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Abstract: Land use and land cover (LULC) changes are of vital significance in fields such as en-
vironmental impact assessment and natural disaster monitoring. This study, through an analysis
of 1432 papers over the past decade employing quantitative, qualitative, bibliometric analysis, and
knowledge graph techniques, aims to assess the evolution and current landscape of deep learning
(DL) in LULC. The focus areas are: (1) trend analysis of the number and annual citations of pub-
lished articles, (2) identification of leading institutions, countries/regions, and publication sources,
(3) exploration of scientific collaborations among major institutions and countries/regions, and
(4) examination of key research themes and their development trends. From 2013 to 2023 there was a
substantial surge in the application of DL in LULC, with China standing out as the principal contrib-
utor. Notably, international cooperation, particularly between China and the USA, saw a significant
increase. Furthermore, the study elucidates the challenges concerning sample data and models in
the application of DL to LULC, providing insights that could guide future research directions to
accelerate progress in this domain.

Keywords: LULC; DL; bibliometrics; knowledge graph

1. Introduction

Land use and land cover (LULC) embody the essential traits of the Earth’s system,
significantly intertwined with numerous human endeavors and the physical surround-
ings [1]. LULC intimately intersects with human livelihood and productive activities,
serving as a pivotal component in land utilization and global environmental shifts [2].
Insights into LULC alterations are indispensable across a plethora of fields leveraging
Earth observations, including urban and regional orchestration [3,4], gauging environmen-
tal susceptibility and implications [5–7], shifts in climate [8–10], surveillance of natural
calamities and threats [11,12], alongside appraisals of soil attrition and salinization among
others [13,14]. In the span of the preceding decades, we have witnessed an exponential
surge in satellite or airborne spatial imagery and data, largely attributable to the emergence
of remote sensing technologies and the deployment of an array of satellites [15]. Remote
sensing technology has provided new technical means for LULC due to its advantages of
offering wide coverage and accessing large amounts of information [16]. Remote sensing
images have also become the main data source in the study and monitoring of LULC
changes [17].

Since 2012, when the neural network model AlexNet, developed by Hinton et al.,
achieved remarkable results in the ImageNet image recognition competition, the field of
deep learning (DL) has undergone robust development [18]. DL was named one of the top
ten breakthrough technologies of 2013 [19]. In the following years, DL achieved significant
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advancements in areas such as image recognition, speech recognition, and natural language
processing. The rapid development of DL technology has provided new opportunities and
challenges in its application in LULC classification [20]. Consequently, various models uti-
lizing machine learning (ML) and DL for the analysis of LULC have been developed. These
models can be categorized into three types based on their input data: pixel-based methods,
spatial methods, and sequence methods [21]. Traditional pixel-based methods classify
each pixel individually based on their corresponding spectral data, such as random forests
(RF) [22,23], support vector machines (SVM) [24], and self-organizing maps (SOM) [25,26].
Chaitanya B. Pande et al. [27] introduced a RF learning algorithm based on the Google
Earth Engine (GEE) platform, utilized for creating maps of LULC in India and conducting
change detection mapping through the SAGA GIS software. Riese, F.M. et al. [26] pro-
posed the SOM framework for unsupervised land cover type classification of hyperspectral
data. Spatial classification methods classify not only using a single pixel but also a two-
dimensional (2D) spatial neighborhood. The typical approach is based on 2D convolutional
neural networks (CNNs), composed of filter layers that perform hierarchical learning;
learning low-level features in the first layer, and higher-level features in the last layer.
Zhang et al. [28] employed a joint DL (JDL) model of a multilayer perceptron within CNNs
to simulate LULC classifications and change at two sites in Southampton and Manchester,
UK. He et al. [29] developed an integrated model of CNN with a cellular automaton (CA)
to simulate urban development in the Pearl River Delta of China. Sequence methods
include recurrent neural networks (RNN), long short-term memory (LSTM) networks,
and 3DCNNs. Chen et al. [30] proposed a deep Siamese convolutional multi-layer RNN
for change detection in sequential high-resolution images. Geng et al. [31] proposed the
ST-CA, which employs a potential generation module using a 3DCNN to calculate the
development potential of each cell, and a spatial allocation module using a patch-based CA
to simulate future LUCC.

Prior to the emergence of DL technology, the traditional methods for LULC modeling
and assessment using remote sensing images primarily relied on handcrafted features
and machine learning algorithms [32]. Manual design of features demands high domain
expertise and requires significant human and material resources [33]. In contrast to machine
learning, DL does not require manual feature design. It offers an end-to-end approach to
LULC modeling, is capable of automatically extracting features from data, and exhibits
stronger robustness and generalizability [34]. Given the numerous advantages of DL and
remote sensing technologies, DL has become a focus of considerable attention in the study
of LULC [35]. Therefore, over the past few years, there have been many reviews and
discussions about ML and DL in the field of remote sensing [36–38]. However, existing
reviews mainly focus on the image processing and segmentation recognition techniques of
DL, and are mainly applied to the analysis of remote sensing images. These studies have
not objectively and systematically analyzed the significant issues, development trends,
and existing problems in this field.

