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Abstract: This investigation evaluates the potential of combining Copernicus Sentinel-1 (S1) and
Sentinel-2 (S2) satellite data in producing a detailed Land Use and Land Cover (LULC) map with
19 crop type classes and 2 broader categories containing Woodland/Shrubland and Grassland over
28 Member States of Europe (EU-28). The Eurostat Land Use and Coverage Area Frame Survey
(LUCAS) 2018 dataset is employed as ground truth for model training and validation. Monthly and
yearly optical features from S2 spectral reflectance and spectral indices, alongside decadal (10-days)
composites from an S1 microwave sensor, are extracted for the EU-28 territory for 2018 using Google
Earth Engine (GEE). Five different feature sets using a mixture of indicators were created as input
training data. A Random Forest (RF) machine learning algorithm was applied to classify these feature
sets, and the generated classification models were compared using an identical validation dataset.
Results show that S1 and S2 yearly features together are able to provide a full coverage map less
dependent on cloud effects and having appropriate overall accuracy (OA). Based on this feature set,
the 21 classes could be classified with an OA of 78.3% using the independent validation data set. The
OA increases to 82.7% by grouping 21 classes into 8 broader categories. The comparison with similar
studies using individual S1 and S2 data indicates that combining S1 and S2 time series can attain
slightly better results while enhancing spatial coverage.

Keywords: crop type classification; machine learning; LUCAS 2018; Sentinel-1; Sentinel-2; Google
Earth Engine; time series

1. Introduction

Land Use and Land Cover (LULC) maps are used for modeling and monitoring the
land surface, for example, studying the carbon cycle, the energy balance, and parameters
related to soil health and water conditions [1–3].

The European Union (EU) is the greatest worldwide exporter of agri-food products,
and 42% of the EU’s area is agricultural farmlands [4,5]. Updated and accurate LULC maps
are crucial for change detection analysis and provide necessary baseline information for
agriculture and food security [6–8]. Independent and timely updated data are required for
yield forecasts and to support decisions regarding agricultural crop markets in the EU [9].
LULC maps focused on croplands are significant for monitoring crop type and productivity,
crop watering methods as well as crop water productivity [10]. In the future, these maps
will also be extremely relevant for monitoring the application and impact of policies such
as the European Green Deal.

Earth observation (EO) is well suited for regular LULC mapping [2,8,11] due to the
spatial coverage, temporal continuity, and low cost of deployment [3]. The free availability
of vast amounts of remote sensing data offers exceptional opportunities to render LULC
maps over large areas [12,13]. In this context, Copernicus Sentinel-2 (S2) high-resolution
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data have become an essential tool for LULC surveying especially concentrated on agri-
cultural activities [14,15]. Worldwide agricultural maps could be generated and provide
helpful information to policymakers and farmers [16]. Some examples of application of S2
in agriculture are crop type mapping, crop production and irrigation monitoring, as well as
nitrogen content and crop health assessments [15].

The availability of ground truth data for training and assessing the LULC maps is still
limited. In this context, a number of studies demonstrated the use of the European Land
Use and Cover Area frame Survey (LUCAS) data [17] as training data for LULC mapping.
LUCAS is a regular in situ survey performed every three years to collect land cover data
over a grid of point locations in the EU.

The LUCAS data was already utilized in some studies. Close et al. [18] used LUCAS
2015 survey and S2 data to classify a region in Belgium. Pflugmacher et al. [19] generated a
pan-European land cover map with 13 classes employing LUCAS 2015 survey and Landsat-
8 data. Weigand et al. [20] produced a seven-classed land cover map in Germany by using
LUCAS 2015 survey and S2 data. Venter et al. [21] created a land cover map of Europe with
8 categories by fusion of Sentinel-1 (S1) and S2 data, utilizing LUCAS 2018 data.

