconsistency, low consistency, and
medium consistency, the region of complete inconsistency has the largest proportion. Areas
of low to medium consistency are mainly found on the fringes of grass, at the interface with
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other land cover types. This suggests that there is still a large uncertainty in identifying
grass for these five land cover products, particularly in the interface between grass and
other types of LC. Figure 8b shows the land cover types other than grass counted in these
areas of low to medium consistency. It can be seen that in most of the northern and western
areas of the TP, the low to medium consistency of grass is mainly due to the five LC
products identifying bare soil. In the southeastern part of the plateau, it is mainly due to
the identification of forest.
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Furthermore, maps of consistency between each compared LC dataset and the refer-
ence data are shown in Figure 9. Among all map pairs, the ESA2020 dataset agrees best
with the reference dataset in that the spatial consistency takes up about 60.11%, followed
by MCD12Q1 (54.27%), GLC_FCS30 (53.73%), and GlobeLand30 (53.03%) in descending
order of consistency; the C3S-LC shows the poorest agreement with reference dataset at
about 49.32% consistency. Spatially, areas displaying consistency between these datasets
are predominantly observed in the central-northern parts of the TP. From Figure 3, we can
see that the main LC type in this region is continuous bare ground. This indicates that these
LC datasets have a high accuracy in identifying continuous homogeneous bare soil.
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3.4. Consistency Analysis of Spatial Distribution

The accuracy of five LC products was evaluated against reference verification samples
(Geo-Wiki, GLCVSS, GOFC-GOLD, USGS). Table 9 displays the results of the accuracy
assessment. The OA and Kappa for ESA2020 are largest over the total LC datasets, at
60.11% and 0.45, respectively. Followed by the MCD12Q1 (54.29%/0.35), GLC_FCS30
(53.73%/0.38), and GlobeLand30 (53.03%/0.36) with the OA and Kappa coefficients. Among
all LC datasets, C3S-LC had the worst OA and Kappa of 49.32% and 0.31, respectively.

Table 9. The evaluation results for accuracy are based on reference validation.

Classes
MCD12Q1 C3S-LC GlobeLand30 GLC_FCS30 ESA2020

PA (%) UA
(%) PA (%) UA

(%) PA (%) UA
(%) PA (%) UA

(%) PA (%) UA
(%)

Forest 41.27 75.73 73.30 60.61 70.00 60.45 74.74 55.47 71.05 65.22
Shrub 0.00 0.00 0.00 0.00 1.86 11.11 0.00 0.00 0.00 0.00
Grass 88.52 44.12 84.75 40.00 82.19 44.30 86.19 43.86 81.94 48.51
Crop 17.39 100.00 8.70 2.30 52.17 35.29 34.78 20.00 13.04 21.43

Wetland 0.00 / 0.00 0.00 14.29 7.69 0.00 0.00 0.00 0.00
Water 28.57 80.00 57.14 66.67 64.29 50.00 64.29 39.13 71.43 37.04

Buildings 0.00 / 0.00 / 0.00 0.00 0.00 0.00 0.00 0.00
Glacier 59.80 90.15 65.03 87.28 71.57 77.39 77.45 80.07 73.20 88.19

Bare soil 46.58 62.97 28.11 72.65 37.14 66.05 33.82 77.80 56.85 71.17
OA (%) 54.29 49.32 53.03 53.73 60.11
Kappa 0.35 0.31 0.36 0.38 0.45
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Different LC products offer their own strengths within a single category. For the PA,
grass has the highest PA in the individual LC dataset, reaching over 81.94%~88.52%. For
forest, four LC products have a higher PA of 70.00%~74.74%, excepting MCD12Q1. For
glacier, the five LC products each have a PA ranging from 59.80% to 77.45%. For bare soil,
the five LC products each have a lower PA ranging from 28.11% to 56.85%. The PA of the
shrub and the wetland products is lower than 1.86% and 14.29%, respectively. Moreover,
the PA of the buildings is 0% for each LC product.