Bibliometrics is a method of analyzing and evaluating the literature using quantita-
tive methods, providing insights into the quantity, quality, influence, development trends,
and relationships among scholarly publications [39]. This discipline capitalizes on various
tools such as HistCite [40], SATI [41], CiteSpace [42], which are adept at importing and
transmuting data from diverse bibliographic databases, including WoS (WoS), Scopus,
Dimensions, and Lens [43]. These tools furnish researchers with a comprehensive array of
capabilities for literature information analysis and visual representation of results. Biblio-
metrics has been extensively applied across various fields. Pacheco Quevedo R et al. [44]
conducted a bibliometric analysis and review on how LULC is explored in the context of
landslide susceptibility in 536 scientific articles spanning from 2001 to 2020. Pham-Duc
B et al. [45] employed a bibliometric methodology to analyze articles related to GEE within
the Scopus database. However, no study has yet applied bibliometrics to examine the
application of DL models in LULC. Knowledge graphs are analytical research tools that
present large amounts of information from the literature in graphic form, revealing re-
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search hotspots and development trends [46]. Using knowledge graphs and bibliometric
analysis can assist in objectively and systematically analyzing the research progress of and
development trends in DL algorithms in LULC applications [44].

In this study, our aim was to ascertain the advancements of DL models in LULC
research by employing knowledge graphs and bibliometrics to systematically analyze
and summarize the literature in this field, both qualitatively and quantitatively. Finally,
we discuss the primary research topics, the challenges present in applying DL to the
LULC domain, and current advancements concerning models and sample datasets, thereby
providing a reference for researchers conducting related studies. This research is guided by
the following questions:

RQ1: what are the trends of articles and citations in this field?
RQ2: what are the most prolific sources of publications, countries/regions, and institu-

tions?
RQ3: what is the nature of scientific collaborations between key countries/regions

and institutions?
RQ4: what are the primary research topics of interest within this field?
RQ5: what are the topic distributions across major sources of publications, subjects,

countries/regions, and institutions?
RQ6: what are the main advancements in models and sample datasets within this field?

2. Data Sources and Methods
2.1. Data Source

WoS is a comprehensive interdisciplinary academic information resource, managed
by Clarivate Analytics, which includes a multitude of core academic journals and pub-
lications [47]. This database provides advanced citation analysis and metrics to help
researchers evaluate and track the impacts of and trends in their research output [48]. We
utilized the WoS Core Collection as our data source and adopted the topic search (TS)
method for retrieval. The following three topics were searched in the literature: ‘Land Use
Change/Cover’, ‘DL’, and ’Remote Sensing’. In an attempt to retrieve as many relevant
articles as possible, we tried different combinations of search terms, using the Boolean
operators AND/OR for combination searches. The search type was set as ‘(TS = DL) and
TS = (land use and land cover) and TS = (Remote Sensing)’. The literature search spanned
from 2013 to 2023, with the WoS journal database serving as the data source for the past
decade. A total of 1432 articles were retrieved. After excluding books, book chapters, confer-
ence proceedings, reports, as well as ‘grey literature’, theses, and dissertations [49], we were
left with 1310 articles. These articles were used as the sample data for our research analysis.

2.2. Methods

For this study, we mainly adopted two research methods: bibliometric analysis and
knowledge graph analysis. In this research, a methodological framework, consisting of
three stages: data retrieval, data cleaning, and data analysis, was developed, as shown in
Figure 1. Various bibliometric indicators were applied to evaluate the included publication
sources, disciplines, institutions, and countries/regions in the study. These indicators
include: the number of articles, citation counts, the h-index, and the average citations per
paper (ACP). The bibliometric analysis was principally divided into three parts: (i) assessing
the productivity and impact based on the number of publications and citations; (ii) utilizing
knowledge maps to intuitively display the collaboration relationships between authors
and countries; (iii) identifying common keywords and research fields to highlight the main
research themes. In the first part of the analysis, trends in scientific output were examined,
primarily through considering the publications, citations, references in each paper, and the
focus on highly-cited papers. Subsequently, network graphs generated by VOSviewer
software were used to analyze co-authorship relationships [50]. Furthermore, a mapping of
publication counts by country and research field was conducted to reveal the geographical
distribution of the research and to determine which countries and research scales are most
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frequently studied. Frequently appearing keywords facilitated a deeper understanding of
technical terms, structural consistency [51], and trends in thematic areas [52]. Tools such
as R language and CiteSpace software were used for the analysis of abstract keywords.
Lastly, the most commonly used models in the LULC research field, as well as the issues
and progress in the sample data, were discussed. The aim was to provide a comprehensive
overview and to offer insights for future research directions in this field.

Figure 1. Research design and workflow.