In 2018, the LUCAS collection strategy was further improved with the so-called
“Copernicus module” that includes field observations more easily comparable to the spatial
sampling of EO image data [17]. Using these data, in combination with S1 image data,
d’Andrimont et al. [22] produced a 10 m crop type map of the 28 Member States of Europe
(EU-28). The study classified 19 specific crop type classes alongside 2 broad Woodland
and Shrubland and Grassland classes using the random forest (RF) algorithm, achieving
an overall accuracy (OA) of 74.0%. Ghassemi et al. [23] extended this work to S2 data
achieving an OA of 77.6%. However, the efficiency of combining the S1 and S2 time series
to produce a LULC map in the mentioned scheme (19 crop types and 2 broad classes) has
not yet been assessed.

Progress in the quality and availability of EO data was matched over the past decades
by similar performance gains in (cloud) computing. This has also enabled progress in
producing land cover and land cover change maps [24]. Google Earth Engine (GEE), for
example, is a cloud-based platform that is able to process a high amount of geospatial
data [25], such as S1, S2, Landsat-8, Landsat-9, and MODIS. The data and many algorithms
such as cloud masking, time-series modeling, and classifiers can be processed in GEE
servers without downloading and processing large datasets on local computers [25,26].

The main objective of this communication is to evaluate the potential of using a
combination of S1 and S2 time series utilizing LUCAS 2018 data to generate detailed LULC
maps over EU-28 territory at 10 m spatial resolution. The necessary data are generated
using the GEE platform. Five different feature combinations of monthly and yearly S2
features and S1 10-day composites are assessed. Amongst the assessed feature combination
is one entirely based on yearly S1 and S2 features, thereby avoiding S2 monthly composites—
which are often more vulnerable to cloud coverage. The RF machine learning algorithm
is employed for the classification [27], and the outputs are assessed with an identical
validation dataset. Finally, the best outcome—which is less dependent on cloud effects and
has suitable OA—is compared against the results of published studies using S1 and S2
individually to produce LULC maps [22,23].

2. Materials and Methods

The region of interest is the EU-28 territory containing the LUCAS 2018 survey data.
Figure 1 shows the main steps of this study, including the extraction of S1 and S2 spectral–
temporal features at the locations of the LUCAS 2018 field samples, followed by training the
classification model using the RF classifier and assessing the results using an independent
validation dataset.
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2.1. Training Data Preparation
2.1.1. LUCAS 2018 Data

During the LUCAS 2018 survey, 337,854 core points were collected [28]. The minimum
observation area for these points is a circle with a 1.5 m radius. The land cover of these
points has three different label schemes. The level-1 legend contains 8 main land cover
groups, and level-2 and level-3 include more detailed classes with 26 and 66 categories,
respectively [28].

The LUCAS 2018 Copernicus module was implemented on a subset of the 337,854 core
points. D’Andrimont et al. [28] extended the point geometries in the four cardinal directions
(up to 51 m), utilizing the LULC homogeneity data. Therefore, 63,287 and 58,428 polygons
are available at the level-2 and level-3 label schemes, respectively (their areas vary from
0.005 ha to 0.52 ha—with an average of 0.32 ha).

In this research, S1 and S2 features were extracted for areas inside 58,428 polygons at
level-3 label schemes to train the LULC classification model.

2.1.2. Classification Scheme Based on LUCAS 2018 Data

The LUCAS data contains 8 main level-1 land cover classes: A-Artificial Land,
B-Cropland, C-Woodland, D-Shrubland, E-Grassland, F-Bare Land, G-Water, and H-Wetlands.
This investigation focuses on classifying the main crop types and comparing the results
with the S1 and S2 studies described in [22] and S2 [23], respectively. Therefore, a new
labeling scheme was defined, and only classes and subclasses of B-Cropland, C-Woodland,
D-Shrubland, and E-Grassland (and a subclass from F-Bare Land) were utilized. A total of
19 specific crop type classes, as well as 2 additional broader classes, namely Woodland and
Shrubland and Grassland, were defined. The details of this scheme can be found in Table 1,
which is adapted from [22].

Table 1. The classification scheme adapted from [22] with 19 crop types plus 2 broad categories with
Woodland and Shrubland and Grassland classes. The “Main Class Name”, with the respective class
codes (“Code”), was used in this research.

