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Abstract: The central region of the Eurasian continent is widely affected by arid conditions, but the
valleys in front of the mountains nurture ecosystems consisting of forests, shrubs, and grasslands.
Preserving the ecological balance in these arid valley areas is an essential aspect of water resource
planning and management. This study utilizes calculations of vegetation’s ecological water con-
sumption and water requirements to quantitatively simulate groundwater levels. These simulated
levels are then compared with the threshold depth suitable for vegetation, ultimately leading to the
development of an ecological security assessment method for valley areas. The results show the
following: (1) During 30 years, the water demand of river valley vegetation increased slowly, and
the overall stability is about 4.82 × 108 m3. Among them, the ecological water demand of grassland
is the largest. The water demand from June to August is about 68% of the whole year. (2) The
results indicate that over a period of 30 years, the groundwater levels in the valley area have shown
a gradual decline. The rate of decline in groundwater levels is approximately twice as fast in areas
farther away from the river compared to areas closer to the river. The decline in groundwater levels
typically begins in May each year. During the period of valley flooding in June, there is a temporary
rise in water levels, followed by a continued decline afterwards. (3) The study area has a significant
proportion of groundwater suitable areas, accounting for approximately 65% on average annually.
Over the course of 30 years, the area experiencing groundwater deficiency has increased from 31% to
37%. (4) Over the past 30 years, the ratio of annual vegetation water consumption to water demand in
the river valley has been slowly decreasing, and the vegetation growth status has changed from good
growth to normal growth. (5) In the past 30 years, the area of ecological quality areas has decreased
significantly, and most of them have been transformed into general areas. The area of ecologically
fragile areas is increasing, and the area of fencing protected areas is slowly declining.

Keywords: northwest arid region; mountain front river valleys; vegetation ecological water demand;
ecological security; numerical simulation of groundwater

1. Introduction

As an essential resource for plant and animal growth and human survival, water brings
immense wealth to society, but it also brings problems [1]. Over the past half a century,
the problem of water scarcity has become increasingly acute, limiting the development of
industry and agriculture. This poses an additional challenge to already water-stressed arid
regions [2]. Arid and semiarid regions are widely distributed, concentrated mainly in the
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arid belt of Asia and Africa. These regions account for about 45% of the world’s land area [3].
Northwest China is a region characterized by concentrated and contiguous arid areas. It is
also a typical arid region in the central part of the Eurasian continent. The average annual
rainfall in this region is about 200–250 mm. However, there is a gradual upward trend
in temperature. In some areas, the annual potential evapotranspiration can reach nearly
1000 mm [4,5]. As a result, the river valleys along the mountain front, characterized by
relatively moist and fertile soils, have become suitable places for the growth of plants and
animals [6]. With economic and social development and population growth, the problem of
water scarcity in arid river valleys has become increasingly important. This has led to the
degradation of vegetation and desertification, exacerbating the ecological water demand of
vegetation, which is not adequately met. It has disrupted the stability of the ecosystems
in the river valleys in the foothills, which poses a threat to the ecological security of these
foothill valleys. Solving the imbalance between water supply and demand has become the
greatest challenge in this region [7,8].

In water-scarce arid regions, it is particularly important to implement effective man-
agement measures for limited water resources. The ecological water demand of vegetation
in arid river valleys serves as a crucial basis for water resource management [9]. In arid
regions where precipitation is scarce, it is often insufficient to meet the water needs of
vegetation. As a result, vegetation growth is heavily dependent on groundwater recharge
in the watershed [10]. In recent years, research on groundwater has become increasingly
mature, with researchers focusing primarily on issues such as groundwater overexploita-
tion [11,12], groundwater pollution [13,14], the effects of climate change, and the influence
of water engineering projects [15,16]. Research methods have also evolved from qualitative
to quantitative and now to modeling for numerical simulation of groundwater. Nowa-
days, there are many models on groundwater numerical simulation; the common methods
are boundary element method, finite difference method, finite element method, and so
on. Although the boundary element method and finite difference method are flexible in
structural design, the discrete method is too simple to satisfy the complex groundwater
simulation [17]. The finite element method can automatically generate mesh grids based
on various boundary conditions. The accuracy of the model mesh allows for faster compu-
tational speed and simulation of complex, transient groundwater flow, thereby improving
the accuracy of the simulations. In addition, the powerful GIS data interface and sophis-
ticated graphical post-processing capabilities provide great convenience in analysis and
interpretation [18–20].

