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Abstract: Land administration and management systems (LAMSs) have already made progress in the
field of 3D Cadastre and the visualization of complex urban properties to support property markets
and provide geospatial information for the sustainable management of smart cities. However, in less
developed economies, with informally developed urban areas—the so-called self-made cities—the 2D
LAMSs are left behind. Usually, they are less effective and mainly incomplete since a large number of
informal constructions remain unregistered. This paper presents the latest results of an innovative
on-going research aiming to structure, test and propose a low-cost but reliable enough methodology
to support the simultaneous and fast implementation of both 2D land parcel and 3D property unit
registration of informal, multi-story and unregistered constructions. An Indoor Positioning System
(IPS) built upon low-cost Bluetooth technology combined with an innovative machine learning
algorithm and connected with a 3D LADM-based cadastral mapping mobile application are the two
key components of the technical solution under investigation. The proposed solution is tested for the
first floor of a multi-room office building. The main conclusions concern the potential, usability and
reliability of the method.

Keywords: 3D Cadastre; crowdsourcing; 3D mapping; machine learning; indoor localization;
informal development

1. Introduction

With the development of the Land Administration Domain Model (LADM) stan-
dard [1], the main guidelines for developing and maintaining a Land Administration
System (LAS) are provided. A flexible abstract of the conceptual model able to support the
development of 2D and 3D LASs is generated ensuring interoperability in the representa-
tion and documentation of Rights, Restrictions and Responsibilities (RRRs) [2,3]. However,
most of the research in the field of 3D Cadastre is focused on condominiums and apartments
in developed economies where the high value of land requires precise positioning of the
legal boundaries within each construction, which increases the times and costs of cadastral
surveys [4–10]. Several approaches have been proposed aiming to develop LADM-based
country profiles [11–14] and to settle a link between LADM and commonly used tech-
nical data models and application schemas, such as City Geography Markup Language
(CityGML) [13–15], IndoorGML [16–18], Building Information Models (BIMs)/Industry
Foundation Classes (IFCs) [19–23] and LandXML/InfraGML [24]. However, the implemen-
tation of these approaches requires time, as well as financial and computational resources.
Trying to moderate these requirements, some researchers proposed the utilization of al-
ready existing 3D data models (BIMs/IFCs) from other application areas [25]. Nonetheless,
the global implementation range of such a solution is rather restricted due to their limited
availability. Especially in informal low-income areas, the predecessor of such data or the
acquisition of precise cadastral data is hardly achievable, but necessary in order to prevent
conflicts in regularization and land readjustment procedures.
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In recent years the issue of informal constructions has received a lot of attention,
especially in the so-called ‘global South’ where this phenomenon is most encountered.
Unrecognized, unregistered 2D and 3D rights are found to a great extent in many countries
of Africa and Latin America, such as Uganda, New Guinea, Trinidad and Tobago and
various Caribbean countries, but also in some countries of the Asia-Pacific region and
even in some UNECE countries. In informally developed cities, such as in the self-made
cities in the UNECE region [26] the effectiveness of LAM systems is usually problematic,
unable to efficiently support the current land management needs due to a large amount of
missing data in terms of buildings, property units and right holders and their unrecognized
rights [27–30].

According to UN guidelines [31,32], to successfully meet the UN SDGs by 2030, such
informal rights on land and constructions have to be identified, mapped and, if possible,
recognized, formalized and registered. Thus, countries that faced this phenomenon were
encouraged to initiate formalization projects to legalize and register as many as possible
informal constructions into the LAMs for their integration into the economic cycle [33,34].
Formalization and registration of such constructions and the rights on them is anticipated
to eliminate the effectiveness divide among the developed and less developed LAMSs.

Until now, several fit-for-purpose solutions have been proposed by international and
academic bodies to deploy 2D LAS in pro-poor environments [35,36]. In these approaches,
the use of crowdsourcing techniques and mobile GIS (m-services) is usually chosen, while
all the available cartographic basemaps are taken into consideration, including UAVs,
digital orthoimages (if existed) or even aerial photos of lower geometric accuracy [4,37].
Occasionally, a handheld GPS/GNSS antenna or/and the integrated consumer-grade
GPS/GNSS sensor of the mobile device is exploited, in order to achieve more reliable and
accurate results.

However, the more complex the distribution and sequence of physical property units,
the greater the need for the compilation of a 3D cadastral system. The potential of 3D
cadastral infrastructure to handle the informal urban development is investigated in a few
studies, concluding that there is a need for that but its realization is not yet considered
to be pragmatic due to the costs and other requirements [38,39]. At the same time, the
introduction of fit-for-purpose tactics in 3D crowdsourced cadastral surveys has already
proven that it can lead to reliable results, while keeping the duration and costs of the 3D
cadastral field surveys low [25,40,41].

Unlike the 2D Cadastre, the 3D Cadastre requires the knowledge of all the multi-level
individual property units included in a spatial unit. Determining these ownership units
cannot be accomplished by viewing only an orthophoto or an aerial photo of the study
area. In the case of developed areas, the building blueprints are utilized. However, this is
not applicable in the informal self-made cities, where the multi-level constructions have
been implemented illegally and therefore no plans exist. In the absence of an appropriate
registration basemap, other methods should be used to map the indoor proprietary situa-
tion. As the GPS/GNSS signal is weak in the interior of buildings, an alternative method of
locating the property boundaries and construction of each floor plan should be used.

An Indoor Position System (IPS) able to provide the 3D position of the property
boundaries, fast and reliable, may constitute the best-fitted solution. The recent intro-
duction of machine learning in the field of IPS managed to overcome the drawbacks and
weaknesses of the traditional IPS methodologies, increasing their capabilities. Wi-Fi and
Bluetooth Low Energy (BLE) are the most commonly used technologies for developing
IPSs. Among the different types of available technologies, BLE provides relatively high
accuracy, but also has a variety of other advantages, such as low cost, easy integration and
low power consumption [42]. Therefore, it is particularly suitable for the implementation
of low-cost IPS. Considering that in low-income areas not everyone has access to cable
internet and therefore to Wi-Fi (as it requires special infrastructure in the building), wire-
less and portable technologies such as BLE are preferable for the development of indoor
positioning networks.
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This paper presents a part of an ongoing research project aligned with the global
efforts for 3D Cadastres. The goal is to develop low-cost and reliable technical processes
for the immediate implementation of 3D cadastral systems everywhere, so that no one
is left behind. The architecture of the technical system follows the international LADM
standard, in order for the structure and documentation of 2D and 3D cadastral data to be
based on the same foundations, thus ensuring the uniformity and interoperability among
the cadastral systems of all countries.

The main objective of this work is to investigate the potential of technologies, tools
and techniques for Indoor Positioning in the automatic acquisition of coordinates for
indoor cadastre in the absence of architectural floor plans that would be used to develop a
3D crowdsourced cadastre. This paper is based on the assumption that formalization of
informal constructions, property registration, urban land readjustment projects and future
land reforms in the self-made cities may be better handled if property rights in the third
dimension are considered, and is a follow-up of the research initiated and presented in [41]
that intends to investigate low-cost methods aiming to provide a practical technical tool for
indoor 2D/3D cadastral mapping using m-services, Bluetooth technology and innovative
machine learning techniques. Unlike [41], the proposed machine learning architecture in
this paper is tested with real data and under real conditions to investigate the weaknesses
and the influencing factors.

