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Abstract: Reliable information of land cover dynamics in dryland cities is crucial for understanding
the anthropogenic impacts on fragile environments. However, reduced classification accuracy of dry-
land cities often occurs in global land cover data. Although many advanced classification techniques
(i.e., convolutional neural networks (CNN)) have been intensively applied to classify urban land cover
because of their excellent performance, specific classification models focusing on typical dryland
cities are still scarce. This is mainly attributed to the similar features between urban and non-urban
areas, as well as the insufficient training samples in this specific region. To fill this gap, this study
trained a CNN model to improve the urban land classification accuracy for seven dryland cities based
on rigorous training sample selection. The assessment showed that our proposed model performed
with higher overall accuracy (92.63%) than several emerging land cover products, including Esri
2020 Land Cover (75.55%), GlobeLand30 (73.24%), GLC_FCS30-2020 (69.68%), ESA WorldCover2020
(64.38%), and FROM-GLC 2017v1 (61.13%). In addition, the classification accuracy of the dominant
land types in the CNN-classified data exceeded the selected products. This encouraging finding
demonstrates that our proposed architecture is a promising solution for improving dryland urban
land classification accuracy and compensating the deficiency of large-scale land cover mapping.

Keywords: dryland region; urban land classification; convolution neural network; training sample

1. Introduction

Over the past decades, cities in dryland regions have experienced radical land cover
changes due to rapid urbanization. Since the dryland region is more fragile and sensitive
to anthropogenic activities and climate change [1], the urban land dynamics of dryland
regions would lead to intensive environmental problems, such as land degradation, water
scarcity, and even biodiversity loss [2–4]. To our knowledge, drylands cover nearly 41.3%
of the surface and are home to 2.1 billion people [5]. The recent rapid increase in the
population of dryland regions, such as Central Asia and Northwest China, has inevitably
facilitated regional urban land expansion and exacerbated environmental problems to harm
sustainable development [4].

Accurate land cover data are a key to support policy making in managing dryland
sustainable urbanization. Traditional large-scale land cover classification techniques gener-
ally adopt auxiliary information analysis from satellite imagery to improve classification
accuracy based on spectral classification models. However, most of their accuracy is limited
in dryland regions because of the common misclassifications among the dominant land
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types, such as bare land, sparse vegetation, and built-up areas, due to a spectral confusion
problem [6,7]. In addition, similar features among the above land types in dryland cities
enhance the difficulty of sample selection for urban land cover classification model train-
ing, which significantly constrains the application of advanced classification models (i.e.,
convolutional neural networks (CNN)) in this special region [8]. Therefore, developing a
specific classification workflow for a dryland city would be a potential solution to address
the deficiency of large-scale land cover mapping.

Drylands are located in various climatic zones with different climatic characteristics [9],
indicating that a stable and robust model is required for dryland urban land classification
which is consistent with the demand for global land cover mapping. Thirty-meter spatial
resolution land cover is acknowledged as the most appropriate scale to monitor urban land
dynamics [10]; several emerging global fine-resolution products (10–30 m) may provide a
viable option for revealing urban land changes in dryland regions, but their utility has not
been well verified [11]. Taking GlobeLand30 as an example, this dataset is produced mainly
based on Landsat imagery, which is recognized as one of the representative finer-resolution
products with an overall accuracy of 80.33% at a global scale [12], but inconsistent accuracy
across different regions still exists in this product. A previous study evaluated the accuracy
of GlobeLand30 in central Asia and found that its overall accuracy was only 46% [13]. The
spatial inconsistency of different land types in dryland regions among the new emerging
products, such as FROM-GLC30-2020, GLC_FCS30, and GlobeLand30, reached 65.96% [14].
To this end, some researchers have pointed out the common problem that land cover
mapping based on Landsat imagery using traditional spectral classification techniques is
not as reliable in dryland areas as in other regions; the reason is that urban and non-urban
areas of this imagery showed no distinct difference in spectral response [15–17]. Therefore,
it is foreseeable that there will be reduced accuracy of dryland land cover classification in
several global thematic maps which focus on urban land mapping [17–19].

In the era of ‘big earth data’, increasing amounts of remote sensing data are available
from the observations of sensors and models [20,21]. Meanwhile, many innovative ap-
proaches have been applied to deal with these complex data [22,23], which also benefits the
improvement of urban land cover classification techniques [24,25]. In that respect, CNN is
a widely used technique in object recognition owing to its remarkable performance [26].
This model excels in extracting deep and hierarchical features from remote sensing data
to handle land cover classification tasks [27–29]. For example, Memon et al. [30] trained
a CNN model to classify land cover in Maharashtra state, India, using synthetic aperture
radar (SAR) data: the overall accuracy of their proposed model reached 98.38%. With
advances in high-resolution imagery acquisition, numerous studies have also obtained
promising classification accuracy based on high-resolution imagery using different CNN
models [31–33]. Nevertheless, the CNN model has not been thoroughly explored for urban
land cover classification of dryland cities, which is probably because abundant labeled
samples are indispensable for CNN model training, but few samples have been labeled for
this region because it is difficult to accurately distinguish urban from non-urban areas.