3. Results of Bibliography Analysis
3.1. Number of Published Articles and Citation Trends

This study provides a visual analysis of the annual trends in the numbers of articles
and citations in the field of LULC research, which utilizes DL model technology, as de-
picted in Figure 2. Our work showed that the research interest in this field has been
gradually growing, as was particularly evident when the number of research findings
reached 450 articles in 2022. The number of citations for articles in 2019 reached 5335,
and in 2020, this number increased to 5499. The decreases in citation counts in 2021 and
2022, along with a drop in the number of research findings in 2023, were due to the time
required for publications to be indexed in the database, and we could not include all of the
articles published in 2023. However, looking at the significant growth trend in the number
of articles and citations from 2013 to 2020, we can determine that since the development
of DL technology, its application in LULC research has received considerable attention in
academia. Consequently, the future research development prospects in this field are broad,
and the number of papers about it is expected to continue to grow.

Figure 2. Annual Growth Trend Chart of LULC from 2012 to 2023. The solid lines represent the
number of articles each year (blue) and the number of citations (orange), while the dashed lines
represent the annual growth rate of articles (green) and the growth rate of citations (red). The left
y-axis represents the count, while the right y-axis represents the growth rate.
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3.2. Top Publication Sources

The 1310 articles retrieved in this study came from 258 publications, with the top
five journals having published at least 20 related articles each. Remote Sensing was the
journal with the most articles in this field, with 269 articles, followed by IEEE Transactions on
Geoscience and Remote Sensing (91 articles), the IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing (87 articles), and the International Geoscience and Remote
Sensing Symposium (IGARSS; 64 articles). The journals with the top three highest numbers
of citations were Remote Sensing, the ISPRS Journal of Photogrammetry and Remote Sensing,
and IEEE Transactions on Geoscience and Remote Sensing.

According to the results in Table 1, among the top five publications with the most
articles published, the top three were Remote Sensing (with an H-index value of 38), IEEE
Transactions on Geoscience and Remote Sensing (26), and the ISPRS Journal of Photogrammetry
and Remote Sensing (26). In terms of the ACP for each journal, the top three were Remote
Sensing of Environment (with an ACP value of 78.47), the ISPRS Journal of Photogrammetry and
Remote Sensing (76.55), and IEEE Geoscience and Remote Sensing Letters (47.97). Taking into
account the aforementioned common indicators for evaluating papers, the work published
in the ISPRS Journal of Photogrammetry and Remote Sensing, IEEE Transactions on Geoscience
and Remote Sensing, and Remote Sensing of Environment deserves attention. As high-ranking
journals in the field of geography, these publications have had significant impacts on such
geoscientific research as remote sensing and geoinformation, and have played crucial roles
in promoting the development of this field.

Table 1. Publication sources.

Publication Sources A C H ACP IF (Q)

Remote Sensing 269 5260 38 20.56 5.601 (Q2)
IEEE Transactions on Geoscience and Remote Sensing 91 3018 26 33.95 8.125 (Q1)
IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing

87 1875 22 21.93 4.715 (Q3)

International Geoscience and Remote Sensing Symposium,
IGARSS

64 579 10 9.17 7.49 (Q2)

ISPRS Journal of Photogrammetry and Remote Sensing 49 3705 26 76.55 11.774 (Q1)
Note: A: article count; C: citation count; H: H-index; ACP: average citations per paper; IF (Q): impact factor in
2023 and JCR ranking.

3.3. Highly Productive Institutions and Countries/Regions

The 1310 collected papers on the application of DL in LULC were contributed by
92 countries/regions (Figure 3), with a minimum of 36 articles published by the top five
countries. China has published the most papers in this field, with a total of 607 articles,
followed by the United States (193 articles) and India (135 articles). According to the
H-index, the top three contributing nations were China (H-index of 52), the United States
(H-index of 36.51), and Germany (H-index of 25) (Table 2).

Table 2. Top countries/regions.

C/R A C H ACP

China 607 11,730 52 20.83
USA 193 6865 36.51 38
India 135 658 15 5.03

Germany 97 3095 25 32.67
France 69 2311 19 33.96

Note: C/R: country/region; A: article count; C: citation count; H: H-index; ACP: average citations.

According to the ACP, the top three contributing nations are the USA (with an ACP
value of 38), France (ACP value of 33.96), and Germany (ACP value of 32.67). Even though
France and Germany had fewer articles (fourteen and seven, respectively) compared
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to the leading countries/regions, their article quality was higher, as evidenced by the
ACP analysis.

Figure 3. Countries of origin for published articles.

The 1310 articles retrieved were contributed by 198 institutions, each of which con-
tributed at least four articles in this field. The top five institutions that published articles in
this field are listed in Table 3.

Table 3. Top institutions.

Institutions C/R A C H ACP

Chinese Academy of Sciences China 119 2603 24 22.4
Wuhan University China 87 3226 27 37.93

Helmholtz Association Germany 59 1326 17 23.22
German Aerospace Centre DLR Germany 34 1923 15 57.06

Centre National de la Recherche Scientifique CNRS France 27 1046 13 39.15
Udice French Research Universities France 25 1168 13 47

Technical University of Munich Germany 21 1718 12 82.38
Nanjing University China 20 311 10 16.1

Beijing Normal University China 18 226 8 12.67
Xidian University China 18 638 10 36

Note: C/R: country and region; A: article count; C: citation count; H: H-index; ACP: average citations per article.