For each type of accuracy, the MCD12Q1 dataset has the highest UA of 100% for the
crop, while UA is just 2.3%~34.78% for other products. For glacier, the five LC products
each have a higher UA of 77.39%~90.15%. For bare soil, the five LC products each have
a UA ranging from 62.97% to 77.80%. For forest, the UAs of all the products exceed 55%.
Grass has the lower UA in the individual LC dataset, reaching 40.00%~48.51%. The UAs of
the shrub and the wetland products with GlobeLand30 are 11.11% and 7.69%, respectively,
while the UAs of the other four products are 0%. Additionally, the UA of buildings is 0% or
a missing value for each LC product.

4. Discussion

Given that the TP is famous as “the roof of the world”, its land cover reflects the
surface natural environment. The evaluation of remote sensing LC products can offer
invaluable reference for relevant research works. In this article, we conducted a thorough
analysis and evaluation of five accessible LC products.

4.1. Inconsistent Factors and Its Potential Reasons

The TP is a vital ecological safety barrier zone in China and a key region for global bio-
diversity conservation [55,56]. Therefore, the spatial extent, area, and distribution of grass,
bare soil, forest, and water in the TP holds significant strategic importance for enhancing the
stability of the plateau’s ecological security barrier functions. Comparing these results with
a previous study, we agree that the LC types of the TP exhibit a comparable distribution
across various products, and that the forest area is smaller compared to grass and bare
soil [51]. The complete and high consistency of five distinct LC products accounted for
71.48% of the total area proportion. In terms of LC types, water, grass, and forest exhibited
high levels of accuracy. However, significant deviations were observed among the other LC
types. For example, the evaluation indicated that the shrub, wetland, crop, and glacier types
displayed extremely poor consistency (with areas showing complete inconsistency and low
consistency of these LC types accounting for 99.98%, 96.40%, 91.26%, 88.2%, and 68.86%, re-
spectively). This discrepancy may arise from variances in satellite data sources, processing
methods, definition of LC type, and classification schemes [27,32,57,58]. Over the past few
decades, numerous sensors have been mounted on a series of satellites that are designed to
detect and measure different forms of energy and signals emitted from the Earth’s surface.
For example, the Aqua and Terra satellites are equipped with MODIS, while Landsat 4/5
has the Thematic Mapping sensor, Landsat 7 features the Enhanced Thematic Mapper Plus,
and Landsat 8 is equipped with the Operational Land Imager. Additionally, the Sentinel-1
carries the SAR-C, the Sentinel-2 has the MultiSpectral Instrument, and the Ocean and Land
Colour Instrument is installed on the Sentinel-3 [22,45,46]. This wide variety of sensors
encompasses a diverse range of bands and resolutions. In addition, elevation heterogeneity
may influence the consistency of different LC products. For example, some researchers
have indicated that higher elevations pose greater challenges in monitoring and detecting
LC inconsistencies [38,59]. The low-altitude areas are characterized by fairly flat terrain and
homogeneous vegetation, while the high-altitude areas exhibit complex topography with
heterogeneous features at various resolutions, which may result in increased inconsistency
among different LC products.

At the same time, the five LC datasets utilized in this study have different resolu-
tions, projected coordinates, and land classification schemes. For facilitating convenient
interoperability and cross-comparison among the five different products, during the data
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preprocessing process, we used the maximum area aggregation to harmonize data of vari-
ous resolutions to a 500 m resolution. The coordinate systems and projections of all products
were unified. The classification schemes of all products were converted into nine stan-
dardized LC types [51]. Although all of these preprocessing processes are commonly used
when making land cover comparisons [37,60], they may introduce some uncertainty. For
instance, in MCD12Q1, shrub includes closed shrubs. In C3S-LC and GLC_FCS30, shrub is
classified as evergreen shrub or deciduous shrub. In both GlobeLand30 and ESA2020, there
is only a single classification of shrubs but with different definitions. Specifically, shrub
in GlobeLand30 is defined as land covered by shrubs with an excess of 30% shrub cover,
including mountain shrub, deciduous and evergreen shrub, and desert shrub with more
than 10% coverage in desert areas. In contrast, the ESA2020 shrub classification pertains
to geographical regions primarily characterized by the predominant presence of natural
shrubs, with a minimum vegetation cover of 10% [25]. The LC classification schemes
and type definitions on a global scale inevitably influence the application and analysis of
LC products in local areas, particularly the unique plateau area of the TC. Moreover, the
distinction between grass and shrub based on vegetation canopy thresholds could directly
impact their classification, and bare soil, shrub, and various other forms of LC types exhibit
a high degree of similarity [26]. Therefore, it is necessary to minimize the ambiguities
and uncertainties in each LC type, specifically regarding the vegetation coverage and the
threshold of vegetation canopy of forest, grass, and shrub.