Existing work focused on the application of traditional shallow machine learning
algorithms combined with medium-resolution data to identify dryland land cover [34,35].
For instance, Zhu et al. [36] obtained satisfactory classification results by integrating mete-
orological data and vegetation indices derived from Landsat imagery to detect irrigated
dryland distribution changes using a random forest classifier. Likewise, Weng et al. [37]
identified typical landscapes, such as deserts, oasis, Gobi, and water systems, at an ac-
ceptable level based on the spectral information of HJ-1A/1 B imagery and an improved
gcForest algorithm. However, the above classified data focusing on dryland-dominant land
types provide limited support for complex urban land cover classification. Several other
studies also demonstrated the feasibility of classic machine learning techniques to reveal
detailed dryland surface compositions (i.e., water, urban area, cropland, forest, and bare
soil) using Landsat or Sentinel images [38,39]. Recently, Ali et al. [34] adopted the spectral
band combination training strategy of Sentinel imagery to handle dryland urban cover
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classification with a CNN model; barren land, settlements, fallow land, vegetation, and
water bodies were discriminated with high accuracy. Since this work was conducted in
several small, urbanized areas of Pakistan, the suitability of their proposed band combina-
tion model might vary in other regions. To date, high-resolution imagery has rarely been
applied in the abovementioned studies. Given the rich landscape features captured by
high-resolution satellite imagery, training a CNN model using high-resolution samples to
classify urban land cover could be a promising approach to enhance classification accuracy
for dryland cities.

Overall, this study attempts to provide a complementary solution for improving large-
scale land cover mapping accuracy in a dryland region at a resolution of 30 m using a
classical CNN model. To achieve this goal, we first selected seven typical dryland cities
located in central Asia and northwest China as our research area. Second, the urban land
cover of each city was classified based on high-resolution Google Earth imagery and a
trained CNN model; it should be noted that the classification model was trained using
specific samples for dryland regions. Finally, we evaluated the accuracy of our results
using visual validation. The classification results were also compared with several global
finer-resolution land cover products to verify the advantages of the CNN classification
architecture.

2. Materials and Methods
2.1. Study Area

The dryland region is defined by precipitation, which refers to the area where the
mean annual precipitation is less than 500 mm [40,41]. This study selected seven cities
located in typical dryland regions, including Lanzhou, Xining, Urumqi, Kabul, Tashkent,
Bishkek, and semi-arid Lahore, as the study area (Figure 1 and Table 1). Lahore was selected
because approximately 75% of the annual total rainfall occurs from June to September [42],
indicating this city exhibits arid characteristics throughout most of the year. The total
area of the study region is 5635 square kilometers. Various land types, such as bare land,
sparse vegetation, cultivated land, impervious surfaces, and ice and snow in urban and
suburban regions, compose most areas of the landscapes in the selected cities. Considering
the common misclassifications among the major land types, such as sparse vegetation,
built-up areas, and bare land, due to the spectral confusion problem in this region, the
region is an ideal experimental area to enhance dryland urban land classification accuracy.
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Table 1. Introduction of the studied cities in a typical dryland region.

City Climate Annual Mean
Precipitation (mm)

Annual Mean
Temperature (◦C)

Urumqi, China Continental cold semi-arid climate 286 7.8
Xining, China Cold semi-arid climate 374 6.1

Lanzhou, China Semi-arid climate 312 10.9
Lahore, Pakistan Semi-arid climate 628 24.0

* Kabul, Afghanistan Cold semi-arid climate 312 12.1
* Tashkent, Uzbekistan Mediterranean climate 444 14.1
* Bishkek, Kyrgyzstan Mediterranean-influenced humid continental climate 453 9.8

Notes: Cities marked with * are national capitals, the rest are provincial capitals.

2.2. Materials and Classification Workflow

This study selected high-resolution imagery as raw data to conduct urban land clas-
sification based on a CNN model trained on typical dryland landscape samples. The
classification accuracy was also compared with that of several global finer-resolution land
cover products. The detailed workflow of the research process is shown in Figure 2.
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2.2.1. Data for Classification

Historical (2017) Google Earth high-resolution (0.6 m) imagery was selected as raw
data for urban land classification. This satellite imagery is composed of three spectral bands,
including red, green, and blue, which is well suited for image categorization using the CNN
architecture. The year 2017 was selected because abundant land cover products around this
year can support the improvement verification of our method through map comparison.
The city boundary was defined using the intersection area between the Database of Global
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Administrative Areas (https://gadm.org/data.html (accessed on 16 July 2022)) and the
available Google Earth imagery area of each city.

2.2.2. CNN Model Selection

To date, numerous CNN models have been designed to tackle land cover classification
problems; recent studies have proven that the GoogLeNet inceptionV3 model is effective
and efficient for land cover type identification based on high-resolution imagery [43–45].
Compared with typical CNN models, inceptionV3 introduced the new concept of separable
convolutional layers, which can reduce the number of computing parameters and signifi-
cantly improve the feature learning speed [46–48]. However, training the land cover sample
of this architecture from scratch requires large amounts of labeled data to generate high
accuracy classification results. This strategy inevitably costs a great deal of computational
resources, considering the millions of parameters that need to be learned. Previous studies
have demonstrated that a fine-tuned InceptionV3 outperformed the original model in some
specific classification tasks because it can extract additional features from the target samples
with a reduced computational cost [49,50]. To enhance computing efficiency, a fine-tuned
GoogLeNet inceptionV3 model was employed in this study to yield reliable urban land
cover data for dryland cities.