2. Related Work
2.1. Fit-For-Purpose 3D Cadastre

It is now accepted that a cadastral system may be comprised of various datasets
of variable quality integrated together in a fit-for-purpose whole [43]. In recent years,
data collection methods such as VGI and crowdsourcing techniques have claimed a place
as a reliable cadastral data source, strengthening their role in the process for the ini-
tial implementation of 2D and 3D cadastre in both the developing and the developed
world [25,36,37,40,41,43–50]. To date, much research has been carried out trying to manage
the 3D aspect of the physical objects and introduce crowdsourcing in 3D cadastral survey-
ing procedures. Determining the location of a property unit in 3D space through a 3D point
feature or the schematic illustration of the 3D ownership situation were some of the first
efforts towards this direction. Ref. [49] presents a LADM-based crowdsourced approach
for 3D cadastral data acquisition through a mobile device. The user is invited to submit
information regarding: (i) the height of property unit, (ii) the coordinates of a reference
point indicating the building in which the property is located (a position in the center of
the building is preferred) and (iii) the property unit surface relation, indicating whether
the property unit is located above, below or on the ground surface. The coordinate is read
either from the State Geodetic Administration Geoportal and entered in the mobile appli-
cation; or it is determined through the smartphone GPS receiver. Furthermore, the user
can provide information regarding the roof type of the building where his/her property
is located, by selecting the best fitted type through three different roof types: (i) Flat, (ii)
Inclined or (iii) Complex. This data is combined with existing 2D (official) information
regarding the real property land parcel and premises, and then is delivered through the
mobile application to the official authority. The aim of this effort is to assist and speed up
the implementation process of 3D Cadastres, incorporating citizens participation in the
cadastral surveys. Ref. [50] proposed an interesting web-based crowdsourced approach,
enabling the contributor to identify and choose the ownership situation that responds to
his/her proprietary situation, through a set of alternative sketches depicting different types
of land and property ownership situations. The contributor may also submit additional
data concerning the location of the declared property (address, post code, point on a map),
legal documents proving his/her rights and additional comments concerning the cadas-
tral case. Through this process, important elements are collected, with a key role in the
subsequent management of the complicated 3D property situations.
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Beside this approach, the metric identification of 3D cadastral objects is a more complex
and challenging, yet interesting and useful approach. Especially when it comes to interior
cadastral objects, the determination and identification process becomes more demanding
in terms of geospatial registration backgrounds, acquisition tools and technologies. The
recording of 3D cadastral objects through a crowdsourced approach is based on existing
2D cadastral maps, orthophotos, existing architectural floor plans of the buildings or even
BIM data, when available, in combination with citizen contributions in delivering all the
necessary proprietary information into the cadastral system, mainly through mobile phone
devices. Ref. [40] designed an innovative LADM-based low-cost technical framework
in order to provide a modern technical solution for 3D Cadastres. Team leaders were
established in each part of the area under cadastral survey. The team leaders have a
significant role in the data collection process, as well as in the organization, training and the
technical support of the whole procedure. A prototype mobile application was developed
enabling the contributor to capture and visualize 3D cadastral data concerning the land
and property units in real-time. The application allows the visualization of the declared
property premises as block models, located either above or below the ground surface. First,
the contributor is asked to provide additional descriptive data concerning the right holder
and the property unit (name, address, area, type of right, etc.) together with some geometric
information concerning the height of the property unit and the floor where the property is
located. Additional data may be also submitted, such as photos illustrating the declared
property unit or other available documents (e.g., plans, deeds, etc.) proving the right holder
rights. The identification of the indoor cadastral spaces is conducted by the contributors,
through the selection of the property boundary point features on the architectural floor plan,
where the declared property is located. By tapping the point vertices on the basemap on the
mobile phone screen, a polygon feature depicting the property boundaries is created. Once
all the required data are inserted in the mobile application, the 3D property unit model
is automatically generated through a model-driven approach, exploiting the digitized 2D
polygonal boundaries of the property unit on an available basemap (the floor plans) and
the declared geometric information.

In addition to architectural floor plans, BIM data is one of the most accurate back-
ground options for the implementation of 3D cadastral surveys, since it presents in detail
the structure and distribution of indoor cadastral space in 3D. Ref. [25] proposed an in-
teresting crowdsourced approaches for the implementation of 3D cadastral surveys by
exploiting existing BIM as registration background. They developed a LADM-based web
application that offers a set of tools allowing the contributor to: (i) manage the visibility
model of the BIM, through enabling or disabling the layers representing the building in
LoD1 or LoD4, assisting the user to locate his/her property; (ii) implement length and area
calculations on/of 3D objects; (iii) view the building interior spaces by slicing the BIM,
either vertically or horizontally; and (iv) select his/her property in the BIM and collect the
necessary cadastral information about his/her rights.

However, these crowdsourced solutions rely on the existence of ideal conditions,
assuming that highly accurate 3D data, such as BIM data and/or architectural floor plans
of the buildings, are available. This may constitute the case for the plurality of new formal
constructions in the planned areas but is not widely applicable. Beyond BIM data, even
the architectural floor plans may not be available (e.g., for old constructions where the
documents that accompany the building permits may have been destroyed or lost, or
simply do not exist for the self-made informal constructions) and the creation of such plans
using traditional methods is not affordable. Thus, new cadastral surveys both for the land
and the buildings (indoor property unit legal boundaries at each floor) are needed.

In the absence of such cadastral maps several options to proceed with the identification
of legal boundaries are proposed, including (a) the use of the GPS sensor of the smartphone
with an accuracy of a few meters, for a fit-for-purpose field survey, or (b) the use of external
support GNSS (Global Navigation Satellite System) tools and resources, that enables higher
positioning accuracy [41]. This approach is only applicable for field surveys in sparsely
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developed outdoor areas. Since the GPS/GNSS signal is weak in densely developed urban
areas and moreover in the interior of the buildings, another solution is needed for the
recording of the complex legal boundaries inside the constructions.

Ref. [41] proposes an innovative approach for crowdsourced cadastral data acquisi-
tion, through the utilization of machine learning techniques, m-services and Bluetooth
technology. It proposes the establishment of a Bluetooth-based IPS; the utilization of a
Bluetooth-enabled mobile phone device as a data capturing tool; and an alternative machine
learning architecture for Bluetooth signal analysis and provision of the space coordinates
of the mobile device. The main objective of [41] is to investigate the potentials of such a
solution for the initial implementation of 3D indoor cadastral surveys, aiming to enable the
future automatic acquisition of indoor property boundary points coordinates and creating
a reliable floor plan when this is not available. The proposed solution was tested on bench-
marked data concluding in cm-level of accuracy. However, additional research is needed to
clarify all the aspects of this venture. In this paper, an attempt is made to take this research
a step forward, bringing the proposed solution from theory to practice.

2.2. Machine Learning in Indoor Positioning Systems

Lately, we have witnessed the introduction of machine learning techniques in indoor
positioning as they seem to be very effective in extracting knowledge, discovering, learning
and improving the positional accuracy [51]. Once trained, they can quickly produce reliable
predictions. Combining machine learning algorithms with technologies such as Wi-Fi,
Bluetooth Low Energy (BLE), ZigBee, etc., pioneer Indoor Positioning solutions may be
provided [52–54]. Among these technologies, BLE has some advantages that make it
preferable for the development of low-cost applications. Specifically, BLE has a small size,
is portable, maintains low energy consumption and is economically tolerable [54,55].