Grouped
Class Name Code Main Class Name Class Descriptors in LUCAS

Level-3 Landcover

Cereals

211 Common wheat B11-Common wheat
212 Durum wheat B12-Durum wheat
213 Barley B13-Barley
214 Rye B14-Rye
215 Oats B15-Oats
216 Maize B16-Maize
217 Rice B17-Rice
218 Triticale B18-Triticale
219 Other cereals B19-Other cereals
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Table 1. Cont.

Grouped
Class Name Code Main Class Name Class Descriptors in LUCAS

Level-3 Landcover

Root crops
221 Potatoes B21-Potatoes
222 Sugar beet B22-Sugar beet
223 Other root crops B23-Other root crops

Non-
permanent
industrial
crops

230 Other non-permanent
industrial crops

B34-Cotton|B35-Other fibre and
oleaginous
crops|B36-Tobacco|B37-Other
non-permanent industrial crops

231 Sunflower B31-Sunflower
232 Rape and turnip rape B32-Rape and turnip rape
233 Soya B33-Soya

Dry pulses,
vegetables,
and flowers

240
Dry pulses,
vegetables, and
flowers

B41-Dry pulses|B43-Other fresh
vegetables|B44-Floriculture and
ornamental plants|B45-Strawberries

Fodder crops 250 Fodder crops
B51-Clovers|B52-Lucerne|B53-
Other leguminous and mixtures for
fodder|B54-Mixed cereals for fodder

Bare arable
land 290 Bare arable land F40-Other bare soil (only with

U111/112/113 Land use)

Woodland and
Shrubland 300 Woodland and

Shrubland

B71-Apple fruit|B72-Pear
fruit|B73-Cherry fruit|B74-Nuts
trees|B75-Other fruit trees and
berries|B76-Oranges|B77-Other
citrus fruit|B81-Olive
groves|B82-Vineyards|B83-
Nurseries|B84-Permanent industrial
crops|C10-Broadleaved
woodland|C21-Spruce dominated
coniferous woodland|C22-Pine
dominated coniferous
woodland|C23-Other coniferous
woodland|C31-Spruce dominated
mixed woodland|C32-Pine
dominated mixed
woodland|C33-Other mixed
woodland|D10-Shrubland with
sparse tree cover|D20-Shrubland
without tree cover

Grassland 500 Grassland

B55-Temporary
grasslands|E10-Grassland with
sparse tree/shrub
cover|E20-Grassland without
tree/shrub
cover|E30-Spontaneously vegetated
surfaces

2.2. Earth Observation Data
2.2.1. Sentinel-2 Data Preparation

Sentinel-2 MSI-Level-2A (BOA reflectance) products were extracted using the GEE [25].
Only images with cloudiness < 50% were utilized, and a cloud mask was implemented
using the QA60 band to eliminate opaque and cirrus clouds’ presence. Afterward, the
cloud-masked images were reprojected to the EPSG:3035 projection system. Bands at 20 m
pixel size were split into 10 m.
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A total of 25 features, including 10 spectral bands and 15 spectral indices, were extracted
in the monthly median and yearly 5th, 50th, and 98th centiles (total: 25 × (12 + 3)). Spectral
bands include: B02-B08, B8A, B11, and B12, and spectral indices comprised: BLFEI [29],
BSI [30], DIRESWIR [31], GI [32], LCCI [33], MNDWI [34], MSI [35], NDBI [36], NDTI [37],
NDVI [38], NDWI1 [39], SAVI [40], SRNIRR [41], and SRNIRRE2 [42]. The description of
the optical features is summarized in Table 2.

Table 2. Spectral bands and indices extracted from S2 and used for LULC classification.

Feature Name Description

Spectral Bands

B2: Blue B7: Red Edge 3
B3: Green B8: NIR
B4: Red B8A: NIR narrow
B5: Red Edge 1 B11: SWIR 1
B6: Red Edge 2 B12: SWIR 2

Spectral Indices

BLFEI :
(((B3 + B4 + B12)/3)− B11)/(((B3 + B4 + B12)/3) + B11)
BSI: ((B11 + B4)− (B8 + B2))/((B11 + B4) + (B8 + B2))
DIRESWIR : B4− B11
GI : B3/B4
LCCI : B7/B5
MNDWI : ((B3− B11))/((B3 + B11))
MSI : B11/B8
NDBI : ((B11− B8))/((B11 + B8))
NDRESWIR : ((B6− B12))/((B6 + B12))
NDTI : ((B11− B12))/((B11 + B12))
NDVI : ((B8− B4))/((B8 + B4))
NDWI1 : ((B8− B11))/((B8 + B11))
SAVI : ((B8− B4))/((B8 + B4 + 0.5)) ∗ 1.5
SRNIRR : B8/B4
SRNIRRE2 : B8/B6