2.2.3. Model Training and Urban Land Cover Classification

To our knowledge, most urban land cover classification research has adopted a simple
classification scheme to detect urban land dynamics; this is attributed to the land com-
position in urban areas not being as complicated as that at a regional or global scale [51].
To make the classification results comparable, this study set the classification system as
vegetation, cultivated land, artificial surfaces, water bodies, and others (Figure 3) based on
a universal UN LCCS (United Nations Land Cover Classification System) aggregation [52].
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The aim of model training was to extract distinct features of each land type from specific
samples in a typical dryland region using a pre-trained InceptionV3 model. To achieve this
goal, typical dryland samples were extracted from a public benchmark dataset derived from
Google Earth high-resolution imagery for model training. This dataset covered abundant
labeled land types in China (i.e., cultivated land, forest, grassland, shrubland, water bodies,
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artificial surfaces, bare land, and permanent snow and ice) [43]. First, 10,000 labeled images
of each land type in typical dryland regions were randomly selected as training samples
based on their geographical location (Figure 3). Then, the above sample was aggregated in
line with our defined classification scheme; this process followed GlobeLand30 aggregation
(Section 2.3.2).

During the model training process, the global features of imagery that contained
multiscale and nonlinear characteristics were reserved in the pre-trained InceptionV3
model, and only the first layer of InceptionV3 was fine-tuned based on the selected sample.
In that respect, 85% of the selected samples were used for model training and the rest were
prepared for model verification. The initial learning rate was set as 0.01 at the beginning
of the training process and then updated to 0.0001 after 90% of the iteration period was
completed. The training process was completed when the training accuracy approximated
the verification accuracy. In addition, the training accuracy and verification accuracy were
calculated using the output of the softmax classifier.

Since the trained model could assign the entire image to a specific land type, the
raw imagery of each city was segmented into a large number of images arranged by their
geographical coordinates. To capture more texture information from the surrounding pixels,
the size of the segmented images was set as 3 × 3 pixels centered on the unclassified pixel.
Serving as the inputs of the InceptionV3 classification model, the segmented images were
identified using the powerful parallel computing mechanism embedded in the TensorFlow
platform. Once the probabilities of land type were obtained from the Softmax classifier
based on the fine-tuned InceptionV3 model, the maximum probability land type was
selected to categorize the unclassified pixels. After all images were identified, the final land
cover map was created using the pixel location information and its classified label.

It also should be noted that the model training and classification process were con-
ducted using TensorFlow (version 2.4.1) on the Windows 10 operation system. To improve
the model training efficiency, an Nvidia GeForce RTX 3090 24G GPU was configured on the
computing platform.

2.3. Assessment of Urban Land Classification
2.3.1. Visual Validation

Visual validation through confusion matrix analysis was used to assess classification
accuracy. Interpreting reference data from high-resolution imagery is a common strategy
for land cover classification accuracy assessment [53,54]. To obtain all land types for the
accuracy assessment, dense validation points were collected in the study cities as reference
data. These points were randomly selected and visually interpreted from high-resolution
Google Earth images. The nearest distance between each point was set as 500 m. The total
number of reference points remained at 2022 after some poor-quality points were eliminated
(Figure 4). Additionally, the kappa coefficient, overall accuracy (OA), user accuracy (UA),
and producer accuracy (PA), combined with commission errors (CE) and omission errors
(OE) derived from the confusion matrix, were used to evaluate the classification accuracy.

2.3.2. Comparison with Five Existing Land Cover Products

To demonstrate the improvement of CNN in dryland urban land cover classifica-
tion, five burgeoning global finer-resolution land cover products, namely GlobeLand30
(30 m) 2020 provided by the National Geomatics Center of China (NGCC) [55], FROM-GLC
2017v1 (30 m) developed by Gong et al. [56], GLC_FCS30-2020 generated by Zhang [57],
Esri 2020 Land Cover (10 m) released by Karra et al. [58], and ESA WorldCover2020 (10 m)
produced by the European Space Agency [59], were adopted to evaluate the improve-
ment of CNN classification through map accuracy comparison. Despite the epochs of
the selected products focused on 2017 or 2020, the land cover was seemingly unlikely to
experience a significant change during such a short period. Comparison datasets, such
as GlobeLand30, FROM-GLC 2017v1, and GLC_FCS30-2020, were produced by screening
high-quality Landsat imagery around its target epoch, which indicated that our selected
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products were suitable for accuracy comparison even if their epochs were inconsistent. Fur-
thermore, we re-projected all the selected data (except GlobeLand30) to the UTM projection
as GlobeLand30. The resolution of these datasets was resampled to 30 m using the nearest
sampling technique. Land types of different classification schemes were aggregated into
vegetation, cultivated land, artificial surfaces, water bodies, and others (Table 2), following
the work of Tsendbazar et al. [60].
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Table 2. Aggregated land cover classes and their definitions (Notes: The numbers of each product
represent the original classification scheme codes. V: Vegetation; C: Cultivated land; A: Artificial
surfaces; W: Water bodies; O: Others).

Land Cover
Types

GlobeLand30-
2020

FROM-GLC
2017v1

GLC_FCS30-
2020

Esri 2020
Land Cover

ESA World-
Cover2020 Definition

V 20, 30, 40, 50 2, 3, 4, 5

50, 60, 61, 62, 70,
71, 72, 80, 81, 82,
90, 120, 121, 122,

130, 180

2, 4, 11 10, 20, 30, 90

Lands where forests, shrubs,
and natural grass cover is at

least 10% of the total area
and lands.