Over time, several approaches have been proposed, attempting to use neural net-
works for Wi-Fi or/and Bluetooth indoor localization. Ref. [56] proposed a combination
of Artificial Neural Network (ANN) and Database Correlation method based on Wi-Fi
fingerprints. A Back Propagation Neural Network (BPNN) is employed in [57], proving
that AAN in combination with Wi-Fi fingerprints can work beneficially for indoor posi-
tioning. A different approach is proposed by [58]; they used channel state information
(CSI) instead of RSSI fingerprints, while a greedy learning algorithm was used aiming to
reduce the location error. Ref. [52] proposed a deep learning fingerprinting system, entitled
“DeepFi”, for indoor localization with Wi-Fi based on Channel State Information (CSI).
Their approach achieved high accuracy that overcame the performance of other traditional
methods, such as FIFS, Horus and Maximum Likelihood. Ref. [59] proposed an indoor
multi-sensor positioning system based on deep belief networks (DBN), aiming to obtain
more stable and richer RSSI fingerprint characteristics. They used data from both Bluetooth
and Wi-Fi, achieving an average localization accuracy of 0.52 m.

Following this, Ref. [60] proposed a BLE fingerprinting based machine learning loca-
tion and tracking system for indoor positioning. For performance evaluation, they used
two of the most popular machine learning algorithms, that is the logistic regression (LR)
and support vector machine (SVM). As emerged from the experimental implementation,
the proposed method has an average estimation error of 50 cm. Ref. [61] compared the per-
formance of different machine learning algorithms for BLE fingerprinting. Specifically, they
investigated the performance of Artificial Neural Network Regression (ANN), Multiple
Linear Regression (MLR), Random Forest Regression (RF) and Support Vector Regression
(SVR), concluding that SVM has better performance in terms of Min Error and Median
of Error.

In recent literature, most BLE based IPSs use an RSSI ranging technique to manage and
mitigate the fluctuations of the wireless signals. Fluctuation in RSSI is a challenging problem
as it directly affects the positioning accuracy of the IPS. Specifically, RSSI fingerprints are
usually combined with different machine learning methods, such as KNN, SVM and Neural
Networks (NN), to produce models [53]. In commonly used machine learning algorithms
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that have been used so far for indoor localization purposes, RSS vectors of the signals
are considered as statistically independent. However, this does not correspond to reality.
Instead, there are sequential dependencies between the RSS vectors. By taking them into
account, the performance of the system may be increased. In this regard, Recurrent Neural
Networks (RNNs) can be very beneficial. Recently, Long Short-Term Memory (LSTM)-
based models have emerged, which can exploit the sequential correlation of time-varying
RSSI measurements and consequently leverage this information to reduce RSSI fluctuations.
Thus, by using deep neural networks which are specifically good for handling sequential
problems, the positional accuracy of the IPSs can be improved. Ref. [51] presented a
stacked LSTM approach for indoor positioning using Wi-Fi signals. They compared the
performance of the proposed approach to other deep learning algorithms, namely KNN
and Vanilla LSTM. They conclude that the proposed network outperforms KNN and Vanilla
LSTM by 74.4% and 18.1%, respectively.

3. Indoor Cadastral Technical Framework

To meet the UN SDGs by 2030, informal rights on land and constructions have to be
identified, mapped and, if possible, recognized, formalized and registered. Due to the
limited financial resources of self-created cities, the implementation of 2D/3D cadastral
surveys following traditional techniques is impossible. At the same time, the complexity in
the geometry and the sequence between the multi-level constructions makes imperative the
need for their identification in three dimensions. Specifically, for low-income areas, where
the 2D Cadastre does not exist or is not complete, the simultaneous implementation of 2D
and 3D Cadastre seems to be beneficial.

Since the implementation of 2D/3D cadastral surveys is directly linked to the archi-
tectural plans, that in case of illegal and informal construction do not exist, an alternative
plan-free solution is required to release the crowdsourced cadastral surveys from this
obligatory condition. Until now, several fit-for-purpose approaches have been proposed
for the determination of 2D property boundaries on low-precision basemaps or in the
absence of any cartographic basemap, exploiting GPS/GNSS sensors. However, due to the
inability of the GPS/GNSS sensors to provide accurate and reliable results in the interior of
buildings, other low-cost and reliable localization solutions should be investigated for the
fast implementation of 2D/3D indoor cadastral mapping. The use of low-cost IPS solutions
for crowdsourced 2D/3D indoor cadastral mapping is an almost unexplored field, with
particular interest and prospects.

In this paper we investigate the potential introduction of low-cost and portable BLE
IPS in 2D/3D indoor mobile-based crowdsourced cadastral surveys. We propose the
establishment of a collaborative framework between m-services, BLE technology and
machine learning techniques to automatically acquire the coordinates of indoor property
boundaries, considering that at a later stage these coordinates will be used for the generation
of a reliable property boundaries plan. Achieving this task is of great importance for the
implementation of 2D/3D indoor crowdsourced cadastral surveys, when the available
registration basemap does not precisely illustrate either the building nor the building unit
(property unit) boundaries. Once the property boundaries plan is formed through this
approach, the generation of the 3D property unit model may be implemented following a
similar process to [40].

The proposed framework is modelled on the basis of a Bluetooth-based IPS. Its opera-
tion is based on three inter-communicating technological tools:

(i) Bluetooth beacons—wireless technology, for the establishment of the IPS;
(ii) a Bluetooth-enabled mobile phone device, to be used as capturing tool;
(iii) a machine learning algorithm, to estimate/provide the indoor points coordinates.

The key idea of the proposed IPS solution is the strategic distribution of the beacons in
the interior environment of a building; the exploitation of a mobile device to measure in real-
time the strength of the signals emitted by the beacons, when located on an indoor Point
of Interest (POI); and finally the determination of the mobile device position coordinates
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through the machine learning algorithm. More specifically, the Bluetooth sensor of the
mobile device communicates with the established IPS, providing data about its relative
position throughout the IPS range. The received signals are processed by a machine learning
algorithm, providing the positions of the property unit boundaries, therefore enabling the
identification, capture and form of the spatial plan view of the declared property. The
user of the mobile device may move towards the boundaries of the property unit and
transiently place the mobile device on the POI located in the interior of the building floor
that he/she want to capture. By choosing through the mobile to receive the coordinates of
the point, the Bluetooth signals are processed by the machine learning algorithm and the
point coordinates are determined. The technical system overview is depicted in Figure 1.
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It is worth noting that the Bluetooth itself does not have any built-in location intelli-
gence. However, through the assignment of physical/real coordinates to the beacons and
estimating the distance between the beacon and the mobile device through signals analysis,
the determination of the mobile phone physical coordinates is feasible. The proposed
framework is still under investigation and thus the factors affecting its performance in real
conditions have not been precisely determined yet, e.g., distribution of beacons, minimum
number of beacons, etc. These shortcomings are aimed to be resolved both through the
present and future research towards this subject.