Abbreviations: NIR = near Infrared; SWIR = shortwave infrared; BLFEI = built-up land features extraction index;
BSI = bare soil index; DIRESWIR = red SWIR1 difference; GI = greenness index; LCCI = leaf chlorophyll content
index; MNDWI = modified normalized difference water index; MSI = moisture stress index; NDBI = normalized
difference built-up index; NDRESWIR = normalized difference red-edge and SWIR2; NDTI = normalized difference
tillage index; NDVI = normalized difference vegetation index; NDWI1 = normalized difference water index 1;
SAVI = soil adjusted vegetation index; SRNIRR = NIR and red ratio; SRNIRRE2 = NIR and RE2 ratio.

2.2.2. Sentinel-1 Data Preparation

S1 SAR Ground Range Detected data were processed using the GEE [25]. Each scene
of S1 data in GEE was already pre-processed using the S1 Toolbox. Therefore, they are
radiometrically calibrated, and their thermal noise is removed beside terrain correction by
applying global digital elevation models (DEM).

For feature extraction from the S1 satellite, the procedure used in [22] was utilized.
VV and VH σ0 (backscattering coefficient) were computed as well as the backscattering
coefficient ratio VH/VV (cross-polarization ratio, CR). The following procedure was applied
to generate the required microwave features:

1. Edge masking: The edge of each scene was masked by groups of adjacent pixels with
values lesser than 25 decibels (dB) in the VV polarization.

2. Averaging of 10 days: σ0 natural values were averaged over the following periods of
10 days for each pixel for all available ascending and descending acquisitions, sepa-
rately for the VV and VH polarizations. The averaged σ0 value was then transformed
to dB.

3. Computing the CR ratio: The CR was calculated and averaged for each scene for the
same 10-day period.

Per feature (VV, VH, and CR), 36 decadal (10-day) composites were obtained for 2018,
leading to a total number of 108 features (Table 3).
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Table 3. Microwave indicators derived from S1 in the year 2018 and used for LULC classification.

Feature Name Description

Microwave features

VV: Single co-polarization, vertical
transmit/vertical receive
VH: Dual-band cross-polarization, vertical
transmit/horizontal receive
CR: VH/VV (cross-polarization ratio)

2.3. Sentinel-1 and Sentinel-2 Features for the LUCAS Copernicus Polygons

Three types of features were created for the LUCAS Copernicus polygons to generate
training data in this research. These features are S2 monthly and yearly indicators, as well
as S1 10-day composites. It is worth noting that a total of 1,961,005 pixels are extractable
inside 57,930 polygons in GEE.

Due to the cloud coverage issue in S2 data, no spectral information was recorded for
some samples in monthly features. This caused many missing values in the winter months
(January, February, March), November, and December, as shown in Table 4. Therefore, the
median for January, February, and March and the median for November and December
together were calculated and replaced. The missing values are 7237 and 78,238 for the
winter and November and December median features, respectively. Consequently, nine
different temporal features were utilized instead of 12. By eliminating samples containing
null values (pixels affected by cloud coverage) and keeping samples belonging to the
classification scheme, 1,749,604 samples from 51,588 different polygons were available. By
considering 25 distinct features (mentioned in Section 2.2.1) in each of the nine time spans,
225 features are available as S2 monthly indicators.

Table 4. The number of samples with missing values for each monthly feature. “Med” indicates the
median value.

Month
(2018) January February March April May June July August September October November December

Missing
values 360,219 187,287 195,530 14,201 17,866 24,347 10,973 47,112 8757 9763 191,106 503,723

Utilized
features Med (January, February, March) April May June July August September October Med (November and

December)

S2 yearly indicators contain 5th, 50th, and 98th centiles for the mentioned 25 features.
Thus, the classification scheme would have 75 features accessible for 1,950,932 samples
from 57,413 polygons.