Among the top ten institutions listed, five are from China, indicating the active role
of China in the field of LULC research using DL. The Chinese Academy of Sciences is the
institution with the highest number of articles in this field, having published 119 articles,
followed by Wuhan University (87 articles) and the Helmholtz Association (59 articles).
According to the citation count analysis, the top three institutions are Wuhan Univer-
sity (3226 citations), the Chinese Academy of Sciences (2603 citations), and the German
Aerospace Center DLR (1923 citations). From the H-index analysis, the top three institutions
among those listed are Wuhan University (with an H-index of 27), the Chinese Academy of
Sciences (H-index of 24), and the Helmholtz Association (H-index of 17). From the ACP
index analysis, the top three institutions are the Technical University of Munich (with an
ACP value of 82.38), the German Aerospace Center DLR (ACP value of 57.06), and UDICE
French Research Universities (ACP value of 47).

When all of the aforementioned indicators are taken into account, the performances of
Wuhan University and the University of Chinese Academy of Sciences are commendable,
demonstrating their significant contributions to the research in this field.
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3.4. Scientific Collaboration

In Figure 4, organizations and countries/regions are represented as nodes and their
collaborations are represented as lines that make up edges, with the intensities of the
collaborations reflected in the thicknesses of the lines. The size of each node is proportional
to the output of the organization or country/region it represents, and the width of each line
represents the number of collaborative papers between organizations or countries/regions.
Furthermore, each color represents the continent of a organizations country/region or that
of an organization. Among the 1310 articles retrieved, 33 countries contributed more than
three collaborative articles each. Among these thirty-two countries, fifteen are from Europe,
nine are from Asia, two are from North America, one is from South America, one is from
Oceania, and four are from Africa. The United States, China, the Netherlands, Germany,
the United Kingdom, and France have collaborated with 24, 17, 16, 15, 15, and 15 other
countries/regions, respectively.

Figure 4. Country/region cooperation visualization graph.

According to the knowledge graph above, the most frequent collaborations were
between the United States and China, with 21 cooperative articles. The combination with
the next most frequent collaborations is Australia and China (eight), followed by China
and Germany (seven).

Figure 5 illustrates the scientific collaborations among the top 50 research institutions
in the field, based on the number of papers published. Among these fifty institutions, thirty-
two are from China, three are from Germany, two are from the Netherlands, and two are
from the United States. The Chinese Academy of Sciences, Wuhan University, and Sun Yat-
sen University were the most collaborative institutions, partnering with 21, 15, and 12 other
institutions, respectively. The University of the Chinese Academy of Sciences and the Chi-
nese Academy of Sciences collaborated on nineteen papers, followed by Wuhan University
and the University of the Chinese Academy of Sciences (ten papers), and Wuhan University
and Sun Yat-sen University (seven papers).
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In this field, the collaborations between research institutions are predominantly central-
ized around the Chinese Academy of Sciences and Wuhan University, which demonstrated
the highest degree of collaboration. Sun Yat-sen University and the German Aerospace
Center are also highly central in the collaboration network. These institutions, which pub-
lish frequently and occupy central positions, have always been at the forefront of research
on land use and cover dynamics (LUCDs) using DL.

Figure 5. Research institutions collaboration map.

3.5. Networking Analysis Using the Key Research Terms

Keywords are the core of academic papers; they are high-level summaries of the con-
tent [53]. Applying the Structural Topic Model (STM) [54] to the abstracts and titles of the
papers, we extracted ten significant research themes, as depicted in Figure 6. The analysis
revealed that ‘Urban Studies’ emerged as the most extensively investigated theme in the
realm of remote sensing, followed by ‘Forest and Land Studies’, ‘Change Detection and
Cloud Imaging’, ‘Land Cover Classification’, ‘Network and Feature Attention’, ‘Sentinel
Time Series’, ‘Neural Image Classification’, ‘SAR and Land Cover Mapping’, ‘High Resolu-
tion Semantic Segmentation’, and ‘Crop and Domain Data’. Each sector within the rose
diagrams corresponds to the frequency of the respective theme within a particular year,
providing a lucid depiction of the yearly research focus.

The rose diagrams illustrate the annual distribution of the detected themes, indicating
that the utilization of DL models in remote sensing research has become increasingly
diverse over time (Figure 6). This reflects a wide-ranging spectrum of issues attracting
scholarly attention. For instance, in 2012, the research community exhibited a notable
inclination towards ‘Urban Studies’. During 2013 and 2015, ‘Forest and Land Studies’
primarily dominated the research focus. The year 2016 marked a significant upsurge in
interest in ‘Change Detection and Cloud Imaging’. Since 2017, researchers in the field
of remote sensing have demonstrated growing interest in ‘Land Cover Classification’,
‘Network and Feature Attention’, and ‘Sentinel Time Series’.
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Figure 6. Rose diagrams depicting the distribution of research themes. Each sector represents a theme,
its length indicates the number of papers associated with that theme, and its color distinguishes
between different themes.