4. Machine Learning Architecture

Recently, several research methods have been proposed for indoor positioning, exploit-
ing signals derived by low-cost sensors [54] such as Bluetooth, ZigBee and most recently
Wi-Fi data structures. These signals are processed using advanced machine learning mod-
els, such as deep learning neural networks, in order to measure the indoor positioning
of an object based on the respective signal distortions. In this paper, a Bluetooth sensing
interface is exploited for Indoor Positioning incorporating with a Long-Short Term Memory
(LSTM) neural network for data processing and analysis [62]. The purpose of the LSTM
neural network structure is to estimate the indoor coordinates exploiting the distortion of
Bluetooth signals.

4.1. The Sensing Infrastructure

Bluetooth wireless technology is exploited as far as the sensing interface of this paper.
The installed infrastructure operates in the band of 2.402 and 2.480 GHz including a 2 MHz
wide guard bands. The Bluetooth sensors have no built-in location intelligence. Instead,
the machine learning model is responsible for transforming the low-level emitted signals
into high-level positioning measurements. An overview of the proposed Bluetooth sensing
interfaces is depicted in Figure 1.

As the Bluetooth signal is delivered to the space, it undergoes multiple scattering
affecting the overall strength of the signal. These signal distortion patterns are processed by
the machine learning neural network structure in order to estimate the indoor positioning
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of an object. In our particular implementation we used the Received Signal Strength
Indication (RSSI) as it was defined in the IEEE 802.11 standard. RSSI is a relative index
which indicates the power level received by an antenna. Based on the fluctuation of radio
signals, we can get a fairly accurate result of the RSSI trending. We can easily know if the
signal is getting stronger or weaker, therefore, we will know if we are moving towards or
away from the source. Even better, if we understand the specific mapping between the RSSI
and the location of the specific receiving device, we could have a fairly accurate estimate
of the distance [63]. By deploying multiple Bluetooth antennas, you can use the varying
signal strength readings to accurately calculate the exact position of a device in relation to
these antennas.

4.2. Modeling Spatial Coordinates Using Mahcine Learning

In this paper an LSTM neural network model is adopted for predicting the indoor
positioning of an object or target in a space using signal distortions from Bluetooth sensors.
Let us denote Ij(t) as the time series signal of the j-th Bluetooth device out of N available.
These N time series signals Ij(t), j = 1, 2, . . . , N are fed as inputs to the LSTM model
for spatial coordinate prediction. For this purpose, we assume a column vector yc =[
yc(p1) . . . yc(pK)

]T containing the spatial coordinates of K target points in the space.
Let us also assume a time window of P + 1 time series samples of the N Bluetooth devices,
expressing the signal distortion information at the time instance t. More specifically, we
have that:

X(t) =

x1(t) . . . x1(t− P)
... . . .

...
xK(t) . . . xK(t− P)


T

(1)

In Equation (1), variable X(t) is a matric that includes all the K signals of the Bluetooth
sensors over a time window of P + 1 samples. Therefore, we have input-output pairs of the
form (X(t), yc).

Using an extended experimentational framework, we measured the time series signals
of the Bluetooth sensors over several time instances, tj with j = 1, 2, . . . , M. In other words,
variable M indicates the number of samples gathered throughout the experimentational
phase in order to construct a labelled (ground truth) dataset which is used for training the
LSTM neural network model. Let us denote as Str the training data set including M pairs
of the form:

Str =
{
(X(t1), yc) . . .

(
X(tM), yc

)}
(2)

It is clear that a non-linear relationship exists among the matrix X(t) and the spatial
coordinates yc. Therefore, we have that:

yc = f(X(ti)) (3)

where in Equation (3) f(·) denotes a vector-valued non-linear function that is modeled
through the LSTM neural network, and matrix X(ti) are the input signals, denoting the
distrortion of the K Bluetooth time series signals over a time window of P + 1 samples.

4.3. Feedforwards Neural Networks as Universal Approximators

One of the main difficutlies regarding Equation (3) is that the non-linear vector-valued
f(·) is actually unknown. In order to estimate this function we used a training set of
the form of Equation (2). The purpose of the training set is to estimate the unknown
parameters (weights) of a neural network model used to approximate the f(·). Feedforward
neural networks have been proven to be universal approximator, meaning that they can
approximate any non-linear function (with some constaints about its form and continuity)
with any degree of accuracy [64].

In particular, let us denote a feedforward neural network of one hidden layer of L
neurons. The input matirx signal X(t) is first propagated into the L-neurons of the network.
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Each neuron approximates a non-linear operation based on the relationship of the sigmoid
function. In other words, let us assume wi,j a weight that connects the i-th element of
the input singal X(t) with the j-th hidden neuron out of L available. In this notation, we
assume that the matrix input signal has been vectorized, creating Q ≡ K·(P + 1) elements
of a vector. Therefore, the values of index i ranges between i = 1, 2, . . . , Q and index
j = 1, 2, . . . , L.

Figure 2 presents the structure of a feedforward neural network of one hidden layer
of L neurons. Each neuron operates a non-linear relationship of sigmoid function, that
is 1/(1 + e−x). Initially, the matrix input vector X(ti) (see Equation (1)) is vectorized and
consequently an input vector x(t) = vec(X(t)) of Q ≡ K·(P + 1) dimension is created. This
input signal x(t) is propagated into the L hidden neurons of the first hidden layer weights
by the parameters wi,j As we have stated, each neuron implements the sigmoid function,
and therefore we have that:

u(t) =

u1(t)
...

uL(t)

 =

 sigmoid
(
wT

1 ·x(t)
)

...
signmoid

(
wT

L·x(t)
)
 (4)

Land 2023, 12, 8 11 of 24 
 

 
Figure 2. The structure of a feedforward neural network of one hidden layer of L neurons. 

4.4. Modeling Temporal Inter-Depenndencies of the Bluetooth Signal Distrortion 
The main limitation of the proposed approach is that a feedforward neural network 

has no reccurrent capabilities. Therefore, it is not capable of modelling temporal 
relationships occurred in the Bluetooth signals. In order to address this drawback, in this 
paper, we propose an LSTM neural network model for predicting the spatial coordinates 
of the k space points. LSTM is actually a Recurrent Neural Network (RNN) able to model 
long-range dependencies [65]. The strucure of a RNN enables the ouput of a hidden layer 
neuron to feed back to its input at the next time interval. In this way, the RNN model is 
capable of modelling temporal relationships. In other words, we have: 

𝑢௜ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑤௜
் ∙ 𝑥(𝑡) + 𝑤ሬሬ⃑ ௜

் ∙ 𝑢(𝑡 − 1) + 𝑤ሬሬ⃑ ௜
் ∙ 𝑢(𝑡 + 1)) (6)

In Equation (6), variables wሬሬሬ⃑ ௜ and w⃐ሬሬሬ௜  are the wights controlling the effect of previous 
and next hidden layer neuron response on the current ouput. The weights wሬሬሬ⃑ ௜  and w⃐ሬሬሬ௜ are 
of L dimension. Figure 3 presents the architecture of a RNN network [62]. It is actually 
relied on a conventional feedforward neural network (see Secion 4.3) with recurrent 
capabilities between the hidden neurons. 

 
Figure 3. The architecture of a recurrent neural network model. 

  

Input Layer

Vec (  )
.
.
.