C 10 1 10, 11, 12, 20 5 40
Lands where crops occupy

more than 40% of the
total area.

A 80 8 190 7 50
Lands covered by man-made
structures, such as buildings

and roads.

W 60 6 210 1 80 Water bodies locate in the
land area.

O 70, 90, 100 9,10
150, 152, 153,

200, 201,
202, 220

8, 9, 10 60, 70

Lands covered by permanent
snow, glaciers, and icecaps, or
lands with vegetation cover

less than 10%.
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3. Results
3.1. Assessment of GoogLeNet InceptionV3 Classification Results

The visual validation results for each land cover dataset are listed in Table 3. Herein,
the Kappa coefficient can be used to evaluate the overall agreement of the classification [61].
According to the Kappa coefficient interpretation of Landis and Koch [62] (Table 4), only
the InceptionV3-classified data reached an almost perfect level; Esri 2020 Land Cover and
GlobeLand30 also performed well at a substantial agreement level, while the rest of the
datasets showed moderate agreement because their Kappa coefficient ranged from 0.46 to
0.56. Similarly, the OA of the InceptionV3-classified data (92.63%) also outperformed the
compared products, suggesting the high reliability of our proposed model.

Table 3. Accuracy assessment of several land cover products. Bold font numbers represent the OA of
corresponding products (V: Vegetation; C: Cultivated land; A: Artificial surfaces; W: Water bodies;
O: Others).

Classified
data

Products Type
Reference Data

UA (%) Kappa
CoefficientV C A W O

InceptionV3
classified data

V 358 7 8 3 6 93.72%

0.89

C 45 550 22 3 16 86.48%
A 4 4 850 0 2 98.84%
W 2 1 0 8 3 57.14%
O 20 0 3 0 107 82.31%

PA (%) 83.45% 97.86% 96.26% 57.14% 79.85% 92.63%

GlobeLand30

V 195 108 65 2 12 51.05%

0.60

C 47 549 35 1 4 86.32%
A 30 103 722 3 2 83.95%
W 1 3 0 10 0 71.43%
O 81 29 13 2 5 3.85%

PA (%) 55.08% 69.32% 86.47% 55.56% 21.74% 73.24%

FROM-GLC
2017v1

V 219 62 39 0 62 57.33%

0.46

C 104 495 21 1 15 77.83%
A 178 105 477 1 99 55.47%
W 4 1 1 5 3 35.71%
O 54 19 16 1 40 30.77%

PA (%) 39.18% 72.58% 86.10% 62.50% 18.26% 61.13%

GLC_FCS30-
2020

V 178 118 49 0 37 46.60%

0.56

C 65 492 49 3 27 77.36%
A 76 62 700 1 21 81.40%
W 2 4 0 7 1 50.00%
O 66 25 6 1 32 24.62%

PA (%) 45.99% 70.19% 87.06% 58.33% 27.12% 69.68%

Esri 2020 Land
Cover

V 235 73 61 2 11 61.52%

0.63

C 127 463 43 1 2 72.80%
A 25 21 802 5 7 93.26%
W 0 1 0 11 2 78.57%
O 95 0 14 1 6 5.17%

PA (%) 48.76% 82.97% 87.17% 55.00% 21.43% 75.55%

ESA World-
Cover2020

V 193 45 24 1 119 50.52%

0.52

C 92 442 16 2 84 69.50%
A 65 34 580 2 179 67.44%
W 0 1 0 9 4 64.29%
O 60 12 7 2 130 61.61%

PA (%) 47.07% 82.77% 92.50% 56.25% 25.19% 64.38%
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Table 4. Interpretation of the Kappa coefficient [62].

Kappa 0.8–1.0 0.6–0.8 0.4–0.6 0.2–0.4 0.0–0.2 Negative

Performance Almost perfect Substantial Moderate Fair Slight Poor

Regarding the performance of individual land types, it should be noted that artificial
surfaces were well identified based on the high PA (96.26%) and UA (98.84%). In addition,
the InceptionV3-classified data also showed desirable accuracy for vegetation, cultivated
land, and others because nearly all their PA and UA exceeded 80%. In this respect, the PA
of vegetation and cultivated land were 83.45% and 97.86%, respectively. Meanwhile, their
UA values were 93.72% and 86.48%, respectively. Nevertheless, minor misclassifications
were still observed between vegetation and cultivated land. Given that shrubs and natural
grass cover, which are part of the vegetation, likely coexist sparsely with crops in pixels
dominated by cultivated land, minor errors are inevitable among these mixed pixels. Similar
features in vegetation and crops during the growing season also enhance the difficulty of
distinguishing vegetation regions from cultivated land. In the case of others, its PA and UA
were 79.85% and 82.31%, respectively, which were slightly lower than those of vegetation
and cultivated land. As Google Earth high-resolution imagery is a composite of yearly
data merged from high-quality images captured on different dates throughout the year,
land types at the same location may vary across different seasons. This phenomenon can
be particularly discovered in the other land types, such as vegetation and cultivated land.
For instance, crops or vegetation-covered regions may be classified as others during the
nongrowing season, which complicates the identification of others. Water bodies showed
the lowest PA and UA (both were 57.14%) of the five classes; however, this land type
occupied the smallest fraction of the study area. Low PA and UA levels in water bodies
cannot significantly influence OA.