Figure 7 displays the distribution of research themes across prolific countries and
institutions. Each of the top countries and institutions showcases a broad range of research
interests in remote sensing, indicating their unique research strengths and focus areas. For
instance, the People’s Republic of China shows a strong inclination towards research in the
theme of ‘Urban Studies’ and ‘Forest and Land Studies’, indicating its significant contribu-
tions in these areas. Germany, on the other hand, has displayed considerable involvement
in the ‘Neural Image Classification’ and ‘High Resolution Semantic Segmentation’ themes.
Institutions also reflect specific interests in certain research themes. The Indian Institute of
Technology (IIT) System, for instance, has displayed a significant focus on ‘Urban Studies’
and ‘Change Detection and Cloud Imaging’. The National Institute of Technology (NIT)
System is heavily involved in the ‘Forest and Land Studies’ and ‘Land Cover Classification’
themes. Moreover, China University of Geosciences shows a significant contribution to
‘Network and Feature Attention’ and ‘Sentinel Time Series’.

A diverse range of research themes can also be observed in other top institutions,
such as the Chinese Academy of Sciences and Wuhan University. This highlights their
wide-ranging contributions to different facets of remote sensing research.

Figure 7. Rose diagrams depicting the distribution of research themes across the top five countries in
research. Each sector represents a theme, its length indicates the number of papers associated with
that theme, and its color distinguishes between different themes.
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4. Discussion

This study employs econometric methods to examine the current status, trends,
and key issues of LULC research using DL models. The overall increase in scientific
articles and their citation counts reflects a significant growth in interest and impact in this
research field within the study period. Analyses based on publication sources, disciplines,
institutions, and countries/regions demonstrate that articles contributing to the innovation
and application of LULC models have been recognized and become popular, particularly
during 2018–2022. From the perspective of high-yield institutions and countries/regions,
China has participated in nearly 50% of the research, with five of the top ten high-yield
institutions originating from China. Results from the scientific collaboration analysis sug-
gest a close cooperation among institutions and countries/regions, but it is recommended
that inter-regional and inter-institutional cooperation should be enhanced. Despite signifi-
cant advancements in this field, certain issues persist. This paper discusses these issues,
specifically those related to sample datasets and models.

4.1. Data Sample

Despite significant advancements in the use of DL for image classification in LULC
over the past few years, several challenges have persisted [55]. First, DL requires a sub-
stantial volume of training data, leading to high costs in data acquisition and annotation.
Second, types and characteristics of land cover vary across different regions, necessitat-
ing region-specific data for model training [56]. Furthermore, the effective integration
of multi-source data (optical imagery, radar data, elevation data, etc.) is an important
research direction.

In recent years, scholars from various countries have released a series of sample LULC
classification datasets [57–67] that cover different scales, sensor types, time intervals, spatial
resolutions, and spectral resolutions. These provide fundamental data for related research
in this field. Existing publicly available datasets in the LULC field can be divided into
pixel-level and object-level samples. Pixel-level samples come from semantic segmentation
datasets, with different LULC boundaries annotated with the pixel unit; object-level sam-
ples come from scene recognition datasets, with annotation performed using one type of
LULC as the unit.

4.1.1. Pixel-Level LULC Remote Sensing Classification Dataset

The aim of pixel-level classification techniques is to assign a category label to each
pixel in an image. As a form of pixel-level classification, semantic segmentation annotates
the category of each pixel based on context information. In recent years, fully convolutional
networks (FCNs) [68] have attracted wide attention due to their outstanding performance
in semantic segmentation tasks. Compared to traditional classifiers, which divide pixels
based on specific spectral information, FCNs use multiple fully convolutional layers to
extract embedded high-order context features in images, achieving pixel-level annotations.

Pixel-based land use/cover sample sets are similar to remote sensing semantic seg-
mentation datasets, with the labeling process mainly involving the annotation of all pixels
that cover a specific land object (as shown in Figure 8). The advantage for this type of
sample set is that it can obtain accurate boundaries for land objects, but the downside is
that the labeling workload is relatively large. Common pixel-level sample sets are shown
in Table 4. From this table, it can be seen that most sample sets are limited by spectral
resolution, resulting in lower spatial resolutions for these datasets. Mostly, each dataset
only contains a single image and annotations for a specific study area, with only a few
recently published datasets (such as DeepGlobe [69]) having higher numbers of samples
and spatial resolutions. However, these datasets only consist of ordinary RGB or RGBNIR
images with lower spectral resolutions.
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Figure 8. Indian pines example sample data [66].

Table 4. Pixel-level LULC dataset.

Name Source Size Resolution Dimensions Classes

Indian Pines [66] AVIRIS 145 × 145 20 m 224 16
DeepGlobe [69] Mix 2448 × 2448 0.5 m 3 7

Salinas [66] AVIRIS 521 × 127 3.7 m 224 16
University of Pavia [66] ROSIS 610 × 610 1.3 m 103 9

4.1.2. Object-Level LULC Remote Sensing Classification Dataset

Scene-based classification, also known as patch-based classification, primarily divides
images into a series of LULC categories based on the main content of the images [70].
Typical scene-based classification methods will first sample a large number of patches
from a larger image for model training. Then, by classifying the scene category of each
sampled patch, a trained model will generate the LULC map [71]. However, scene-based
CNNs have some limitations in LULC classification. First, it is challenging to define
suitable patch sizes, especially when there is significant variation in the sizes of the ground
targets [72]. Additionally, sampled patches within the same large image will be processed
independently, which means contextual information is ignored during the classification
process. Scene-based methods are usually used to identify large objects, while pixel-based
methods are more suitable for detecting subtle details [73].