  ,

  ,

  ,

  ,

     

 

 

 ( )
.
.
.

Hidden Layer Output Layer

1st hidden neuron

Lth hidden neuron

 

 

Hidden Nodes

Output Node

Feedback

Input Nodes

Figure 2. The structure of a feedforward neural network of one hidden layer of L neurons.

In this notation, u(t) is a vector including the output of the L hidden neurons as a
response of the sigmoid operation over the inner product of the output and the weights [64].
In this notation, vector wi =

[
w1,i . . . wq,i

]T includes all the weights connecting input
element of x(t) with the i hidden neuron out of L available.

The outputs of the L hidden neurons are again propagated to the next output layer
which is responsible for estimating the spatial coordinate for a space point. Therefore, we
have that:

yc(pk) = ∑L
i ui ∗ vi (5)

In Equation (5), the weights vi are the ones connecting the i-th hidden neuron with the
output one. In this scenario, we assume that the spatial coordinates of the k-th space point
can be estimated as a linear product of the hidden layer outputs ui and the weights vi.

4.4. Modeling Temporal Inter-Depenndencies of the Bluetooth Signal Distrortion

The main limitation of the proposed approach is that a feedforward neural network has
no reccurrent capabilities. Therefore, it is not capable of modelling temporal relationships
occurred in the Bluetooth signals. In order to address this drawback, in this paper, we
propose an LSTM neural network model for predicting the spatial coordinates of the k space
points. LSTM is actually a Recurrent Neural Network (RNN) able to model long-range
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dependencies [65]. The strucure of a RNN enables the ouput of a hidden layer neuron to
feed back to its input at the next time interval. In this way, the RNN model is capable of
modelling temporal relationships. In other words, we have:

ui = sigmoid
(

wT
i ·x(t) +

⇀
w

T
i ·u(t− 1) +

⇀
w

T
i ·u(t + 1)

)
(6)

In Equation (6), variables
⇀
wi and

↼
wi are the wights controlling the effect of previous

and next hidden layer neuron response on the current ouput. The weights
⇀
wi and

↼
wi are of

L dimension. Figure 3 presents the architecture of a RNN network [62]. It is actually relied
on a conventional feedforward neural network (see Secion 4.3) with recurrent capabilities
between the hidden neurons.
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4.5. Modeling Long-Range Temporal Dependencies

One forward and backward pass is not adequate to model the complicated temporal
relationships of the Bluetooth signals. For this reason, in this paper, we adopted LSTM
structures for predicting the spatial coordinates of the k space points, that is yc(pk). The
architecture of the proposed bi-directional LSTM network cells and how data are propa-
gated through the architecture are shown in Figure 4. The architecture of the proposed
bi-directional LSTM network is shown in Figure 4. In this context, bi-directional means
that both forward and backward inter-dependencies are supported. This is an interesting
aspect in predicting spatial coordinate information from the distribirtion of transmitted
Bluetooth signals. Actually, our target is not to predict future signal samples, but to esti-
mate a constast spatial value (space coordinates of target points) through the distrortion of
the Bluetooth signals.
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Figure 4. (a) The architecture of the memory cell for the Long Short-Term Memory (LSTM) network.
(b) Bi-directional LSTM unfolded in time.
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4.6. The Memory Cell

The heart of the adopted bi-directional LSTM neural network is the memory cell,
which is depicted in Figure 4a. The memory cell contains three different components:
(i) the forget gate, (ii) the input gate and the input node and (iii) the output gate.

The forget gate: The purpose of this gate is to throw out information of the memory
cell. The output takes values in the range of 0 and 1. This is mainly due to the sigmoid
activation function, depicted with the symbol “σ” in Figure 5.
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Figure 5. The structure of the memory cell adopted in the bi-directional LSTM neural network model.

The input node/gate: The input node operates in a similar manner compared to the
hidden layer operation; the main activation function of this unit is “tanH”. This node
regulates the significance of the input data.

The output gate: This regulates whether information of the current memory cell is
“significant enough” to contribute to the next cell level.

Therefore, the operation of all the aforementioned modules is mathematically formu-
lated by:

{F(n), H(n), I(n), O(n)} = {σ, tanh}(
wT,{F,H,I,O}·b(t) +→r

T,{F,H,I,O}
·u(t− 1) +

↼
r

T,{F,H,I,O}
j,i ·uj(t + 1)

)
(7)

4.7. Bayesian Optimization

In this paper, the parameters of the LSTM model are estimated through the use of
a Bayesian optimization policy similar to the approach adopted in [66]. Selection of the
Bayesian approach for LSTM neural network model approximation is mainly due to the
fact that the relationship of how the parameters affect the performance of the network is
actually unknown. For this reason, we assume that the parameters of the LSTM model
follow a Gaussian distribution process [67]. Let us denote by π a vector that contains
configuration parameters of model f(·) (see Equation (3)). Examples of the elements of the
vector π are the number of hidden neurons in a hidden layer, the number of hidden layers,
the type of non-liner relationship that a neuron implements (e.g., sigmoid or hyperbolic
tangent). All these parameters are estimated using the Bayesian optimization approach
presented in the following.

Let S1:Q =
{

π1 · · · πQ
}

denote a set of Q different configurations referring to
model f(·). In this way we denote as πi the i-th configuration out of the Q available. Then,
the error of the network (i.e., appliance model) over all training data Str is given by:

E(Str, π) =‖ yc − f(π)(X(t))) ‖2 ∀X(t) ∈ Str (8)

In Equation (8), f(π)(·) denotes the relationship of the non-linear function that the
neural network implements on the configuration parameters of π.
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Given a set of configuration parameters π, the Bayesian optimization algorithm
estimates the ones that minimizes the error of Equation (8).

π(new) = argmin
π

E(Str, π ) (9)

Since the error of Equation (8) is actually unknown, we adopted a Bayesian optimiza-
tion strategy for solving this problem.

4.7.1. Prior Distributions

Bayesian methods depend on a prior distribution assumption. In this paper, the error
E(·) is modeled as a Gaussian Process (GP). A GP models a distribution over function in a
similar way that a Gaussian distribution models a distribution of a random variable and it
is fully specified by the respective mean value and covariance [68]:

E
(

Str, π ∈ S1:Q

)
∼ GP

(
0, k

(
π, π′

))
(10)

In Equation (10), GP(·) denotes a Gaussian Process of zero mean value and variance
of k(π, π′). In this way, we model the unknown relationship of E(·) as a GP, and therefore,
the input configuration vector affects the variance of the Gaussian through the function of
k(π, π′). A common choice of k(π, π′) is:

k
(
π, π′

)
= exp

(
−1

2
‖ π − π′ ‖2

)
(11)

Equation (11) means that two points that are close together are expected to be highly
correlated with each other. On the contrary, points far from each other have no influence.
Equations (9) and (10) indicate that the distribution over the samples of set S1:Q (that is
the Q different network configurations) follows a multivariable Normal distribution of
N (0, K ), where K =

[
ki,j
]

a Q×Q matrix of elements.

ki,j = k
(
πi, πj

)
, ∀ πi, πj ∈ S1:Q (12)

4.7.2. Posterior Distributions

Assuming the observations
{

S1:Q, E(Str, π), π ∈ S(l)
1:Q)

}
(i.e., configuration param-

eters and respective errors derived from the configuration parameters) from previous
iterations, we need to estimate the distribution of the error for a new parameter π(new).
Then, the probability P(E

∣∣∣S1:Q, π(new)) follows a Normal distribution N
(
µ, σ2) of mean

and standard deviation as follows [69]:

µ = kTK−1E
(

Str, π ∈ S1:Q

)
(13)

σ2 = k(π(new), πi) kTK−1k (14)

where:
k =

[
k
(
π
(new)
l ,π1,l

)
. . . k

(
π
(new)
l ,πq,l

)]
and K matrix Q×Q. (15)

4.7.3. Optimization Strategy—Expected Improvement

To estimate the optimum configuration strategy, we first need to define the improve-
ment function of the new configuration setup π(new):

I(π(new)) = max{0, Emin − E(Str, π(new)} (16)
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Therefore, the next configuration setup is estimated as the one that maximizes the
following equation:

π(new) = arg max
π

∫
I(π(new))P(E|S1:Q, π(new))dE (17)

Following the remaining steps of the approach proposed in [70], we can estimate the
optimal hyperparameters value.