The study area is located in the arid region of northwestern China. As an important
water resource in the arid region, it has nurtured vast mountain front river valleys that
make significant contributions to local production, livelihoods, and ecology [21,22]. As
the frontline of the implementation of the Belt and Road Initiative, in recent years, the
social and economic development has been rapid, but the increasing demand for water
resources has led to the continuous decline of the groundwater level, which has brought
water ecological security problems to the valley oases [23]. This has caught the attention of
government officials, who have taken steps to manage water resources in time and space.
They have constructed a series of water engineering projects, while experts and scholars
have conducted extensive research using various methods. Therefore, the study of the
mountain front river valley region of this river has great research significance due to its
typical nature in addressing these challenges. We collected meteorological, hydrological,
vegetation and soil data in the study area. Using formulas such as Penman–Monteith and
Averyanov, as well as numerical groundwater models, we conducted an analysis of the
study area. The objectives are as follows: (1) Calculate the ecological water demand and
consumption of different vegetation types in the study area; (2) determine the appropriate
ecological water table depth in the study area; (3) validate and simulate the impact of
engineering projects on groundwater levels; (4) propose scientifically sound measures
based on the current status of ecological security in the study area.
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2. Materials and Methods
2.1. Study Area

The research area is located in the middle and lower reaches of a river in the arid
region of northwest China. The main stream of the river converges with a tributary at this
point, and a significant amount of water resources form wetlands in the low-lying areas in
the western part of the research area. The annual precipitation in this area is low, about
225 mm, making it a typical temperate continental arid climate [24]. The study area receives
relatively abundant water resources from glacial meltwater and groundwater recharge.
Surface soils in the area are predominantly loess and sandy loam (Figure 1).
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Figure 1. Hydrological overview of the study area.

The terrain within the river valley is relatively flat, with an elevation of about
470–570 m. Vegetation is relatively abundant but unevenly distributed. The forested
areas are composed of deciduous trees and understory shrubs, mainly including poplar,
birch, willow shrubs, and wild hawthorn, among others. The grasslands consist mainly
of reeds, bitter vetch, and Artemisia species vegetation. There are extensive agricultural
fields near the villages and towns, with corn being the predominant crop in the cultivated
areas [25].

2.2. Research Methods
2.2.1. Crop Evapotranspiration Determination

We calculate crop evapotranspiration using the Penman–Monteith equation recom-
mended by FAO [26]:

ET0 =
0.408∆(Rn −G) + γ 900

T+273 U2(es − ea)

∆ + γ(1 + 0.34U2)
(1)

In Formula (1): ET0 is potential evapotranspiration (mm), Rn is the net radiation of
crop surface (MJ·m−2·d−1), G is the soil heat flux (MJ·m−2·d−1), es − ea are saturated vapor
pressure and actual vapor pressure, respectively (kpa), ∆ is the slope of the saturation
water vapor pressure curve, T is the average daily temperature (◦C), γ is the hygroscopic
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constant, γ = 0.066 kpa/◦C, U2 is the wind speed at a height of 2 m (m·s−1), and the specific
calculation formula of Rn is as follows:

Rn = Rns − Rnl (2)

∆ =
4098

[
0.6108exp

(
17.27T

T+237.3

)]
(T + 237.3)2 (3)

In Equation (2): Rns is net shortwave radiation (MJ·m−2·d−1), determined by solar
radiation and the number of hours of oral irradiation. Rnl is net longwave radiation
(MJ·m−2·d−1), and it is determined by a combination of the number of hours of oral
illumination, the maximum temperature at the mouth, the minimum temperature at the
mouth, the altitude, and the actual water vapor pressure. Soil heat flux G has a small
value at the mouth-by-mouth scale and is neglected to be 0. The calculation formula at the
monthly scale is as follows:

G = 0.07(Ti − Ti−1) (4)

In Equation (4): Ti is the average temperature of month i, and Ti−1 is the average
temperature of month i − 1.

γ = 0.00163
pa
β

(5)

es =
e(T max) + e(Tmin)

2
(6)

e(T max) = 0.6108× exp
(

17.27Tmax

Tmax + 237.3

)
(7)

ea = es
RHmean

100
(8)

u2 = us
4.87

ln(67.8s− 5.42)
(9)

In the formula above: pa is the atmospheric pressure (kPa), β is the latent heat of
vaporization (MJ·kg−1), Tmax is the average monthly maximum temperature (◦C), Tmin is
the average monthly minimum temperature (◦C), RHmean is the monthly average relative
humidity (%), and us is the wind speed at a height of sm (m·s−1).

2.2.2. Ecological Water Requirement Calculation of Vegetation

The EWD of vegetation in the study area was calculated using the Penman–Monteith
formula recommended by the Food and Agriculture Organization of the United Nations
(FAO). This method is a crop development rate assuming ideal soil fertility, moisture, and
other conditions [27]. The equation for calculating the evapotranspiration of various types
of vegetation is

ET = K× ET0 (10)

In Equation (10): ET is vegetation evapotranspiration (mm), K is the crop coefficient,
and ET0 is crop evapotranspiration.

W = ∑i ET×Ai (11)

In Equation (11): W is the ecological water requirement of vegetation (m3) and Ai is
the area of vegetation (m2).
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2.2.3. Determination of Vegetation Ecological Suitable Water Level Threshold

We choose the diving evaporation model applicable to arid zone conditions, which
reflects the relationship between vegetation cover and groundwater burial depth [9]. The
calculation formula is

Hr = Hmax

[
1− b

√
(Er − Pe)/(E0 × a)

]
(12)

Pe = c× P (13)

In Equation (13): Hr is the appropriate ecological water level, Hmax is the buried
depth of groundwater, Pe is effective precipitation, P is precipitation, c is rainfall infiltration
coefficient, a is the vegetation cover coefficient, taken as 1.174, b is the soil coefficient, taken
as 3.63, and E0 is the average evaporation per unit time.