The image-block-based LULC sample dataset was similar to the remote sensing object
recognition dataset, and its labeling process mainly involved assigning specific LULC
categories to individual N × N image blocks (as shown in Figure 9). DL models that
correspond to this type of dataset are typically based on CNN or RNN image classification
models. The advantage of this approach is the simplicity of the labeling process, but the
drawback is the inability to obtain boundary information for specific objects. Table 5
lists widely used and influential image-block-level sample datasets, along with relevant
information about this data.

Table 5. Object-level LULC dataset.

Name Source Size Dimensions Resolution Classes

NWPU-RESISC45 [70] Google Earth 256 × 256 0.2∼30 m 3 45
UC Merced Dataset [57] Aerial Images 256 × 256 0.3 m 3 21
EuroSAT [64] Sentinel-2 64 × 64 10/20/60 m 13 10
WHU-RS19 [58] Google Earth 600 × 600 0.5 m 3 19
RSSCN7 [59] Google Earth 400 × 400 0.25∼2 m 3 7
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Figure 9. NWPU-RESISC45 example sample data [70].

4.2. Deep Learning Model

The design of using DL models for LULC research can be divided into the following
four steps [74]: (1) data preprocessing: performing denoising, fusion, dimension reduction,
resampling, and other processes on image data; (2) model training: after preprocessing of
image data, using these data to train DL models; (3) validation and evaluation: assessing the
accuracy of the trained models to ensure their performance; (4) LULC mapping: predicting
land use and land cover maps to assist urban planners and land resource managers in
making appropriate decisions Figure 10.

Figure 10. An overall framework of a DL model for LULC.

CNNs are one of the most commonly used DL models in LULC [75]. In the following
section, we delve into the prevalent network architectures employed in the classification
of LULC in remote sensing. These predominantly include CNNs, fully convolutional
networks models (FCNs) and recurrent neural network (RNNs).

4.2.1. Convolutional Neural Networks Model

CNNs are a DL approach that has achieved remarkable success in tasks such as
image classification, object detection, and semantic segmentation. They are widely used in
image classification and computer vision tasks [76]. Due to the powerful feature extraction
capability of CNNs, numerous studies have been conducted on LULC classification based
on them, and significant achievements have been made therein [77–80] (Figure 11 illustrates
the workflow of using CNNs for LULC). Early studies concerning LULC based on DL
mostly focused on feature representation or learning, while the final classification used other
simpler classifiers [81]. Verma D. et al. proposed a novel solution to generate classification
maps with a 10-band Sentinel-2B dataset and a CNN at a 10 m spatial resolution [77].
Marcos et al. [82] developed a convolutional neural network (CNN) architecture with
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rotation equivariance, applying it to two sub-decimeter land cover semantic labeling
benchmarks for a more accurate mapping of LULC. To prevent overfitting during the
model training process, Zhu et al. [83] introduced generative adversarial networks (GAN)
as a regularization technique into the CNN model for hyperspectral remote sensing image
classification. These methods have demonstrated that CNNs have made a profound and
meaningful impact in the field of LULC.

The architecture of CNNs is an ensemble of convolutional layers, max pooling layer,
and fully-connected layers [84]. In a convolutional layer, a filter is applied on the preceding
feature, producing a weighted sum that passes through an activation function to yield
the final result. This methodology calculates the kernel size to find local correlations and
maintain invariance within the data array. The outcome is a feature map that exhibits
invariance to the smallest possible unit. Subsequently, a fully-connected neural network
integrates different convolution or pooling layer phases together [85].

A convolution operation can be described as:

fa,b(x, y) = ∑
i

∑
d

hi,j(s, t)cd (1)

Fi,j = [ fa,b(1, 1), . . . , fa,b(x, y), . . . , fa,b(X, Y)] (2)

Following feature extraction, pooling or down-sampling operation comes into play
which forms a blend of features that are robust to minor distortions and translational shifts.

Pi,j = gp(Fi,j) (3)

Here, Pi,j is the pooling feature-map of the i-th layer for the j-th input feature-map
and gp symbolizes the pooling operation. Various pooling operations are utilized in CNN
such as max, average, L2, overlapping, and spatial pyramid pooling. Activation functions
speed-up the learning and provide a decision function for a convolved feature-map.

ti,j = ga(Fi,j) (4)

In the above equation, ga denotes the activation function and Fi,j denotes the convolu-
tion output, ti,j signifies the transformed output.