5. Case Study

For assessing the performance of the proposed method, an experiment was setup at
the school of School of Rural, Surveying and Geoinformatics engineering of the National
Technical University of Athens. This academic environment was chosen only for experi-
mental purposes, to test the performance of the proposed system. Accordingly, any other
building with interior partitions, which can be considered as property units, could be used.
Since we do not utilize any other services or infrastructures of the building, apart from
its physical entity, we could claim that it can adequately simulate the building facilities of
self-made cities, which consist of multi-level buildings with several property units. It is
noted that in this specific experiment the main goal was to evaluate the proposed system,
in terms of its ability to produce correct predictions of points coordinates. The collection of
boundary points (partitions) and the construction of a floor plan will be carried out at a
later stage of this research.

The test area consisted of an office room and a corridor with a total area of about
100 sq.m. This experiment included the use of four (4) Raspberry Pi devices (Figure 6) in
combination with a smart phone to take measurements about the Bluetooth signal strength,
i.e., RSSI values from each antenna.
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In the first phase of the practical experiment, a test dataset was generated. A total of
49 points were selected and marked, both in the office room and in the corridor. The goal
was to create a canvas point grid and measure its vertices. Marking the canvas point grid
in the office room was challenging due to the existing furniture and instruments. Thus, to
proceed with the experiment, the non-occupied vertices of the established canvas point grid
and points near to the occupied ones were selected to be measured. In addition, following
a similar logic, additional points located on the walls of the studied building unit were also
selected. The aim was to measure as many points as possible, evenly distributed in the test
area, to train the LSTM network and evaluate the function the proposed technical system.

Once the 49 points were marked towards the test area, an open-end traverse tied at
one end was established. Then, with the help of a total station the 49 points were captured
(Figure 7, in red). Once the traverse was resolved the 2D geodetic coordinated of the
49 measured points were obtained in a Greek Grid reference system.
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Four of these vertices were then selected as deployment stations for the Raspberry
Pi devices aiming to establish the IPS. These locations were selected appropriately so that
Raspberry devices were evenly distributed in the study area. Thus, three devices were
placed along the corridor and one in the office room with proper arrangement enabling the
device in the office room to be connected with the ones located in the corridor. This was
accomplished by placing one of the first three devices near the door of the office room. The
distribution of the Raspberry Pi devices positions towards the study area is illustrated in
Figure 7 (in green).

Once the IPS was established, a member of our research team moved along the
remaining 45 points of known coordinates holding a smart phone device with the Bluetooth
enabled. Each Raspberry Pi device was receiving the following information: (a) the RSSI
measurements between the Raspberry Pi and any other device with Bluetooth enabled,
(b) the device ID and (c) the signal transmitting time. For each point, we held the Android
device for five minutes standing on top of the spot. For every 5 s we took the average
RSSI reading for the spot, resulting in 100 measurements for each spot. The RSSI readings
were stored in the Raspberry Pi device and were then collected to be used for training and
testing the machine learning model.

In the next step, we gathered the readings for the 45 different points in both the corridor
and the office room at the School of Rural Surveying and Geoinformatics engineering. These
measurements were used both for training and testing the LSTM architecture. The LSTM
architecture was trained on the basis of two different scenarios. In the first scenario,
the RSSI obtained from all four Raspberry Pi devices, namely RAS1, RAS2, RAS3 and
RAS4, were utilized as input to the LSTM. In contrast, the second scenario investigates the
performance of the LSTM when using the measurements from three out of four Raspberry
Pi devices. More specifically, the second scenario included the measurements from RAS1,
RAS2 and RAS3, excluding RAS4 (Figure 7). The main objective of the second scenario
was to investigate: (i) the performance of the developed system using fewer Raspberry
Pi devices and (ii) the effect of the geometry and position of the Bluetooth sensors on the
output. As shown in Figure 7, RAS2 and RAS4 were very close to each other, so they had
almost the same coverage range. Aiming to cover as much of the study area as possible, we
decided to keep RAS 2, which was the most distant position from RAS1 and RAS3, and
exclude RAS4.
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In both scenarios, 10% of the measurement dataset was used for cross validation,
while an 80:20 ratio was used for the remaining 90% of the dataset to separate the train-
ing and testing sets, i.e., the train set consisted of 400 measurements and the test set
had 100 measurements. The model was trained using an Intel® Core™ i5 -7200U CPU
(2.50 GHz) with Radeon™ R5 M430. The tested LSTM classifier consisted, beyond the
necessary input and output layers, of 2 LSTM layers of 50 neurons with sigmoid activations.
The time required for training the network was about 4 h, with the PC setup described
above. However, the computation time for estimating a position after the model is trained
was less than 1 s.

For the quantitative evaluations of LSTM performance on the basis of the two test
scenarios, the commonly used metrics of accuracy, precision, recall and F1-score were
selected. While these metrics are mainly used for classification problems, we modeled
the regression problem that the model solves in a binary classification problem using the
average error between the actual and predicted coordinates. Specifically, when the model
predicted a location with an error of one meter, the prediction was considered successful.
Table 1 shows the obtained performance results for both scenarios. According to these
findings, scenario 1 prevails over scenario 2. This is due some drawbacks we encountered
that concerned the position of the three Bluetooth devices of the second scenario. Initially,
the positions of RAS3 and RAS2 were almost congruent with some points (such as 45,
44 and 47) which makes the prediction of the position of the points located within this
conceivable line quite difficult. Furthermore, another important influence factor concerns
the coverage range of each Raspberry device. In order to be able to accurately determine
the position of a point, the coverage ranges of all three devices must be intersected. In the
case of scenario 2 this was not applicable, thus leading to erroneous results (Figure 8).

Table 1. Model Performances in Scenario 1 and Scenario 2.

Accuraccy Precision Recall F1-Score

Scenario 1 83.47% 87.63% 82.88% 85.19%

Scenario 2 68.72% 72.14% 68.23% 70.13%
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The final results of the experiments for the individual spots can be viewed in Figure 9.
The horizontal axis in this figure represents the various spots where we took measurements
while in the vertical axis, we present the average distance between the actual value of
the measurement and the predicted value of the measurement. Moreover, the standard
deviation for all spots is presented in Figure 9. The LSTM model yielded predicted values
that have an average error of 76.6 cm with a standard deviation of 15.2 cm across all
measurement points.