2.2.4. Groundwater Numerical Simulation

We simulate the study area using a finite cell grid, and the model can be described by
the differential equation [28]:

∂
∂x

(
Kx

∂h
∂x

)
+ ∂

∂y

(
Ky

∂h
∂y

)
+ ∂

∂z
+ ε = µ

∂h
∂t

x, y ∈ Ω

Kx

(
∂h
∂x

)2
+ Ky

(
∂h
∂y

)2
+ p = µ

∂h
∂t

x, y ∈ Ω
h(x, y) |Γ 1 = h1(x, y) x, y ∈ Γ1

Kx
∂h
∂∼

n

∣∣∣∣Γ2 = q(x, y) x, y ∈ Γ2

(14)

In Equation (14): Ω is the seepage area, h is the aquifer water level (m), K is the
permeability coefficient (m/d), Kn is the boundary surface vertical permeability coefficient
(m/d), µ is the gravity feed degree of the submerged aquifer,ε is the source sink term of
aquifer (1/d), p is diving evaporation and rainfall (1/d), Γ1 is the seepage zone water level
boundary, Γ2 is the seepage zone flow boundary,

∼
n is the vertical direction of the boundary

surface, q(x, y, z) is the single wide flow on the class II boundary (m2/dm), the inflow is
positive, the outflow is negative, and the impermeability boundary is zero.

2.2.5. Ecological Water Consumption Calculation of Vegetation

Vegetation water consumption refers to the actual water consumption of vegetation,
which mainly includes groundwater diving evaporation and soil water storage of precipi-
tation. We calculated the diving evaporation and ecological water consumption intensity
according to Avyanov’s diving evaporation model.

Wh = ∑i ETh×Ai (15)

ETh = Pe + Eg (16)

Eg = a(1−H/Hmax)
b × E0 (17)

In the formula above: ETh is the ecological water consumption quota of vegetation,
Eg is the groundwater diving evaporation intensity, and E0 is the evaporation intensity of
the water surface, expressed by the evaporation amount of E601 evaporator.

2.3. Data Source

According to the study, we collected and organized meteorological, hydrogeological,
and elevation data, combined with remote sensing and field survey data for
analysis (Figure 2). Precipitation temperature and other weather data were obtained from
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https://data.cma.cn/data/detail/dataCode/B.0011.0001C.html, accessed on 21 March
2023. Elevation data from https://www.resdc.cn/data.aspx?DATAID=217, accessed on
24 March 2023. Remote sensing data from https://earthexplorer.usgs.gov/, accessed on
21 February 2023. Soil data from https://www.resdc.cn/data.aspx?DATAID=260, accessed
on 27 February 2023. Drill hole data from https://zk.cgsi.cn/, accessed on 11 April 2023.
Water resource data from http://slt.xinjiang.gov.cn/slt/szygb/list.shtml, accessed on
19 January 2023. And other data come from past scientific surveys and previous studies.
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3. Results
3.1. Vegetation Coefficient and Vegetation Distribution

The study area is located in a typical arid region of China, where precipitation is
scarce but evapotranspiration is high, about six times the amount of precipitation. Between
1990 and 2020, precipitation showed a trend of dynamic equilibrium, and the potential
evapotranspiration showed a trend of slow increase, especially after 1995. This also affects
the changes in the ecological water demand of vegetation (Figure 3).

The vegetation coefficient is the ratio between the potential water demand of the
vegetation and the potential evapotranspiration. It can vary depending on the type of
vegetation, different growth stages of the same vegetation, and the month of the year.
The vegetation growth cycle can be divided into four stages: initial, development, mid-
season, and late season. For the month selection, we can focus on the main growing period
of vegetation in arid regions, which typically spans from April to October. Due to the
sparse vegetation in arid regions, the vegetation coefficient is primarily influenced by
leaf area index (LAI) and coverage [29,30]. Based on the recommendations of FAO, we
determined the vegetation coefficients for different vegetation types and different months
in the research area (Table 1).

https://data.cma.cn/data/detail/dataCode/B.0011.0001C.html
https://www.resdc.cn/data.aspx?DATAID=217
https://earthexplorer.usgs.gov/
https://www.resdc.cn/data.aspx?DATAID=260
https://zk.cgsi.cn/
http://slt.xinjiang.gov.cn/slt/szygb/list.shtml
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Figure 3. April-October precipitation and potential evapotranspiration in the study area. A is
precipitation and B is potential evapotranspiration.

Table 1. Different monthly coefficients of various vegetation types.

Month Forest Land BrushlandGrassland Desert
Grassland Farmland Flood Land

4 0.5 0.3 0.4 0.1 0.4 0.2
5 0.7 0.4 0.6 0.2 0.6 0.3
6 0.9 0.5 0.8 0.25 0.8 0.35
7 1.1 0.6 0.9 0.3 0.9 0.4
8 0.8 0.5 0.8 0.25 0.8 0.35
9 0.6 0.4 0.6 0.2 0.6 0.3

10 0.5 0.3 0.4 0.1 0.4 0.2

In the study area, the vegetation is mainly distributed along the river banks and
consists mainly of forests and grasslands, with a mixture of forested areas and grassland
patches. The forests are composed of deciduous trees and understory shrubs, including
poplar, birch, willow shrubs, and wild hawthorn, among others. The grasslands consist
mainly of reeds, bitter vetch, and Artemisia species vegetation. In the cultivated areas, corn
is the predominant crop.