3.2. Accuracy Comparison Results
3.2.1. Accuracy Comparison with Five Existing Land Cover Products

The accuracy of several global emerging land cover products was compared with
InceptionV3 classified data. According to Table 3, the OA of the selected land cover products
ranked in descending order were the following: Esri 2020 Land Cover (75.55%), GlobeLand30
(73.24%), GLC_FCS30-2020 (69.68%), ESA WorldCover2020 (64.38%), and FROM-GLC 2017v1
(61.13%). All their OA were much lower than the InceptionV3-classified data (92.63%). CE
and OE are also shown in Figure 5 to describe the misclassifications of individual land types
for the comparison datasets. Almost all the CE and OE in InceptionV3-classified data were
significantly lower than in the other data.

Artificial surfaces in GlobeLand30, GLC_FCS30-2020, and Esri 2020 Land Cover were
better identified than the other land types (Figure 5) because both their PA and UA ex-
ceeded 81% (Table 3). This finding was consistent with the InceptionV3 classification data.
However, the accuracy of artificial surface identification was still far behind that of our
data (Figure 5). As for FROM-GLC 2017v1 and ESA WorldCover2020, artificial surfaces
were poorly discriminated with a higher CE and OE, which probably constrained their
application in dryland urbanization research. With regard to vegetation, nearly all selected
products failed to capture its distribution accurately. Most of their PA and UA were around
50%, indicating that roughly half of the vegetation in the selected products was likely to be
misclassified (Figure 5). In contrast, cultivated land was identified more accurately because
most of their PA and UA surpassed 70%. Nevertheless, none of them performed better than
InceptionV3-classified data (Figure 5). The PA and UA of water bodies in different datasets
ranged from 35.71% to 78.57%; more than half were below 60%, suggesting that water
body discrimination was not satisfactory, which agreed with the InceptionV3-classified
data. Nevertheless, unexpected CE and OE of the smallest fraction of land type would
have a limited impact on the OA of these selected datasets. The identification of others
encountered the most significant challenge because all the products presented the poorest



Land 2023, 12, 1616 10 of 20

CE and OE for this land type. In contrast, only our data achieved an encouraging level of
classification accuracy for others with acceptable PA (82.31%) and UA (79.85%).
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3.2.2. Misclassification of Each Dataset

Figure 6 quantitatively illustrated the misclassification of each comparison dataset.
Taking InceptionV3 output as an example, the arrow direction from V to C denoted that
part of the vegetation was misclassified as cultivated land. The width of the lines repre-
sented the number of misclassified points, with wider lines indicating more misclassified
points. The remaining lines were plotted following the same principle. The number of
misclassified points was derived from the visual validation results. Figure 6 demonstrated
that the InceptionV3-classified data outperformed the other dataset because of its slight
misclassification. To describe the comparison concisely, only the most significant misclassi-
fication of each dataset was analyzed. For GlobeLand30 and GLC_FCS30-2020, cultivated
land was significantly misclassified as vegetation. Similar misclassification was also found
in the Esri 2020 Land Cover. Plenty of artificial surfaces were identified as vegetation, culti-
vated land, and others in FROM-GLC 2017v1. Others were poorly classified into vegetation,
cultivated land, and artificial surfaces in ESA World-Cover2020. Dominant misclassification
in InceptionV3 output occurred between vegetation and cultivated land. Nonetheless, this
confused error remained considerably lower than that in the other dataset.
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3.2.3. Statistical and Spatial Variation among Different Datasets

Both statistical and spatial distribution inconsistencies of different land types were
found among the comparison products and the InceptionV3-classified data (Figures 7 and 8).
Statistical results showed that the vegetation appeared to be similar across the InceptionV3-
classified data, GLC_FCS30-2020, Esri 2020 Land Cover, and ESA WorldCover2020. Given
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that the InceptionV3 output provided the best classification result based on its high accuracy,
vegetation occupation was underestimated in GlobeLand30 but overestimated in FROM-
GLC 2017v1. The cultivated land area was around 1500 km2 in InceptionV3 output, Esri
2020 Land Cover, and ESA WorldCov-er2020, but it was commonly overestimated in the
of the rest products, especially in GlobeLand30. Similar areas of artificial surfaces were
observed in four datasets: InceptionV3 output, GlobeLand30, GLC_FCS30-2020, and Esri
2020 Land Cover, but this land type was significantly underestimated in FROM-GLC 2017v1
and ESA WorldCover2020. Water bodies were the unique land types that showed consistent
areas for all the comparison datasets. The most significant unconformity occurred in others.
It should be noted that severe underestimation of others was found in GlobeLand30 and
Esri 2020 Land Cover. In contrast, this land type was distinctly overestimated in ESA
WorldCover2020.

Land 2023, 12, x FOR PEER REVIEW 12 of 20 
 

Figure 6. Confused classification errors of the comparison datasets. (V: Vegetation; C: Cultivated 

land; A: Artificial surface; W: Water body; O: Others.). 