4.2. Uncertainties of the Different Reference Validation Samples

A reliable and accessible validation database serves as the fundamental basis for
comparing the accuracies of different LC products during a validation process. Furthermore,
it is imperative to acknowledge that the assessment accuracy results are significantly
influenced by both the reliability and number of reference verification samples [61]. The
utilization of Geo-Wiki, GLCVSS, GOFC-GOLD, and USGS verification samples in this
study was constrained by sample point number, and potential uncertainties associated
with the samples themselves were not considered, resulting in certain inaccuracies in the
evaluation results. Firstly, these samples used in this study have different classification
schemes (as shown in Table 3); for example, the different verification reference datasets
encompass 10, 24, 11, and 7 distinct land cover types, respectively. After the reclassification
processing of these four global validation sample datasets for the study area, the various
LC types were reclassified into nine types in accordance with the five unified LC products.
Secondly, the samples from various reference datasets were collected in different years and
with varying field sizes. For instance, the reference competitions of the Geo-Wiki platform
were sampled in 2012, the dataset of GLCVSS was sampled in 2015, the GOFC-GOLD
reference data portal was last updated in 2015, and a circa 2010 USGS reference dataset was
released in 2022. A time mismatch between the land cover products and these reference
datasets may affect the results of the evaluation. For example, for land cover types that are
sensitive to climate change and human activities, such as glacier, crop and buildings, time
mismatches can introduce uncertainty into the evaluation results. Considering that there is
little human activity on the TP and that the land cover changes relatively slowly, we believe
that the time mismatch has a limited impact on the evaluation results. Therefore, these
reference data are reliable until new data become available. Furthermore, the integration of
four reference datasets comprises a total of 2599 samples within the study area. Although
this sample size may be adequate for accuracy assessment on a regional scale, it might
prove insufficient for inevitable LC types. According to the statistics, the number of samples
collected from grass and bare soil were 775 and 964, respectively. However, there was a
significantly lower counts of samples for crop, wetland, and water, with only 23, 8, and
15 samples, respectively. It is worth mentioning that the validation points varied across
diverse land cover types. Therefore, recognition of the value of renewing and increasing
sample data should be emphasized. We strongly recommend using an adequate number
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of samples to validate the accurateness of individual LC types. Additionally, the use of
integrated validation samples in this study may be subject to interpretation bias [49].

Overall, the details of the four reference sample datasets are substantially different,
leading to uncertainties in the accuracy evaluation. To establish a precise and standardized
reference database for the TP at a regional scale, more comprehensive and diverse samples
need to be updated. In particular, it is crucial to establish more robust samples pertaining to
wetland, crop, and buildings. In addition, reference points should be added for inconsistent
areas in grassland, which can supply a reliable foundation for the protection of alpine
grassland ecosystems.

4.3. Recommendations for Users and Suggestions for Future LC Mapping

From the results, we found that the OA of all LC products was less than 61%. More-
over, the PA and UA values were obtained from the confusion matrices and computed
by comparison with reference samples. The accuracy of individual classes in the five
LC products was summarized based on the validation results for individual classes, and
recommendations were provided for the utilization of each individual class. Our validation
criteria require 50% of both UA and PA for a single category. Forest, grass, water, glacier,
and bare soil in the five LC products met our validation standards. Table 10 gives recom-
mendations for the best data products that can be selected when studying different land
use types on the TP. For instance, when studying types such as forest, crop, water, and
glacier, we recommend choosing the MCD12Q1. When studying grass, we recommend
EAS2020. In addition, GLC_FCS30 is excellent at delineating bare soil.