Applying conditions described in Section 2.2.2 to S1 data, 108 features from 1,950,922 samples
of 57,413 polygons were extracted.

2.4. Classification Process: The Classifier, Validation Data, and Assessment Metrics

The RF classifier, presented by Breiman [43], is a robust machine learning algorithm
using an ensemble technique based on bagging (bootstrap + aggregation) and generating a
group of independent decision trees.

RF, along with other methods such as SVM [44,45], XGBoost [46], and ANN [47], are
powerful machine learning methods for LULC classification [27,48]. RF was selected in this
study to allow comparison with our previous study based on the same algorithm.

This study employed the RF classifier using the Scikit-learn package in Python [49].
The number of trees (n_estimators) and the number of features to consider when identifying
the best split (max_features) were set to 200 and ‘sqrt’, respectively, while the remaining
parameters were set to default values. A higher number of trees were tested without a
significant improvement in results.

To evaluate the efficiency of the classification models, an independent validation
dataset was extracted from the remaining 337,854 LUCAS core points. The procedure
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delineated in [22] was followed to select the validation dataset. Thus, only points directly
interpreted in the field within parcels greater than 0.5 ha with a homogeneous land cover
were kept. The core points surveyed in the Copernicus module were also eliminated, and
only samples related to the classification scheme were kept. By applying these conditions,
91,201 samples were selected (Table 5). Then, associated features for those points were
extracted from S1 and S2 data. Samples containing missing values were removed. Finally,
81,448 points from S2 monthly indicators, 91,201 points from S2 yearly indicators, and
91,197 points from S1 indicators were derived as validation data.

Table 5. Process of extracting validation samples from LUCAS core points.

Situation Number of Samples

Total LUCAS core points 333,854

Remaining after keeping points directly interpreted in the field 238,961

Remaining after keeping points within parcels greater than 0.5 ha 177,609

Remaining after eliminating points surveyed in the Copernicus module 122,070

Remaining after keeping points with a homogeneous land cover 98,146

Remaining after keeping points related to the classification scheme 91,201

Four assessment metrics were evaluated, including User’s Accuracy (UA, errors of
commission), Producer’s Accuracy (PA, errors of omission), F1-score (weighted average
of UA and PA), and Overall Accuracy (OA, ratio of correctly predicted samples to the
total samples).

3. Results

Five different feature sets using S1 and S2 and combinations of indicators were gen-
erated as input training data for the classification. Due to the nature of existing datasets
(S1 decadal, S2 Yearly, S2 monthly), each feature set had various numbers for training
and validating samples. However, for having a precise comparison between the efficiency
of feature sets, the number of validating samples was equalized to 81,448. This number
equals validating samples of the S2 monthly indicator’s dataset, with the lowest number of
samples between available datasets.

Details and results of applying the RF classifier to the mentioned datasets using all 21
and 8 aggregated LULC classes are described in Table 6

Table 6. Five different input data scenarios generated from S1 and S2 features. Shown are the number
of training and validating samples as well as the number of features. Moreover, the overall accuracy
(OA) of applying an RF classifier on different feature sets (using all 21 and 8 aggregated LULC classes)
and evaluating with validation data are displayed.

Feature Set Abbreviation
Number of

Training
Samples

Number of
Validating
Samples

Number of
Features

OA (21
Classes) OA (8 Classes)

S1 Decadal + S2
Monthly and Yearly
features

S1DS2MY 1,749,604 81,448 408 79.4% 83.7%

S1 Decadal + S2 Yearly
features S1DS2Y 1,950,922 81,448 183 78.3% 82.7%

S2 Monthly and Yearly
features S2MY 1,749,614 81,448 300 78.1% 82.7%

S2 Yearly features S2Y 1,950,932 81,448 75 74.4% 80.5%
S1 Decadal features S1D 1,950,922 81,448 108 73.9% 77.6%
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According to Table 6, the S1DS2MY feature set generates the highest OA (in both
21 and 8 classes) among the five evaluated feature sets, whereas the sole use of S1 data
performs worst and leads to a drop of 5.5 percent points in accuracy using 21 LULC classes.
The sole use of decadal S1 features (S1D) also performs worth than the yearly S2 data (S2Y).