Land 2023, 12, 8 18 of 24 
 

 
Figure 9. Performance of the LSTM network in indoor localization. The horizontal axis indicates the 
point of measurement while the verical axis indicates the average distance and standard deviation 
across all the measurements for an individual spot. 

6. Discussion 
Unlike the current LADM-based approaches for 3D Cadastre, the proposed technical 

solution investigates the potential exploitation of low-cost portable BLE technologies and 
machine learning techniques in order to provide an affordable, fast and reliable solution 
for the implementation of 2D/3D mobile-based crowdsourced cadastral surveys, in the 
absence of a reliable basemap. Through such basemap/background-free solution, the 3D 
LADM-based Cadastre concept can be applicable even in low-income areas with limited 
technical and financial resources. 

The proposed technical approach enables the acquisition of the property’s 
boundaries coordinate measurement by the right holders, allowing them to gradually 
draft the outline of their property by moving towards the boundaries and capturing point 
features. As proved by the test implementation, the establishment of an IPS is relatively 
simple while the cost of the necessary equipment is tolerable. Additionally, the data 
capturing through the mobile device was fast, without requiring the user to have any 
special technical skills. The proposed solution can be effectively applied in both urban and 
suburban areas with simple or complex property rights. Of course, setting up an IPS 
requires a short planning concerning the placement of the Bluetooth devices so that the 
maximum possible amount of data can be collected. This pre-process will be the 
responsibility of the local team leaders aiming to ensure the efficiency of the surveys. 

According to the practical implementation, the proposed LSTM architecture can 
reliably predict the spatial coordinates of the position of a mobile device along the 
coverage range of the Raspberry Pi devices. Results on two implementation scenarios 
show that four is the minimum acceptable number of Bluetooth devices in order to 
provide the best possible outcome for an area of about 100 sq.m. This stems from the fact 
that the achieved accuracy of the first scenario was 87.63% and about 83.47% for the 
second scenario. The percentage delta of 4.16% may not seem particularly large but its 
influence on the accuracy of the whole process is drastic. The average error across all 
measurement points was about 76.6 cm with a standard deviation of 15.2 cm. The 
achieved accuracy may not meet high accuracy requirements, but it is rather satisfactory 
considering the fixation fonts and its purpose. Nevertheless, in such fit-for-purpose 
crowdsourced projects there is always a trade-off between time and achieved accuracy. It 
should be mentioned that the achieved accuracy satisfies the current accuracy 

Figure 9. Performance of the LSTM network in indoor localization. The horizontal axis indicates the
point of measurement while the verical axis indicates the average distance and standard deviation
across all the measurements for an individual spot.

6. Discussion

Unlike the current LADM-based approaches for 3D Cadastre, the proposed technical
solution investigates the potential exploitation of low-cost portable BLE technologies and
machine learning techniques in order to provide an affordable, fast and reliable solution
for the implementation of 2D/3D mobile-based crowdsourced cadastral surveys, in the
absence of a reliable basemap. Through such basemap/background-free solution, the 3D
LADM-based Cadastre concept can be applicable even in low-income areas with limited
technical and financial resources.

The proposed technical approach enables the acquisition of the property’s boundaries
coordinate measurement by the right holders, allowing them to gradually draft the outline
of their property by moving towards the boundaries and capturing point features. As
proved by the test implementation, the establishment of an IPS is relatively simple while
the cost of the necessary equipment is tolerable. Additionally, the data capturing through
the mobile device was fast, without requiring the user to have any special technical skills.
The proposed solution can be effectively applied in both urban and suburban areas with
simple or complex property rights. Of course, setting up an IPS requires a short planning
concerning the placement of the Bluetooth devices so that the maximum possible amount
of data can be collected. This pre-process will be the responsibility of the local team leaders
aiming to ensure the efficiency of the surveys.

According to the practical implementation, the proposed LSTM architecture can
reliably predict the spatial coordinates of the position of a mobile device along the coverage
range of the Raspberry Pi devices. Results on two implementation scenarios show that
four is the minimum acceptable number of Bluetooth devices in order to provide the best
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possible outcome for an area of about 100 sq.m. This stems from the fact that the achieved
accuracy of the first scenario was 87.63% and about 83.47% for the second scenario. The
percentage delta of 4.16% may not seem particularly large but its influence on the accuracy
of the whole process is drastic. The average error across all measurement points was about
76.6 cm with a standard deviation of 15.2 cm. The achieved accuracy may not meet high
accuracy requirements, but it is rather satisfactory considering the fixation fonts and its
purpose. Nevertheless, in such fit-for-purpose crowdsourced projects there is always a
trade-off between time and achieved accuracy. It should be mentioned that the achieved
accuracy satisfies the current accuracy specifications of some countries, such as Greece
(RMSExy for urban areas = 71 cm and RMSExy rural areas = 1.41 m).

According to the results of the experiment, the parameters that mostly affected the
quality of the produced results are: (a) the distance of points from the bases of Raspberry
devices, (b) the existing furniture, which can make it difficult to approach and measure
some point features, (c) the geometry based on which the devices are placed into space and
(d) the relative position between the devices.

As the next step of this research, the developed IPS and the crowdsourced cadastral
mobile application are intended to be integrated and tested under real circumstances and
different environments, and incorporating citizens with or without any special digital
skills, aiming to obtain results capable of optimizing both the technical and methodological
framework. In addition, the simultaneous processing of signals from heterogeneous sensors
(e.g., Bluetooth and Wi-Fi signals) will be investigated. Other future research challenges
will be the incorporation of novel deep learning architectures such as vision transformers or
contemporary learning strategies like continual learning and self-supervision. Validation
and quality control of the selected data is also within our future plans. An important future
step for this application will be the training of a model from multiple buildings in order to
increase accuracy. Finally, generative approaches should be studied, to create a framework
that can deal with furnished areas that the user cannot access physically. Such approaches
may be utilized to create an “unfurnished” model from a smaller model, where there are
obstacles within some areas of the building unit.

Our main objective is to expand the proposed technical framework as much as possible,
in order to cover the majority of all the possible alternatives, providing a flexible 3D
cadastral solution.

7. Conclusions

This paper is a part of an ongoing research aligned with the global efforts for the
implementation of 3D Cadastres. The goal is to develop low-cost and reliable technical
processes for the immediate implementation of 3D cadastral systems everywhere, so that
no one is left behind. This work focuses on the development of a technical solution suitable
for the implementation of 2D/3D indoor cadastral surveys, in cases where there is no
accurate registration basemap is available, as in the case of low-income areas with informal
constructions. The use of low-cost Bluetooth technology, m-services and machine learning
techniques for the establishment of the IPS, data capturing and processing seems to be
beneficial towards the fulfillment of this objective. The results of the practical experiment
are particularly satisfactory, with a localization accuracy of about 15.2 cm. Of course, the
practical application is only a first attempt aiming to evaluate the performance of the
proposed system.