3.2.3. Statistical and Spatial Variation among Different Datasets 

Both statistical and spatial distribution inconsistencies of different land types were 

found among the comparison products and the InceptionV3-classified data (Figures 7 and 

8). Statistical results showed that the vegetation appeared to be similar across the Incep-

tionV3-classified data, GLC_FCS30-2020, Esri 2020 Land Cover, and ESA World-

Cover2020. Given that the InceptionV3 output provided the best classification result based 

on its high accuracy, vegetation occupation was underestimated in GlobeLand30 but over-

estimated in FROM-GLC 2017v1. The cultivated land area was around 1500 km2 in Incep-

tionV3 output, Esri 2020 Land Cover, and ESA WorldCov-er2020, but it was commonly 

overestimated in the of the rest products, especially in GlobeLand30. Similar areas of ar-

tificial surfaces were observed in four datasets: InceptionV3 output, GlobeLand30, 

GLC_FCS30-2020, and Esri 2020 Land Cover, but this land type was significantly under-

estimated in FROM-GLC 2017v1 and ESA WorldCover2020. Water bodies were the unique 

land types that showed consistent areas for all the comparison datasets. The most signifi-

cant unconformity occurred in others. It should be noted that severe underestimation of 

others was found in GlobeLand30 and Esri 2020 Land Cover. In contrast, this land type 

was distinctly overestimated in ESA WorldCover2020. 

 

Figure 7. Statistical area of different land types for the comparison products and InceptionV3-clas-

sified data. 

Spatial distribution variations were found in all selected cities. Taking Urumqi city 

(Figure 8) as a sample, it can be observed that most of the comparison datasets exhibited 

a similar distribution of water bodies. However, vegetation, cultivated land, and others 

confusion were a general problem for almost all the selected datasets. Specifically, a sub-

stantial amount of vegetation was misclassified as others in FROM-GLC 2017v1, 

GLC_FCS30-2020, and ESA WorldCover2020. Confusion between vegetation and culti-

vated land was evident in southeast Urumqi for GlobeLand30. InceptionV3-classified data 

can discriminate vegetation, cultivated land, and others effectively. The spatial distribu-

tion of artificial surfaces was similar in all the comparison datasets except FROM-GLC 

Figure 7. Statistical area of different land types for the comparison products and InceptionV3-
classified data.

Spatial distribution variations were found in all selected cities. Taking Urumqi city
(Figure 8) as a sample, it can be observed that most of the comparison datasets exhibited a
similar distribution of water bodies. However, vegetation, cultivated land, and others con-
fusion were a general problem for almost all the selected datasets. Specifically, a substantial
amount of vegetation was misclassified as others in FROM-GLC 2017v1, GLC_FCS30-2020,
and ESA WorldCover2020. Confusion between vegetation and cultivated land was evident
in southeast Urumqi for GlobeLand30. InceptionV3-classified data can discriminate vegeta-
tion, cultivated land, and others effectively. The spatial distribution of artificial surfaces
was similar in all the comparison datasets except FROM-GLC 2017v1, which was attributed
to its poor 10.5% producer accuracy and 30.8% user accuracy provided by its producer.
Sparsely distributed artificial surfaces were often neglected for most products, especially
for GLC_FCS30-2020 and Esri 2020 Land Cover.
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3.3. Accuracy Improved Cases of InceptionV3 Classification Model

The purpose of this section is to provide evidence supporting the advantages of the
trained InceptionV3 model. A detailed map comparison was illustrated in Figure 9.

Figure 9a showed that the sparse built-up areas were easily misclassified as their
surrounding land types for most of the selected products, especially in GlobeLand30,
FROM-GLC 2017v1, and GLC_FCS30-2020, which probably led to the underestimation of
artificial surfaces. In contrast, the InceptionV3 model was effective in accurately separating
sparse artificial surfaces from surrounding land.

Figure 9b indicated that the small fraction of vegetation or cultivated land among the
urbanized regions was difficult to accurately identify for most of the existing products.
GlobeLand30 and Esri 2020 Land Cover screened only a portion of non-urbanized regions
from high-density artificial surfaces. In addition, vegetation was misclassified as cultivated
land in GlobeLand30. It was also worth noting that the vegetation regions in FROM-
GLC 2017v1 and ESA WorldCover2020 were overestimated because the artificial surfaces
surrounded by trees were incorrectly classified as vegetation. InceptionV3-classified data
and GLC_FCS30-2020 performed better in discriminating small fractions of vegetation
or cultivated land from artificial surfaces, which can provide more accurate and detailed
intro-urban land information.
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Figure 9c shows that confusion between built-up areas and bare land in arid regions
was frequently observed in GlobeLand30 and Esri 2020 Land Cover. In this case, numerous
pixels of bare land and artificial surfaces were inversely misclassified in FROM-GLC 2017v1.
For GLC_FCS30-2020, plenty of bare land locations were identified as vegetation owing
to the fact that raw imagery might be captured during the growing seasons. A similar
reason also caused the overestimation of bare land for ESA WorldCover2020. Meanwhile,
the InceptionV3 model depicted a more accurate land cover map because it was more
consistent with the actual distribution of land types.

Figure 9d demonstrates that cultivated land and vegetation were often confused for
most of the comparison products. A common reason could be that similar spectral reflectance
features existing in growing crops and vegetation probably made them indistinguishable.
This problem was significant in GlobeLand30, FROM-GLC 2017v1, GLC_FCS30-2020, and
Esri 2020 Land Cover. Improved classification results can be found in InceptionV3-classified
data and ESA WorldCover2020.