In terms of computational requirements and accuracy, the use of yearly S2 data
combined with decadal S1 data is outstanding (Figure 2). Indeed, using S1DS2Y still yields
an OA of 78.3% (in 21 LULC classes) but only requires the calculation of 183 features
(instead of 408 for the best-performing feature set).
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Figure 2. The relation of overall accuracy with the number of features in five different feature sets
using 21 and 8 LULC classes.

The confusion matrix for the 21 LULC classes for the computationally efficient S1DS2Y
feature set is summarized in Table A1 (in Appendix A) and shown in Table 7 when grouping
the 21 classes into 8 broader classes. All results are based on the independent validation
data. Using the detailed thematic classification with 21 classes, only 6 classes (Maize, Sugar
beet, Sunflower, Rape and turnip rape, Woodland and Shrubland, and Grassland) obtained
F1-scores above 79%. For seven classes (Rye, Oats, Rice, Triticale, Other root crops, and
Fodder crops), the F1-scores were below 30, and the remaining 8 classes were between
30–70%. In cereal crops, Common wheat and Maize classes are well distinguished compared
to other classes; however, some Common wheat samples are misallocated as Barley and
Grassland. Moreover, the misclassified samples of the rest of the cereal crops mainly belong
to the Common wheat and Grassland. In the other classes, some Potato samples are mixed
with the Maize, and most points of Fodder crops are confused with Grassland.
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Table 7. Confusion matrix for comprehensive classes by applying a trained model (using RF classifier)
on the validation dataset utilizing S1DS2Y feature set. UA = User Accuracy, PA = Producer’s Accuracy,
OA = Overall Accuracy.

Comprehensive Class Code 210 220 230 240 250 290 300 500 Total UA F1-Score

Cereals 210 13,391 188 360 227 334 958 42 925 16,425 81.5% 83.0%
Root crops 220 18 834 20 33 1 9 0 6 921 90.6% 80.4%

Non-permanent industrial crops 230 45 29 2042 55 13 137 3 92 2416 84.5% 79.7%

Dry pulses, vegetables and flowers 240 18 34 25 193 19 53 2 34 378 51.1% 35.1%
Fodder crops 250 7 0 0 6 178 1 0 15 207 86.0% 15.7%

Bare arable land 290 28 8 18 16 2 612 11 141 836 73.2% 39.5%
Woodland and Shrubland 300 530 22 79 43 113 217 30,473 4027 35,504 85.8% 90.5%

Grassland 500 1818 38 163 150 1398 274 1293 19,627 24,761 79.3% 79.1%
Total 15,855 1153 2707 723 2058 2261 31,824 24,867 81,448

OA = 82.7%PA 84.5% 72.3% 75.4% 26.7% 8.6% 27.1% 95.8% 78.9%

Grouping the detailed classes into fewer broad classes increases the OA from 78.3%
to 82.7%. High F1-scores (79.1–90.5%) were obtained for 5 of the 8 broad classes: Cereals,
Root crops, Non-permanent industrial crops, Grassland, and Woodland and Shrubland,
similar to [23]. For the three remaining classes, the UA was still acceptable (51.1–86.0%)
but with generally insufficient PA (<30%). Overall, class 240 (Dry pulses, vegetables, and
flowers) was the most difficult to separate (UA: 51.1%), probably due to the high intra-class
thematic and spectral variability and very low number of training samples. Of the 5 broad
crop classes, the class Cereals (210) performed best with an F1-score of 83.0%.

4. Discussion

Remote sensing has been a functional tool for large-scale crop mapping [50–52]. Moni-
toring using high-resolution remote sensing on broad areas is substantial for adjusting and
optimizing agricultural production [53]. Comprehending crop patterns’ spatial and tempo-
ral variations is essential for assessing food security, policy application, and developing
sustainable agricultural practices [54,55].

Google Earth Engine cloud-based computing platform, providing multi-sensor and
multi-date satellite data, facilitates the generation of LULC maps over large areas and
satisfies the needs of a wide range of applications such as cropland mapping and cost-
effective monitoring.