Table 10. Recommendations for the best data products that can be selected for different land use
types on the TP.

Classes The Optimal Dataset The Second Optimal Dataset

Forest MCD12Q1 ESA2020
Shrub GlobeLand30 /
Grass ESA2020 GlobeLand30
Crop MCD12Q1 GlobeLand30

Wetland GlobeLand30 /
Water MCD12Q1 C3S-LC

Buildings / /
Glacier MCD12Q1 ESA2020

Bare soil GLC_FCS30 C3S-LC

The five different LC datasets are all derived from global-scale sources, and their
application in a regional area is inevitably influenced by these global LC products when
applied to the study area. The accuracies for the LC types of five LC products covering
the TP were relatively low, especially for shrub, wetland, and buildings. Hence, certain
improvements are required, including the following: (1) The extensive areas of grass, bare
soil, and forest can be easily distinguished, while the overlapping distributions of wetland
and shrub raise the level of complexity in remote sensing and monitoring. Therefore, it
is crucial to explicitly specify factors such as vegetation coverage and tree height in the
uncertainty arising from the classification when establishing a classification system for
extracting shrub and wetland areas. (2) Classification of buildings is a great challenge due
to the limited dimensions of patches, the high aggregation, and high internal heterogeneity.
Prior research has demonstrated the efficacy of utilizing night-time light data for the
efficient identification and extraction of areas designated for construction purposes [62]. In
future, night-time light data could thus be integrated into the development of universally
applicable LC products.
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5. Conclusions

To offer a reliable guide for LC data selection for ecological and climate change studies
at the TP, the performance and consistency of five LC products from satellite remote sensing
datasets, including MCD12Q1, C3S-LC, GlobeLand30, GLC_FCS30, and ESA2020 at a 500 m
spatial resolution, were assessed through areal comparison, error matrix evaluation, and
spatial confusion methods. The key conclusions are the following:

These multiple sets of LC products are largely consistent with the land cover type
composition and spatial patterns in the TP, while some discrepancies exist in the details.
The composition of each LC product is mainly grass, followed by bare soil, forest, and
others. For areal consistency, the correlation coefficients between most of the different
LC datasets are above 0.9, except for the coefficients between C3S-LC/GLC_FCS30 and
ESA2020 (0.831/0.896).

Regarding the level of confusion in LC types over the different LC datasets, water,
buildings, and glaciers have a low confusion with other LC types. Consistency analysis
of the five LC products demonstrates the percentage of areas with complete and high
consistency to be 43.724% and 27.753%, respectively, and these areas are primarily in
regions characterized by limited surface heterogeneity and a greater prevalence of uniform
land cover categories.

Based on aggregated reference verification samples (Geo-Wiki, GLCVSS, GOFC-GOLD,
and USGS), the OA of ESA2020 is the highest over the total LC datasets, at 60.11%, followed
by MCD12Q1 (54.29%), GLC_FCS30 (53.73%), and GlobeLand30 (53.03%), and the OA of
C3S-LC is the lowest (49.32%). Based on the UA levels, we suggest using EAS2020 for grass
studies, GLC_FC30 for bare soil studies, GlobeLand30 for wetland and shrub studies, and
MCD12Q1 for other LC types.

Overall, the five land cover products are generally accurate in areas of continuous ho-
mogeneous land cover on the plateau, particularly in the largest grassland areas. However,
their accuracy is lower in the transition areas, and additional reference points are needed to
improve the accuracy in these areas. In addition, some studies have proven the impacts of
topography on LC classification [63,64]. Under the combined effect of nature and human
activities, LC types show a topographic gradient effect. Therefore, in future studies, LC
types can be manually categorized according to topography as a means of generating more
accurate land use data.
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