Overall, the data classified using the InceptionV3 model can provide better accuracy
for the five aggregated land types than almost all the comparison products in dryland cities,
indicating that the proposed model is a promising solution for dryland urban land cover
classification.

4. Discussion
4.1. Reliability Analysis of Accuracy Comparison

To our knowledge, multiple classification schemes adopted by land cover producers
probably led to different classification accuracies. This section discussed the influence of
classification scheme aggregation on accuracy comparison. To ensure the comparability
of diverse datasets under different classification schemes, this study strictly conducted
classification scheme harmonization following one proven research study [60] to minimize
that inconsistency effect.

Taking artificial surfaces as an example, this land type was directly converted from
the products without any aggregations; subtle differences still occurred at an acceptable
level because its original definition varied in different products. In that respect, urban
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green areas, such as parks and sport facilities, were excluded from built-up areas in the ESA
WorldCover2020. Similarly, impervious surfaces in GLC_FCS30-2020, impervious in FROM-
GLC 2017v1, and artificial surfaces in InceptionV3 output also adopted this classification
scheme. However, interior urban green zones were classified into artificial surfaces and
built areas in the GlobeLand30 and Esri 2020 Land Cover, respectively. Nevertheless, other
man-made structures, including transportation facilities, buildings, and impervious roof
tops, were defined as artificial surfaces for all the selected datasets. Since these man-made
structures occupied the dominant artificial surfaces of urbanized areas, a slight inconsis-
tency in the definition of artificial surfaces was acceptable for land cover classification
accuracy comparisons.

Water bodies was another land type that can be directly converted from the selected
products. Although its definition varied in the different datasets, no obvious differences
were found in the basic content of the water bodies. Specifically, natural and artificial
water-covered regions, such as lakes, rivers, reservoirs, and fish ponds, were discrimi-
nated into water bodies for the comparison datasets, suggesting a consistency of water
body conversion.

The other three land types (vegetation, cultivated land, and others) were aggregated
from multiple subclasses in each individual classification scheme. Although these schemes
differed in certain details, they contained high consistency as well because all the schemes
were designed directly or indirectly based on the universal UN LCCS, which implied that
the aggregated results were comparable under the unified scheme.

Overall, slight inconsistency probably generates very limited misclassification errors
that impact the classification accuracy comparison, implying that the outperformance of
InceptionV3 output was reliable.

4.2. Comparative Analysis of Classification Techniques
4.2.1. Classification Technique Comparison with the Selected Land Cover Products

In this study, most of the selected products were generated using or combining spectral
classification techniques, which was unlikely to provide satisfactory classification accu-
racy for the studied region. For instance, a classic machine learning technique, namely
random forest (RF), was adopted by FROM-GLC 2017v1, GLC_FCS30-2020, and ESA World-
Cover2020 to extract spectral and textural features for land cover classification. Auxiliary
data, such as the normalized difference vegetation index (NDVI) and digital elevation
model (DEM), were also generally applied to aid the classification process. Even then, their
overall classification accuracy (less than 70%) was still lower than that of GlobeLand30,
Esri 2020 Land Cover, and InceptionV3 output, indicating that the simple shallow machine
learning strategy was deficient in dryland urban land cover identification.

In contrast, GlobeLand30 developed a pixel–object–knowledge (POK)-based method
for land cover mapping using multispectral Landsat imagery. This method employed
supervised spectral classification techniques, such as the support vector machine (SVM)
and maximum likelihood classification (MLC), to classify land cover; object-based and
expert knowledge-based verification were also applied to reduce misclassification errors
caused by spectral confusion [12]. To some extent, this integrated method can improve
the overall classification accuracy (73.24%) of the studied region, but this classification
procedure was time-consuming and labor-intensive.

Since the similarity of spectral reflectance characteristics was widespread among the
dominant land types of dryland regions, identifying land cover by adding spatial and
texture recognition might be a promising solution to improve classification accuracy. To
capture as many features of each land type as possible, the Esri 2020 Land Cover was
produced via a deep learning segmentation model that had been trained using more than
five billion human-labeled samples [59]. Consequently, an improved overall classification
accuracy (75.55%) was achieved for the studied cities. This classification model was trained
using global samples derived from various climatic zones; thus, reduced classification accu-
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racy in drylands was foreseeable. This classification strategy requires more computational
resources than the conventional classification techniques.

Taking advantage of the rich features of pre-trained InceptionV3 and incorporating
deep spatial, spectral, and texture information from typical landscape samples of dryland
regions, the proposed classification model can accurately identify urban land types at the
expense of limited computational resources. Compared to spectral classification techniques,
the spectral confusion problem can be effectively alleviated using our trained CNN model.
Compared with the deep learning segmentation model, the classification accuracy of
dryland urban land cover was improved using a model trained by specific samples. This
finding also implied that our proposed classification workflow can serve as a supplement
to improve global urban land cover accuracy for dryland cities.

4.2.2. Advantages of the Proposed Classification Workflow

Accuracy assessment demonstrated that the InceptionV3 Classification model outper-
formed several global land cover mapping techniques in dryland cities, which was mainly
attributed to a rigorous training sample selection and rich landscape information extraction
from dryland region.