This work is complementary to our previous study [23] and underlines the potential
of using synergies between S1 and S2 data and using LUCAS field data for large-scale
LULC classification.

Using solely S1 data, d’Andrimont et al. [22] reached an OA of 74.0% in classifying
the same 21 classes. Their OA increases to 79.2% by grouping the detailed classes into
8 broader categories. In our previous study [23], we achieved an OA of 77.6% and 82.5%
in classifying 21 and 8 classes, respectively, utilizing the SVM classifier while using solely
S2 data.

As reported in Table 6, using only S1 features leads to an OA of 73.9%, which is almost
identical to the results obtained by d’Andrimont et al. [22]. Utilizing S2 monthly and yearly
indicators together produces a 3.7 percentage point increase in OA compared to using only
S2 yearly indicators. Although adding S1 features to S2 monthly and yearly indicators
(S1DS2MY) generates the highest OA between feature sets, the number of features increases
considerably with an impact on computation cost and speed. The combination of decadal
S1 and yearly S2 features, on the other hand, is computationally much more efficient
and only results in a slight drop in accuracy of around one percentage point. Using
this computationally efficient feature set (S1DS2Y), 19 field crops beside 2 broad classes
containing Woodland and Shrubland and Grassland were classified with proper results.
Both OA and class-specific F1-scores are analogous or better in some classes compared to
S1 [22] and S2 [23] studies using similar training and validation data. By employing the
S1DS2Y feature set, 21 classes were classified with an OA of 78.3% and the 8 groups with
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82.7%. The feature set outperforms the mentioned studies utilizing RF classifiers using
solely S1 or S2 features by 4.3 and 1.5 percentage points in OA, respectively.

Despite the very good temporal resolution of the S2 satellites, the acquisitions in
2018 were insufficient to produce cloud-free monthly composites for all of Europe. This
caused missing values, especially in the winter and late fall months, which hampered the
application of the RF classifier. This study used the median values of nine composites—
with durations between one and three months—as “monthly” indicators to address this
issue. Nevertheless, spectral values were unavailable for around 211,000 training samples
(and 10,000 validation samples). Therefore, the cloud coverage issue prevented producing
a full coverage map using S2 monthly features. In our recent study using S2 data, we used
six (April–September) monthly features beside yearly centiles only for spectral indices. In
this work, some extra indicators whose efficiency has been proven in [56] were calculated
from spectral information and applied to the dataset. Moreover, S2 yearly centiles were
calculated not only for spectral indices but also for all involved features.

Using S2 yearly indicators allows us to perfectly cover Europe, with, however, a
3.7 percentage point drop in the OA compared to S2MY, which also includes monthly
composites. By adding weather-independent—but in itself less informative—S1 microwave
features to S2 yearly indicators, a full coverage LULC map could be achieved with ac-
ceptable accuracy. Applying this method and according to Table 7, Cereals, Root crops,
Non-permanent industrial crops, Grassland, and Woodland and Shrubland classes were
well-classified by having F1-scores above 79% in grouped classes.

This is also shown with less detailed classes by Venter and Sydenham [21], who
could improve the OA by 3 and 10 percentage points by combining S1 and S2 compared
to the sole use of S2 and S1 data, respectively. Similar results were also obtained by
Lechner et al. [57] for the detailed discrimination of tree species. They showed that S1 in
combination with S2 shows an added value if only a few S2 data are available. As soon as
an extensive multitemporal S2 dataset is available, the potential for improvement by S1 is
drastically reduced.

In addition to high-quality remote sensing data, suitable reference data are essential
for effective classification. Both quality and quantity play a pivotal role, as well as a good
spatial distribution of the data. Here, the LUCAS dataset provides good reference data that
have already been used in numerous recent papers for large-scale areas [18–22].