We used an object-oriented remote sensing classification method to interpret the
Landsat TM remote sensing data in the study area. The Normalized Difference Vegetation
Index (NDVI) and Mahalanobis distance methods were used to detect and classify different
vegetation patches within the study area [31]; land use in the study area was classified
into six categories: woodland, shrubland, grassland, desert grassland, cultivated land, and
riparian land (Figure 4). The vegetation in the area is mainly composed of grasslands,
which occupy about half of the total study area. Most of the grasslands are distributed in
the wetlands downstream of the river valley, while the rest are found around the forested
areas [32]. The second largest land cover category is shrubland, followed by cropland.
Cultivated land is primarily distributed in the upstream areas of the study area, where
human development occurred earlier. Scrubland is also distributed in the central part of
the research area, acting as a transitional zone between forests and grasslands. Forested
land occupies only 11.36% of the total research area, with the majority distributed along
the banks of the river.
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Figure 4. Vegetation distribution in the study area.

In the last 30 years, the forest area in the river valley area has increased, mainly
concentrated in the period from 1995 to 2005, but the rate of increase is slow, and the new
area accounts for only about 4% of the total forest area. Shrubland has also experienced
slow growth, primarily concentrated between 1995 and 2000, with an additional area of
approximately 7.29× 107 m2. The area of grassland and desert grassland decreased, mainly
to cropland and other land. The area of beach land increased slightly, but remained stable
overall. Cultivated land increased more, accounting for about 13% of the total cultivated
land, mainly concentrated in the period from 1990 to 2005 (Figure 5).
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3.2. Ecological Water Requirement Analysis of Vegetation

According to the above vegetation ecological water demand formula, we calculate
the water demand quota of all kinds of vegetation in the study area from 1990 to 2020,
five years by five years. The results show that among all types of vegetation, the water
demand rate of forest land is the largest, followed by grassland and cultivated land, and the
ecological water demand rate of desert grassland and river beach land is smaller (Table 2).
During the period from April to October, the ecological water demand quota in July is the
largest, followed by June and August, and the smallest is in October.

Table 2. The average monthly water requirement quota of all kinds of vegetation for many
years (mm).

Annual
Average Forest Land BrushlandGrassland Desert

Grassland Farmland Flood
Land

4 42.89 26.12 33.65 8.21 34.56 17.49
5 92.45 53.54 77.65 25.24 79.57 40.27
6 145.77 81.92 126.88 38.66 130.05 57.68
7 154.31 85.40 123.69 39.87 126.43 56.49
8 92.93 58.92 90.99 27.47 93.078 40.88
9 44.52 30.08 43.63 14.13 44.71 22.55

10 18.80 11.44 14.75 3.61 15.13 7.58

In the last 30 years, the ecological water demand of all types of vegetation in the valley
area has changed little and appears to be relatively stable overall, influenced mainly by
potential evapotranspiration [33,34]. The areas with high ecological water demand quota
are mainly concentrated in the upstream and downstream wetlands of the study area,
as well as the areas through which rivers flow. The areas with low water demand ratio
are mainly concentrated in desert grassland and desert shrubland in the middle of the
study area, and the change of water demand ratio is mainly cultivated land and grassland
(Figure 6).

According to the above vegetation area and crop ecological water demand quota, the
ecological water demand of the study area from April to October in the past 30 years was
calculated. The results showed that the water requirement of vegetation in the valley did
not change much, and it slowly increased after 1995, and the overall stability was about
4.82 × 108 m3. The water demand in the lower reaches of the wetland and the upper
reaches of the grassland in the study area is more concentrated, and the ecological water
demand in the middle reaches is less. In 2000, the water demand of the downstream
wetland remained stable after the change, and the water demand in the middle reaches
changed the most. Among the different vegetation types, grassland ecosystems have
the highest water demand, accounting for about half of the total water demand. This is
followed by croplands and forests, while desert grasslands and riparian zones have the
lowest water demand. Over the past 30 years, forested areas, shrublands, and cultivated
land have shown a fluctuating upward trend in water demand, while grasslands, desert
grasslands, and riparian zones have exhibited a declining trend. Among them, grasslands
and cultivated land have experienced the most significant changes (Figure 7). The highest
ecological water demand occurs in July each year, while the lowest water demand is
observed in April and October.