We can safely state that the first results of the proposed technical solution have shown
promising potential for the development of an “architectural plan-free” solution, able to
simplify and speed up the 3D cadastral registration procedure. Thus, the immediate, fast
and low-cost implementation of a fit-for-purpose 3D cadastral system may be feasible
anywhere, resolving potential disputes and securing property RRRs.
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49. Vučić, N.; Cetl, V.; Roić, M. How to Utilize the Citizens to Gather VGI as a Support for 3D Cadastre Transition. In Proceedings of
the FIG Joint Workshop 2015, Crowdsourcing of Land Information, St. Julians, Malta, 16–20 November 2015.

50. Ellul, C.; Almeida, J.P.; Romano, R. Does coimbra need a 3d cadastre? Prototyping a crowdsourcing app as a first step to finding
out. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, IV-2/W1, 55–62. [CrossRef]

51. Sahar, A.; Han, D. An LSTM-based indoor positioning method using Wi-Fi signals. In Proceedings of the 2nd International
Conference on Vision, Image and Signal Processing, Las Vegas, NV, USA, 27–29 August 2018; pp. 1–5.

52. Wang, X.; Gao, L.; Mao, S.; Pandey, S. DeepFi: Deep learning for indoor fingerprinting using channel state information. In
Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC) IEEE, New Orleans, LA, USA, 9–12
March 2015; pp. 1666–1671.

53. Ibrahim, M.; Torki, M.; El Nainay, M. CNN based Indoor Localization using RSS Time-Series. In Proceedings of the IEEE
Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 1044–1049.

54. Zhang, T.; Man, Y. The enhancement of WiFi fingerprint positioning using convolutional neural network. In Proceedings of the
International Conference on Computer Networks and Communication Technologies (CCNT), Wuzhen, China, 29–30 June 2018.

55. Dahlgren, E.; Mahmood, H. Evaluation of Indoor Positioning based on Bluetooth Smart Technology. Master’s Thesis, Chalmers
University of Technology, Gothenburg, Sweden, 2014.

56. Takenga, C.; Xi, C.; Kyamakya, K. A hybrid neural network-data base correlation positioning in GSM network. In Proceedings of
the 2006 10th IEEE Singapore International Conference on Communication Systems, Singapore, 30 October–1 November 2006;
IEEE: Singapore, 2006; pp. 1–5. [CrossRef]

57. Tsai, C.Y.; Chou, S.Y.; Lin, S.W.; Wang, W.H. Location determination of mobile device for indoor WLAN application using neural
network. In Proceedings of the 2008 IET 4th International Conference on Intelligent Environments, Seattle, WA, USA, 21–22 July
2008; pp. 1–8. [CrossRef]

58. Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-based Fingerprinting for Indoor Localization: A Deep Learning Approach. IEEE Trans.
Veh. Technol. 2016, 66, 763–776. [CrossRef]

59. Gan, X.; Yu, B.; Huang, L.; Li, Y. Deep learning for weights training and indoor positioning using multi-sensor fingerprint. In
Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 18–21 September
2017; pp. 1–7. [CrossRef]

60. Sthapit, P.; Gang, H.S.; Pyun, J.Y. Bluetooth based indoor positioning using machine learning algorithms. In Proceedings of
the 2018 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Jeju, South Korea, 24–26 June 2018; IEEE:
New York, NY, USA, 2018; pp. 206–212.

61. Alexander, I.; Kusuma, G.P. Predicting indoor position using Bluetooth low energy and machine learning. Int. J. Sci. Technol. Res.
2019, 8, 1661–1667.

62. Kaselimi, M.; Protopapadakis, E.; Doulamis, N.; Doulamis, A.; Voulodimos, A. Multi-Channel Recurrent Convolutional Neural
Networks for Energy Disaggregation. IEEE Access 2019, 7, 81047–81056. [CrossRef]

63. Bluetooth®Technology Website. Proximity and RSSI|Bluetooth®Technology Website. Available online: https://www.bluetooth.
com/blog/proximity-and-rssi/ (accessed on 3 November 2021).

64. Doulamis, A.; Doulamis, N.; Kollias, S. An adaptable neural-network model for recursive nonlinear traffic prediction and
modeling of MPEG video sources. IEEE Trans Neural Netw. 2003, 14, 150–166. [CrossRef]

65. Medsker, L.R.; Jain, L.C. Recurrent neural networks. Des. Appl. 2001, 5, 64–67.
66. Kaselimi, M.; Doulamis, N.; Doulamis, A.; Voulodimos, A.; Protopapadakis, E. Bayesian-Optimized Bidirectional Lstm Regression

Model For Non-Intrusive Load Monitoring. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 2747–2751.

67. Kaselimi, M.; Doulamis, N.; Voulodimos, A.; Protopapadakis, E.; Doulamis, A. Context Aware Energy Disaggregation Using
Adaptive Bidirectional LSTM Models. IEEE Trans. Smart Grid 2020, 11, 3054–3067. [CrossRef]

https://www.clge.eu/wp-content/uploads/2012/05/16310_RICS_Crowdsourcing_Report-final-WEB.pdf
https://www.clge.eu/wp-content/uploads/2012/05/16310_RICS_Crowdsourcing_Report-final-WEB.pdf
http://www.fig.net/resources/proceedings/fig_proceedings/fig2014/papers/SS10/SS10_enemark_lemmen_et_al_7210.pdf
http://www.fig.net/resources/proceedings/fig_proceedings/fig2014/papers/SS10/SS10_enemark_lemmen_et_al_7210.pdf
http://researcharchive.vuw.ac.nz/xmlui/bitstream/handle/10063/4234/thesis.pdf?sequence=2
http://researcharchive.vuw.ac.nz/xmlui/bitstream/handle/10063/4234/thesis.pdf?sequence=2
http://doi.org/10.5194/isprs-annals-IV-2-W1-55-2016
http://doi.org/10.1109/ICCS.2006.301534
http://doi.org/10.1049/cp:20081147
http://doi.org/10.1109/TVT.2016.2545523
http://doi.org/10.1109/IPIN.2017.8115923
http://doi.org/10.1109/ACCESS.2019.2923742
https://www.bluetooth.com/blog/proximity-and-rssi/
https://www.bluetooth.com/blog/proximity-and-rssi/
http://doi.org/10.1109/TNN.2002.806645
http://doi.org/10.1109/TSG.2020.2974347


Land 2023, 12, 8 21 of 21

68. Frazier, P.I. A Tutorial on Bayesian Optimization. arXiv 2018, arXiv:1807.02811.
69. Brochu, E.; Cora, V.M.; de Freitas, N. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to

Active User Modeling and Hierarchical Reinforcement Learning. arXiv 2010, arXiv:1012.2599.
70. Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient Global Opti-mization of Expensive Black-Box Functions. J. Glob. Optim. 1998,

13, 455–492. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1023/A:1008306431147

	Introduction 
	Related Work 
	Fit-For-Purpose 3D Cadastre 
	Machine Learning in Indoor Positioning Systems 

	Indoor Cadastral Technical Framework 
	Machine Learning Architecture 
	The Sensing Infrastructure 
	Modeling Spatial Coordinates Using Mahcine Learning 
	Feedforwards Neural Networks as Universal Approximators 
	Modeling Temporal Inter-Depenndencies of the Bluetooth Signal Distrortion 
	Modeling Long-Range Temporal Dependencies 
	The Memory Cell 
	Bayesian Optimization 
	Prior Distributions 
	Posterior Distributions 
	Optimization Strategy—Expected Improvement 


	Case Study 
	Discussion 
	Conclusions 
	References