The training and optimization of CNN are crucial design aspects that ensure optimum
performance and manage overfitting. As data volume surges, the number of potential
challenges during the training process also amplifies. Overfitting can be controlled by
strategies such as dropout and batch normalization. Dropout deactivates multiple nodes
at the conclusion of each training cycle. Batch normalization aims to enforce a zero mean
and a one standard deviation for all activation functions in the specified layer for each
small batch, enhancing overall accuracy, making the network resilient to overfitting and
expediting the convergence of the gradient descent process. The last part of the CNN
model is the fully-connected layer that interlinks each layer with another one to classify, it
conducts an analysis on the output of all previous levels and classifies data by connecting
selected features non-linearly [86].

Figure 11. Convolutional neural networks model.
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4.2.2. Fully Convolutional Networks Model

Semantic segmentation with FCNs is a pivotal DL technique for LULC applications,
assigning land cover labels to each pixel in an image [87]. The FCNs structure, consisting
of an encoder-decoder framework, provides an end-to-end approach, especially useful for
remote sensing imagery analysis (The workflow of using FCNs for LULC is depicted in
Figure 12). The encoder, responsible for feature extraction, applies a convolution operation,
mathematically represented as:

(I ∗ K)(i, j) = ∑
m

∑
n

I(i−m, j− n)K(m, n) (5)

where I is the input, K is the kernel, and (i, j) are the spatial dimensions. To maintain the
input’s height and width, zero-padding is utilized. Following convolution, the pooling
function reduces the dimensionality of the input image, symbolically represented as:

P(i, j) = max
(x,y)∈N(i,j)

I(x, y) (6)

where P is the pooled output, N(i, j) denotes the neighborhood of pixel (i, j), and I(x, y) is
the intensity of pixel at (x, y). This step eliminates less important features while retaining
essential ones.

The encoder’s output and the upsampled decoder output are concatenated, doubling
the height and width of the image in the up-sampling layer. Lastly, the deconvolution
operation, the inverse of the convolution, generates the final output.

Wurm Michael et al. [79] proposed a fast fully convolutional network (FastFCN) to
semantically segment satellite images and thus classify LULC. Alhassan V. et al. proposed
an FCN that would incorporate a context module and an adversarial extension was pro-
posed to enhance the quality of generated LULC maps [80]. Sertel E. et al. [88] proposed a
model based on the DeepLabv3+ architecture with a ResNeXt50 encoder for the semantic
segmentation of very high-resolution (VHR) Worldview-3 satellite images, subsequently
facilitating LULC classification. Balancing context information extraction and accurate
boundary localization remains a task, due to the strong downsampling and local detail
requirements. Despite this, the utility of FCNs spans various applications within remote
sensing LULC.

Figure 12. Fully convolutional networks model.

4.2.3. Recurrent Neural Network, Long Short Term Memory Network and Gated Recurrent
Unit Model

Real-world datasets often encapsulate sequential data with inherent correlations, pos-
ing a challenge to conventional network models due to their inefficiency in handling such
correlations [89]. RNNs, LSTMs, and GRUs demonstrate proficiency in this domain, lever-
aging these inherent correlations for processing and generating sequences [90]. An RNN
handles sequential data by utilizing hidden states; the activation of each hidden state
depends on the previous stages. However, traditional RNNs will encounter the issue
of vanishing or exploding gradients when dealing with long-term sequential data [91].
Therefore, this problem is addressed by introducing LSTM and GRU architectures [92,93]
(The flowchart of the LSTM network is illustrated in Figure 13). Lyu H. et al. [94] proposed
an RNN for LULC change detection as they realized that RNNs have an advantage in
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solving challenging problems that involve sequential time series data. This significant
and meaningful work tackled long-time-series data analysis issues. Jeyavathana et al. [95]
proposed the use of LSTM in RNNs to achieve high levels of classification accuracy and to
solve the potential memory issues of internal states. Luo D. et al. [96] proposed using the
CNN-LSTM model to classify changing land use and land cover (LULC) over time in the
agricultural expansion area of the Matopiba region in Brazil. Comparisons were made with
other methods such as CNN and CNN-GRU, demonstrating their reliability for both coarse
and medium spatial resolution satellite images.

In an RNN, let us denote the input sequence as X = (X1, . . . , Xt, Xt+1), the hidden
state as H = (H1, . . . , Ht, Ht+1), and the output as Y = (Y1, . . . , Yt, Yt+1). These elements of
the input sequence are sequentially ingested by the RNNs, yielding corresponding output
sequence units for each phase and information to be utilized in the subsequent phase, thus
capitalizing on the correlation between sequences.

Figure 13. Long short term memory network model.

4.2.4. Autoencoder Model

An autoencoder (AE) is a central methodology in deep learning, crafted for hierarchical
feature representation. The AE’s architecture consists of three main layers: an input layer
(also known as the encoding layer), a hidden layer, and an output layer (also referred to
as the reconstruction or decoding layer). The hidden layer typically contains fewer nodes
compared to both the input and output layers, which have an identical count of nodes. Each
pair of layers employs a non-linearity function. The AE transforms an input layer denoted
by p from Pn to a hidden layer denoted by q from Qh, creating a latent representation. Here,
Z represents the weight matrix of the input, α denotes the bias vector for the hidden layer,
and f () signifies the activation function. Thus, we have:

q = f (Zp + α) (7)

After this step, the latent vector q is utilized to reverse map to output t, belonging to Tn,
where

t = f (λq + δ) (8)

In the equation above, t stands for the output layer, λ represents the weight matrix transi-
tioning from the hidden layer to the output layer, and δ is the output layer’s bias vector.
The objective during training is to minimize the reconstruction error denoted by e(p, t)
between p and t.

e(p, t) (9)

If this error is below a certain threshold, the latent representation becomes useful for
minimizing feature count. An illustration of the AE structure is depicted in Figure 14.
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Figure 14. Autoencoder model.