3.3. Vegetation Suitable Buried Depth Threshold

The appropriate ecological burial depth refers to the ideal groundwater level at which
various types of vegetation can meet their growth requirements. It is influenced by multiple
factors. We determine the suitable underground water depth for each type of vegeta-
tion based on the ratio between actual water demand and potential evapotranspiration.
According to previous research, vegetation can maintain normal growth when its water
consumption reaches 70% of the water demand [35].
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Before calculating the ecological burial depth, it is necessary to obtain the monthly
effective precipitation over the past 30 years in the study area based on precipitation data.
In arid regions, effective precipitation is particularly important. Generally, it is considered
that when rainfall exceeds 50 mm, the precipitation coefficient is set to 0.8. For rainfall
between 5–50 mm, the precipitation coefficient is set to 1. When rainfall is less than 5 mm,
the precipitation coefficient is set to 0 [36]. We use the Averyanov evapotranspiration model
to inversely determine the appropriate ecological burial depth for vegetation. According to
previous research, in vegetated areas, the maximum groundwater burial depth is generally
between 3.5–6 m. Let us assume a maximum burial depth of 6 m. For the Averyanov model,
we can use a value of 1.174 for parameter a and 3.63 for parameter b [9,37]. To estimate
the water surface evaporation intensity, we can use the annual evaporation measured in
millimeters from the 20 cm evaporation pan at the hydrological station. Let us consider the
average evaporation value over a period of 30 years (Table 3).
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Table 3. Average evaporation for many years (mm).

Month 4 5 6 7 8 9 10

Evaporation
capacity 99.64 156.61 159.82 154.21 139.08 112 59.17

The results indicate that forested areas have the smallest threshold for suitable burial
depth among various types of vegetation in the study area, with an average annual burial
depth of 2.06 m. Grasslands and cultivated land come next, with a relatively small difference
between them. Desert grassland has the largest suitable burial depth, with an average
annual depth of around 3.9 m (Figure 8). Over the course of a year, the suitable ecological
burial depth is smaller in June and July, while it is larger in April and October. The main
reason for this is the higher temperatures and greater evaporation during June and July,
coupled with scarce precipitation in arid regions. Vegetation requires more water from the
groundwater to support its growth during these months. Therefore, the ideal underground
water level should be relatively shallow during this period to ensure sufficient water
availability for the plants.

3.4. Groundwater Numerical Simulation

Based on the geological conditions and hydrological data of the study area, as well as
considering meteorological factors, elevation, and corresponding parameters, we conducted
groundwater simulation. The study area was divided into 7.83 × 105 triangular mesh grids
using a three-dimensional approach. The density of grid cells was increased by 15 times
near river areas to capture the dynamics of water flow more accurately. This process
resulted in the construction of a comprehensive three-dimensional numerical model for
groundwater in the study area (Figure 9). We designated the period from January 2014 to
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January 2015 as the validation period for the model. During this time, we imported data
from nine groundwater monitoring wells within the study area. To assess the accuracy of
the model, a tolerance of 2 m was set for comparing the simulated water levels with the
observed values from these wells. The results indicate that the water levels in eight out
of the nine monitoring wells are within the defined error range, while one well is slightly
beyond the tolerance. The current model is well fitted and can predict the impact of the
construction of water projects in the upstream area on groundwater changes.
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Based on the successful model validation during the verification period, we can
proceed to simulate the groundwater levels and their changes according to the water
resource planning for the study area. By using the model, we obtained the simulated
groundwater level conditions within the study area from 1990 to 2020, providing insight
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into the groundwater dynamics over this timeframe (Figure 10. The research indicates that
over the past 30 years, the groundwater levels in the river valley area have shown a slow
declining trend, with a cumulative decrease of approximately 27 cm. From 1990 to 2000,
the groundwater levels remained relatively stable overall and showed a slight increasing
trend. However, after the construction of water conservancy projects such as dams and
regional water transfers in the upstream area in 2000, the groundwater level in the study
area declined more significantly, with an average annual decline of 1.3 cm. Among these
trends, the influence of rivers on groundwater recharge is evident. Areas near the river
experience a slower decline in groundwater levels compared to areas farther from the river.
The rate of groundwater level decline in areas away from the river is about twice that of
areas near the river. From January to April, the groundwater levels remain relatively stable.
However, starting from May, a decline in groundwater levels becomes noticeable. During
the inundation and irrigation of the river valley in June, artificial flooding was created
using hydraulic works and the water level appeared to rise. However, as temperatures
increase and evaporation rates rise, the groundwater levels continue to decline, exhibiting
an overall fluctuating downward trend.
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According to the groundwater level from 1990 to 2020, combined with the DEM data
of the study area, the groundwater depth in the study area was obtained (Figure 11). The
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results show that the groundwater level in the study area has been slowly decreasing and
the depth of groundwater is becoming deeper and deeper since 30 years due to the local
hydraulic projects. This trend is particularly evident in the central and upstream areas of
the river valley, which are farther away from the river. In contrast, the downstream wetland
areas have the shallowest groundwater depths. The changes in groundwater depth are
mainly concentrated in the middle section of the river valley. In two-thirds of the study area,
there is an increase in groundwater depth, but the magnitude of the increase is relatively
small. This increase is primarily concentrated in the middle section of the river valley and
some upstream areas, with the majority of increases being less than 0.5 m. However, the
downstream areas of the river valley experience a decrease in groundwater depth, with the
decline ranging from 0 to 0.6 m.