Performance of DL classification is determined by the quantity and the quality of the
training sample [35]. This study selected 10,000 samples of each land type from a typical
dryland region for model training. Though the model generalization might be limited
in large-scale land cover mapping, sufficient samples with rich dryland information can
strongly represent the specific characteristics of dryland landscapes. Compared with Esri
2020 Land Cover produced using a deep learning segmentation model trained on billions
of labeled samples, our fine-tuned classification model performed better in separating
built-up areas and bare land with fewer samples. Additionally, the proposed classification
model significantly improved the discrimination of others from the rest of the land types
for the dryland region. According to the accuracy assessment, identification of others is the
most challenging classification task for all the comparison datasets; our findings indicated
that training a specific model based on typical samples is effective to tackle that concern;
this strategy can also be considered a potential solution to compensate for the large-scale
mapping deficiencies in dryland regions.

The high-resolution remote sensing imagery adopted by this study provides abundant
shape, texture, and spatial distribution information of landscapes, which strongly supports
land cover feature extraction via the deep structure of the InceptionV3 model. Rich feature
extraction suggests a better performance of classification. To obtain as many object features
as possible for a certain pixel, the InceptionV3 output captured wide texture and shape
information from its 3 × 3 neighboring pixels, which can promote sparse distributed land
separation from its surrounding land types. For instance, sparse built-up areas were easily
misclassified as their surrounding land types in GlobeLand30, FROM-GLC 2017v1, and
GLC_FCS30-2020; a small fraction of vegetation or cultivated land among the urbanized
regions was also difficult to accurately identify for most of the comparison products. These
misclassifications were significantly improved in InceptionV3-classified data.

The proposed model was also competent in identifying land types that might change
during various seasons. In dryland regions, cultivated land and vegetation were often
confused during the growing season because of their similar features; crop- or vegetation-
covered regions may be misclassified as others during the nongrowing season. A minor mis-
classification occurred with the InceptionV3 model because Google Earth high-resolution
imagery is a composite of yearly data merged from different dates throughout the year;
land types at the same location may vary across different seasons. Compared with the
selected products, the InceptionV3 model separated cultivated land and vegetation better
based on deep texture information. Moreover, confusion among others and cultivated land
and vegetation also significantly decreased through deep texture and shape feature analysis
of the InceptionV3 model. Spectral reflectance similarity is a common phenomenon for
different land types: it enhanced the difficulty of land cover classification using traditional
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spectral classification models. InceptionV3 adopted deep and rich features of land cover
to conduct classification tasks, which is beneficial for alleviating spectral confusion to
some extent.

4.3. Consistency Comparison with Current Study

Previous research pointed that the classification accuracy of current finer-resolution
global cover products varied in different regions [63]; it was in line with our assessment
because accuracies of all the comparison datasets were lower in dryland regions. The
application of DL models is effective to improve land cover classification accuracy of
dryland heterogenous areas. Similar research found the classification accuracy of bare
land in the DL model was much higher (96.3%) than that in the random forest model
(63.5%) [64]; our proposed model also consistently demonstrated significant accuracy
improvements of the identification of others when compared to several global land cover
datasets produced using shallow machine learning classification techniques. Another study
achieved satisfactory results by employing a 2D CNN model trained on dryland samples
to classify land cover for Lahore (OA = 94.8%) and Faisalabad (OA = 91.4%) city, which
was very similar to our data (OA = 92.63%).

Overall, the performance of our model was close to several current related research stud-
ies, indicating the proposed workflow was reliable for dryland urban land cover classification.

4.4. Limitations and Future Work of This Study

Significant improvement has been achieved using a specific trained InceptionV3 model
to classify dryland urban land cover. However, some limitations in this study still need to be
further discussed. First, the classification process is fairly time-consuming. Taking Urumqi as
an example, the study area of this city was approximately 1396 km2: more than three billion
pictures were obtained after image segmentation. Classification of these images cost nearly
81 h in the InceptionV3 model, indicating that for our proposed strategy, it is hard to meet
the requirement of large-scale land cover mapping. Fortunately, one of the latest studies
has developed a generalizable deep learning-based model with an unsupervised domain
adaptation strategy. This model is expected to support large-scale land cover mapping [65],
suggesting that an improved CNN model has the potential to handle tremendous land
cover classification work. Second, the identification of water bodies is not very satisfactory.
Considering that most water bodies are permanent, extracting their distribution from a
reliable database before classification might improve the above concern.

5. Conclusions

This study applied specific dryland landscape samples to train an InceptionV3 classi-
fication model, aiming to provide a complementary solution for enhancing the accuracy
of large-scale land cover mapping in dryland regions. The assessment showed that our
proposed model is highly effective for land cover mapping in dryland cities based on its
remarkable accuracy. In contrast to the emerging land cover products derived from spectral
classification techniques combined with auxiliary information analysis or deep learning
segmentation classification models, our method performed better in tackling the challenge
of identifying spectral confusion land types accurately. Moreover, it can also promote
sparse distributed land separation from its surrounding dominant land types. Neverthe-
less, the accuracy of water body identification is not as satisfactory as that of other land
types, which needs to be improved in future research. The proposed workflow can only
serve as a complementary strategy for global land cover mapping accuracy improvement;
its application in large-scale land cover classification is constrained because of substan-
tial computing resource requirements. Overall, the proposed classification workflow in
this study can compensate for the insufficient accuracy of global land cover products in
dryland regions. It also can provide reliable information to support urban land dynamics
monitoring and sustainable urbanization management of dryland cities.
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