4.2.5. Adversarial Extension Model

Generative adversarial networks (GANs) are a type of deep learning model, designed
for synthesizing data, with applications in Remote Sensing (RS) including LULC, classi-
fication, and super-resolution. The process of Generative Adversarial Networks (GANs)
479 is depicted in Figure 15. Singh A et al. [97] introduced a data augmentation technique
based on spectral index generative adversarial networks to train deep convolutional neural
networks, utilizing the spectral features of multispectral images to support data augmenta-
tion, aimed to mitigate the issue of limited LULC sample data. He C et al. [98] proposed
an end-to-end GAN integrated with a conditional random field for the semantic segmen-
tation of RS images. The integration of the skip-connected encoder-decoder generator
with the CRF layer aids in extracting better local and global information from the images.
The essence of GANs is two interactive models: a generator (g) and a discriminator (d).
The generator’s role is to fabricate data, and the discriminator’s is to differentiate between
real and synthetic data.

In the framework of GANs, we define a dataset M comprising of m training images
and corresponding ground-truth maps. The generator is a conditional probability model,
trained to produce maps akin to ground truth. Conversely, the discriminator, based on a
joint probability model, aims to correctly identify the ground truth maps and discriminate
between these and maps produced by the generator.

The generator loss function integrates the multi-class entropy loss (Lmce) with a binary
class entropy loss (Lbce). The multi-class entropy loss is defined as:

Lmce(a, â) = −
I

∑
i=1

ai log(âi), (10)

and the binary class entropy loss as:

Lbce(b, b̂) = −(b log(b̂) + (1− b) log(1− b̂)), (11)

where a is ground-truth, â is the predicted output, I is the number of classes, and b is
the binary probability for predicted output and ground truth, while b̂ is the predicted
probability between 0 and 1.

The discriminator aims to minimize the loss function:

J

∑
j=1

Lbce(d(xj, yj), 1) + Lbce(d(xj, g(xj)), 0), (12)

while the generator minimizes the multi-class entropy loss but also tries to degrade the
performance of the discriminator. This results in the following loss function:
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J

∑
j=1

Lmce(g(xj), yj) + λLbce(d(xj, g(xj)), 1), (13)

where λ is a regularization constant.
The parameters of the generator and discriminator, represented by θg and θd, respec-

tively, are optimized by minimizing a hybrid loss function:

L(θg, θd) =
J

∑
j=1

Lmce(g(xj), yj)− λ(Lbce(d(xj, yj), 1) + Lbce(d(xj, g(xj)), 0)). (14)

In this adversarial setting, pre-trained base networks are fine-tuned with the discrimi-
nator to maximize the overall performance.

Figure 15. Generative adversarial networks model.

In the analysis of literature data spanning 2013 to 2023, we identified patterns in the
usage of different DL models for LULC classification tasks. The corresponding bar chart
in Figure 16 captures the frequency of model usage over these years. CNNs emerged as
the most commonly employed model throughout the given period. This trend can be
attributed to CNN’s proficiency in image classification tasks, which is a critical aspect of
LULC analysis. FCNs, a variant of CNNs tailored for semantic segmentation tasks, also
demonstrated significant representation. Their ability to handle spatially organized image
data makes them well-suited for LULC classification. RNNs and their variants, LSTM
and GRU, were used less frequently. This is likely due to their optimal applicability to
time-series data rather than spatial data, although their usage in combination with CNNs
for spatio-temporal data was noted. In summary, the literature data reveals a growing and
diverse application of DL models in LULC tasks over the past decade.

Figure 16. Distribution of DL models used in LULC from 2013 to 2023.
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5. Conclusions

This study employed topic-driven bibliometric and knowledge graph analysis meth-
ods to examine academic articles about the application of DL technology in LULC research
from 2013 to 2023. These research findings not only highlighted the main research questions
of interest for scholars but also identified the article and citation counts, primary sources of
publications, themes, institutions, and countries/regions of origin, as well as visualizing
the academic collaboration relationships.

This study contributes to the LULC field in three ways. First, it is intended to aid
researchers and policy-makers in this field to better comprehend the history of, present
status of, and future trends of in DL technology in LULC research. Second, with its
study of high-yield institutions and countries/regions, it can help scholars, particularly
newcomers to the field, share research findings, collaborate, and identify key participants
in the application of DL technology in the LULC field. Third, the results of this analysis of
high-yield publication sources and themes can provide scholars with guidance regarding
where to submit their work. Most importantly, word cloud and theme analysis can offer
researchers insights into the important research issues in this field.
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