Land 2023, 10, x FOR PEER REVIEW 15 of 26 
 

land areas have the shallowest groundwater depths. The changes in groundwater depth 

are mainly concentrated in the middle section of the river valley. In two-thirds of the 

study area, there is an increase in groundwater depth, but the magnitude of the increase 

is relatively small. This increase is primarily concentrated in the middle section of the 

river valley and some upstream areas, with the majority of increases being less than 0.5 

m. However, the downstream areas of the river valley experience a decrease in ground-

water depth, with the decline ranging from 0 to 0.6 m. 

 

Figure 11. Groundwater depth in the study area (m). 

3.5. Ecological Water Consumption Analysis of Vegetation 

Based on the Averyanov groundwater evaporation model, combined with the results 

of groundwater depth, we calculated the groundwater evaporation and ecological water 

consumption quota of the study area from 1990 to 2020 (Figure 12). According to previ-

ous studies and empirical parameters, the limit burial depth of the study area is 6 m, and 

the coefficients a and b are 1.174 and 3.63, respectively [38,39]. The results indicate that 

Figure 11. Groundwater depth in the study area (m).

3.5. Ecological Water Consumption Analysis of Vegetation

Based on the Averyanov groundwater evaporation model, combined with the results
of groundwater depth, we calculated the groundwater evaporation and ecological water
consumption quota of the study area from 1990 to 2020 (Figure 12). According to previous
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studies and empirical parameters, the limit burial depth of the study area is 6 m, and the
coefficients a and b are 1.174 and 3.63, respectively [38,39]. The results indicate that forested
areas and riparian zones in the study area have the highest annual water consumption
quotas, followed by grasslands and cultivated land. Shrublands and desert grasslands have
relatively smaller water consumption quotas. The vegetation consumes the most water in
June, followed by July and May, and the vegetation consumes the least water in October.
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Among the vegetation in the study area, the ecological water consumption of grassland
is the largest, followed by that of forest land and shrubland, and the water consumption of
desert grassland is the smallest. The interannual variation of ecological water consumption
is consistent with the ecological water consumption quota. The higher water consumption
is mainly concentrated in the wetland in the lower reaches of the valley and the cultivated
land and grassland in the upper reaches. The decline in groundwater levels over the past
30 years has also led to an overall slow downward trend in ecological water consumption
by vegetation in the study area, reaching a minimum in 2010 (Figure 13). The water
consumption in the downstream region remained relatively stable with minimal changes,
while the central region experienced more pronounced variations in water consumption.
In the river valley area, except for grasslands, all other types of vegetation showed a
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declining trend in ecological water consumption, with shrublands and desert grasslands
showing particularly significant decreases. Forested areas experienced a slower decline,
while grasslands exhibited dynamic fluctuations in water consumption.
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3.6. Analysis of Ecological Conditions
3.6.1. Analysis of Groundwater Condition

Groundwater is the main source of water for vegetation growth in arid areas. Ac-
cording to the measured and predicted groundwater level, combined with the suitable
groundwater level depth of vegetation, we obtained the groundwater status data from
1990 to 2020 (Figure 14). Combined with previous studies to establish groundwater evalua-
tion levels, the groundwater condition of the study area was divided into six levels, and
groundwater ecological safety analysis was conducted for the study area (Table 4).

The results show that the area of groundwater suitable area in the study area accounts
for a large proportion, with an average annual proportion of about 65%, of which the
area of medium suitable area is the largest, with an average annual proportion of about
35%. The second is low suitable and low deficit areas, with an average annual proportion
of 21% and 12%, respectively. The areas with high and medium ecological suitability of
groundwater are mainly distributed on both sides of the river and the wetlands in the west
of the valley. In these areas, the groundwater level is close to the surface elevation. The
areas with low suitability are mainly concentrated near the waters. The deficit areas are
primarily distributed in the central and northern highlands of the study area, with the
highest deficit areas located in the northern region. In these areas, the elevation is relatively
higher, and there is exposure of bedrock, resulting in deeper groundwater depths.

Over the past 30 years, groundwater conditions in the river valley area have grad-
ually deteriorated. From 1990 to 2000, there were relatively small changes in the overall
groundwater condition. However, since 2000, there have been more significant fluctuations
in groundwater condition. From an overall perspective, the area of groundwater deficit
has increased from 31% to 37%, while the corresponding suitable areas have decreased
(Figure 15). From the perspective of different suitability levels, all categories of suitable ar-
eas have experienced varying degrees of reduction, with low suitability and high suitability
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areas experiencing the most significant declines. However, there has also been an increase
in deficit areas at each level, with the highest deficit areas showing the largest increase in
terms of area.
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3.6.2. Analysis of Vegetation Growth Status

The growth status of vegetation is the most intuitive indicator of ecological security.
Water resources severely limit vegetation growth in arid areas, and changes in ground-
water also affect the water use of different types of vegetation. According to the actual
situation of the study area, combined with previous studies, we use the ratio of vegeta-
tion ecological water consumption and ecological water demand to evaluate the growth of
vegetation (Table 5) [40]. The vegetation growth status was divided into five grades, and the
distribution of vegetation growth status in the study area from 1990 to 2020 was obtained
(Figure 16).

Table 5. Vegetation growth status grade.