5. Conclusions

Earth observation (EO) data, such as the Copernicus Sentinel-1 (S1) and Sentinel-2
(S2) data, are instrumental for objective, timely, and cost-effective Land Use and Land
Cover (LULC) mapping over large areas. However, data gaps due to clouds in S2 data
and random noise in S1 data do not allow an easy wall-to-wall mapping for large areas.
Moreover, although some datasets (i.e., LUCAS) are available as ground truth for training
and evaluation of LULC maps, robust features that generalize well across space and time
are still missing. This work introduced the potential of combining optical and radar data
consisting of S2 yearly indicators and S1 10-day composites, achieving an overall accuracy
(OA) of 78.3% for 19 crop types, plus Grassland and Woodland and Shrubland over 28
Member States of Europe. Although combining S1 and S2 features improved the accuracy
slightly, merging S1 and S2 yearly features generates a full coverage map less dependent
on cloud effects and satisfying OA.

Appropriate reference ground data are a crucial component for having a reliable
classification. Therefore, the generation of the LULC map using the LUCAS dataset in
the years when it is unavailable would be demanding. This issue could be addressed by
finding relations between LUCAS 2018 and LUCAS 2022 (which have not been published
yet) surveys using S1 and S2 EO data and applying machine learning methods.
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Appendix A

Table A1. The confusion matrix extracted from the RF classification result on validation data using the S1DS2Y feature set. UA = User Accuracy, PA = Producer’s
Accuracy, OA = Overall Accuracy.
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(233)Soya
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(250)Fodder
C

rops

(290)B
are

A
rable

Land

(300)W
oodland

and
Shrubland

(500)G
rassland

Total
UA
(%)

F1-Score
(%)

211 4340 405 890 308 298 76 9 276 18 16 10 11 44 4 102 2 62 150 631 19 510 8181 53.0 63.9
212 35 305 24 1 17 0 0 1 0 0 0 0 0 0 0 0 2 25 16 0 19 445 68.5 38.6
213 319 97 1773 91 189 6 13 35 1 2 0 8 28 0 25 0 69 105 205 8 182 3156 56.2 54.5
214 12 0 14 127 5 2 0 41 0 2 0 0 2 0 2 0 2 0 6 1 8 224 56.7 27.5
215 8 0 13 4 32 0 0 0 1 0 0 0 0 0 0 0 0 6 5 0 6 75 42.7 7.3
216 63 14 51 13 15 3331 49 7 59 93 24 22 42 38 3 68 92 48 94 14 200 4340 76.8 82.1
217 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4 75.0 6.1
218 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0
219 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0
221 0 0 0 0 0 1 0 1 0 225 5 2 4 1 0 7 12 0 5 0 2 265 84.9 67.4
222 2 0 5 1 1 5 1 0 1 10 577 14 3 4 1 0 21 1 3 0 4 654 88.2 88.3
223 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 2 50.0 2.0
230 0 0 0 0 0 0 0 0 0 0 0 0 103 0 0 0 2 1 4 0 0 110 93.6 46.5
231 1 1 1 0 2 9 0 0 0 17 2 1 21 535 2 9 33 6 29 0 34 703 76.1 79.6
232 11 1 8 1 0 6 0 2 2 1 6 2 5 2 1303 1 20 6 102 3 57 1539 84.7 84.0
233 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 60 0 0 2 0 1 64 93.8 51.5
240 3 7 4 0 0 1 1 0 2 13 8 13 7 1 15 2 193 19 53 2 34 378 51.1 35.1
250 2 1 1 0 3 0 0 0 0 0 0 0 0 0 0 0 6 178 1 0 15 207 86.0 15.7
290 4 5 14 0 4 1 0 0 0 3 1 4 2 3 13 0 16 2 612 11 141 836 73.2 39.5
300 133 67 121 27 33 114 5 18 12 9 11 2 22 24 29 4 43 113 217 30,473 4027 35,504 85.8 90.5
500 468 231 436 128 204 226 14 73 38 12 9 17 49 30 68 16 150 1398 274 1293 19,627 24,761 79.3 79.1

Total 5401 1134 3355 701 803 3778 95 454 134 403 653 97 333 642 1563 169 723 2058 2261 31,824 24,867 81,448
PA (%) 80.4 26.9 52.8 18.1 4.0 88.2 3.2 0.0 0.0 55.8 88.4 1.0 30.9 83.3 83.4 35.5 26.7 8.6 27.1 95.8 78.9 80.4 OA = 78.3%
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