Grade Water Consumption to Water
Demand Ratio (%) Ecological Significance

Worst <60 Survival constrained
Bad 60–70 Growth is curbed

Normal 70–80 Maintain normal growth
Better 80–90 Growth conditions are good
Best 90–100 The best condition for growth

The results indicate that the total annual vegetation consumption to demand ratio in
the study area has gradually decreased from 80% in 1990 to 74% in 2020. The vegetation
growth status has shifted from good to maintaining normal growth, with the largest decline
observed between 2005 and 2010. Among the different vegetation types, the growth
condition of tidelands and grasslands is relatively good and stable. Shrubland and desert
grassland have undergone the most significant changes, from optimal growth in 1990 to
maintaining normal growth conditions in 2020. Cultivated land is in the worst growth
condition, with long-term water shortages affecting its growth. Forests have also moved
from good growth to maintaining normal growth.
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3.6.3. Analysis of Ecological Conditions

Based on the previous analysis of groundwater conditions and vegetation growth
in the study area, we combine both factors to assess the ecological security status of the
vegetation. We classify the area into six categories: ecological quality areas, ecologically
fragile areas, fencing protected areas, priority protected areas, general areas, and other
areas (Figure 17).

We classify the areas with suitable groundwater depths and good vegetation growth
as ecological quality areas, located mainly downstream and near the middle reaches of the
river valleys. We classify the areas with low groundwater depths and limited vegetation
growth as ecologically fragile areas, located primarily in the middle reaches of river valleys
and away from main watercourses. We classify the areas with suitable groundwater depths
but poor vegetation growth as fencing protected areas, located primarily in areas adjacent
to overdeveloped rivers. We classify the areas with poor groundwater depths but good
vegetation growth as priority conservation areas, located primarily in the northern parts
of river valleys and in areas downstream with higher elevations. We classify areas with
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suitable groundwater depths and normal vegetation growth as general areas, primarily
located near rivers. We classify rivers, lakes, and other similar features as other areas.
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Over the past 30 years, the area of ecological quality areas has decreased significantly.
It has decreased from about 60% of the study area in 1990 to 40% in 2020. The decline
has been particularly pronounced since 2010, with the majority of these areas transition-
ing to general areas. The area of ecologically fragile areas has increased steadily, from
5% to 10%. The area of priority protected areas has remained relatively stable. The area of
fencing protected areas has been slowly decreasing, with its proportion decreasing from
5.8% to 3.8%.

4. Discussion
4.1. Estimation of Water Deficiency of Vegetation

The quantitative study of vegetation water requirements has always been of great
concern to experts and scholars, especially in arid and semiarid regions. This is also
closely related to the ecological issues in mountain-front valleys [10]. The methods for
calculating vegetation water requirements may vary, and among them, the approach of
determining vegetation ecological quotas based on the Penman formula is more popularly
adopted [41–44]. By applying the Penman formula, we made estimations of vegetation
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water requirements in the study area. The results, in terms of water demand quotas, are
found to be consistent with previous research conducted in this field [45,46]. In the study
area, vegetation water requirements are primarily concentrated from April to October
each year. Among these months, the water demand during the growing season in June
to August is particularly high, accounting for approximately 68% of the total annual
water requirements.

Estimation of water scarcity is an important basis for water resources management.
The water shortage of vegetation is affected by many factors, such as precipitation, water
diversion, and climate. In the past, most of the studies on water scarcity were based on
the vegetation water demand minus the effective precipitation, and then the vegetation
water scarcity was obtained, which was only a potential water scarcity [47]. Based on
the simulated groundwater depth conditions in the study area, we obtained the actual
water consumption of vegetation both above and below the ground. By considering the
vegetation growth situation, we determined that when the ratio of water consumption to
demand reaches 90%, it indicates that all vegetation is growing well. Finally, the required
water consumption is subtracted from the actual water consumption to obtain the actual
water shortage of vegetation. In the past 30 years, with the decline of groundwater level,
the annual vegetation water shortage in the study area has gradually increased from
5.31 × 107 m3 to 7.78 × 107 m3. However, due to the lack of meteorological observation
stations in the study area and the lack of hydrogeological data, it will inevitably affect the
estimation of ecological water demand.

4.2. Influence of Groundwater Level Change

With the increase of water for industrial production and urban life, the exploitation of
groundwater is also increasing, and the construction of water conservancy projects in the
upstream areas and the transfer of water from rivers to the outside will lead to the decline of
the groundwater level. The factors such as water transfer from rivers will lead to the decline
of the groundwater level [48]. The lowering of the groundwater level not only brings the
ecological crisis of water resources to the valley, but also directly affects the growth of local
vegetation. The coverage and density of vegetation will decrease [49,50]. The simulation
prediction shows that after the construction of the upstream water conservancy project, the
depth of groundwater in the study area is slowly decreasing, especially since 2000, about
1.3 cm per year, which is similar to the results of the previous study [25,46]. Affected by the
decline in groundwater level, the depth of groundwater is becoming deeper and deeper,
especially in the central part of the valley far from the river, and the rate of groundwater
decline is about twice as fast as that near the river. This also leads to the phenomenon of dry
trees and grassland degradation in some areas of the valley [51]. In the next 15 years, the
impacts of water projects will continue to intensify, with the area of unsuitable groundwater
depth areas increasing by 5.85%. If the average groundwater depth of the valley decreases
to 3 m, the area of the deficit area will be about 78% of the study area, which will bring
more problems to urban development and ecological safety. Scholars will be concerned
with the length of the model validation period, the number of observation wells, and their
error range to improve the authenticity of the results and make more scientific proposals.

4.3. Response to Water Ecological Imbalance

Water scarcity is an important factor in the ecological security problems of pre-
mountain valleys in arid regions, and open-source flow reduction is the major direction to
alleviate the water–ecological imbalance. Inter-regional water transfer can greatly alleviate
regional water resource problems, and seepage along the route also recharges groundwater.
After we simulated the recharge of the depleted stream channel in the central part of the
study area, the groundwater level in the area increased significantly, and the ecologically
buried depth of the suitable area increased by 3.56%, which will also better promote the
growth of vegetation. According to our analysis of monthly water demand and consump-
tion, June–August is the time when vegetation grows and consumes the most water, and it
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is the best time for water replenishment, so we suggest that the management department
replenish the vegetation in this time period every year, especially increasing the number
and length of roaming irrigation for the vegetation [9].

Combining the vegetation growth condition and the groundwater condition in the
study area, we analyzed the six different ecological conditions and propose reasonable
measures. The vegetation growth in the priority reserve is good, but the groundwater
condition is poor, and we suggest focusing on recharging the priority reserve to prevent
further degradation of the vegetation. It is recommended that artificial planting be carried
out in the closed protection zones, especially in the locally dominant species such as poplar
and willow, in order to increase the area of green space, a measure that has also been carried
out locally. Continuing to strengthen the protection of ecologically high-quality areas,
increasing the area with good vegetation growth and suitable groundwater conditions, and
improving the ecological conditions in ecologically fragile areas will improve the quality of
habitats in the entire river valley area [52]. In addition, we need to improve the efficiency
of water use, optimize the industrial structure, and implement drip or sprinkler irrigation
measures in pastoral grasslands. We need to educate local production personnel about
scientific water use and raise their awareness of water conservation, so as to promote
ecologically sustainable development in arid river valley areas [21].

5. Conclusions

We extracted land cover types through remote sensing data and field survey, and
then calculated the ecological water demand and ecological water consumption of vegeta-
tion. Combined with the analysis of groundwater numerical simulation water level, the
ecological security of the study area was evaluated from the two aspects of river valley
groundwater status and vegetation growth status. The main results are as follows:

(1) In the past 30 years, the water demand of vegetation in the valley has not changed
much; it has been slowly increasing after decreasing in 1995, and the overall stability is
about 4.82 × 108 m3. The water demand of downstream wetlands and upstream grasslands
in the study area is more concentrated. Among all kinds of vegetation, the ecological water
demand of grassland is the largest, accounting for about half of the total water demand,
followed by cultivated land and forest land, and the water demand of desert grassland and
flood land is the smallest. Ecological water demand is highest in July, lowest in April and
October, and accounts for about 68% of annual water demand from June to August.

(2) During the last 30 years, the construction of water conservancy projects in the
upstream area has led to a slow downward trend in the groundwater level in the valley
area, with a cumulative decline of about 27 cm. From 2000 to 2020, the decline is more
obvious, with an average annual decline of 1.3 cm, and the rate of decline of groundwater
level in areas far from rivers is about twice that of river areas. The groundwater level is
basically unchanged from January to April each year, and begins to decline in May. During
the flood irrigation in the valley in June, the water level increased. Then, with the increase
in temperature and evaporation, the water level continued to decline, showing a fluctuating
downward trend.

(3) The area of suitable groundwater area in the study area is relatively large, the
average annual proportion is about 65%, the area of medium suitable area is the largest,
and the average annual proportion is about 35%. The high and medium suitable areas of
groundwater ecology are mainly distributed on both sides of the river and the wetland
in the west of the valley, and the deficit areas are mainly distributed in the central and
northern highlands of the study area. Over the past 30 years, as the groundwater has
been buried deeper and deeper and the groundwater condition in the valley has gradually
deteriorated, especially after 2000. Overall, the area of groundwater deficit increased from
31% to 37%, and the area of high deficit increased the most.

(4) From 1990 to 2020, the overall annual vegetation consumption demand ratio in
the study area decreased slowly, and the vegetation growth status changed from good to
normal growth, with the largest decline between 2005 and 2010. Among all vegetation
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types, the growth of beach land and grassland land was better and more stable. Shrubland
and desert grassland changed the most, from the best growth in 1990 to maintaining normal
growth in 2020. Forest land also changed from good growth to maintaining normal growth.

(5) We classify the area into six categories: ecological quality areas, ecologically fragile
areas, fencing protected areas, priority protected areas, general areas, and other areas. In
the past 30 years, the area of quality ecological areas has decreased significantly, from about
60% of the study area in 1990 to 40% in 2020, especially after 2010, most of which have been
transformed into general areas. The area of ecologically fragile areas is increasing, from 5%
to 10%. The area of priority protected areas has remained stable overall. The area of fencing
protected areas is slowly decreasing, with the proportion decreasing from 5.8% to 3.8%.
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