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Abstract: As an important symbol and carrier of regional social and economic activities, population
mobility is a vital force to promote the re-agglomeration and diffusion of social and economic
factors. An accurate and timely grasp on the impact of the COVID-19 epidemic on population
mobility between cities is of great significance for promoting epidemic prevention and control
and economic and social development. This study proposes a theoretical framework for resilience
assessment, using centrality and nodality, hierarchy and matching, cluster, transmission, and diversity
to measure the impact of the COVID-19 epidemic on population mobility in the Beijing–Tianjin–
Hebei (BTH) urban agglomeration in 2020–2022, based on the migration data of AutoNavi and
social network analysis. The results show that the COVID-19 epidemic had different impacts on
the population network resilience of the BTH urban agglomeration based on the scale and timing.
During the full-scale outbreak of the epidemic, strict epidemic prevention and control measures
were introduced. The measures, such as social distancing and city and road closure, significantly
reduced population mobility in the BTH urban agglomeration, and population mobility between cities
decreased sharply. The population mobility network’s cluster, transmission, and diversity decreased
significantly, severely testing the network resilience. Due to the refinement of the epidemic control
measures over time, when a single urban node was impacted, the urban node did not completely
fail, and consequently it had little impact on the overall cluster, transmission, and diversity of the
population mobility network. Urban nodes at different levels of the population mobility network were
not equally affected by the COVID-19 epidemic. The findings can make references for the coordination
of epidemic control measures and urban development. It also provides a new perspective for the
study of network resilience, and provides scientific data support and a theoretical basis for improving
the resilience of BTH urban agglomeration and promoting collaborative development.

Keywords: COVID-19 epidemic; network resilience; social network analysis; population mobility;
Beijing–Tianjin–Hebei (BTH) urban agglomeration

1. Introduction

The COVID-19 epidemic hit the whole world at the beginning of 2020. The virus has
a wide range of transmission routes characterized by high infectivity, high concealment,
and high variability [1,2]. As of 21 March 2022, COVID-19 caused 470 million infections
and 6.09 million deaths worldwide, with a mortality rate of 1.3%. The global spread
of the COVID-19 epidemic has caused a significant security threat to the entire human
community. At the same time, it has also seriously impacted the normal development of
the social economy and human activities, causing a huge impact on transportation, tourism,
education, catering, real estate, and other industries [3–5], which has led to huge economic
losses [6]. Population movement plays a vital role in spreading diseases, and large-scale
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population movements often trigger the rapid spread of viruses [7,8]. In response to the
COVID-19 epidemic, various regions introduced prevention and control measures and
policies to restrict population mobility. Population mobility, an important symbol and
carrier of regional social and economic activity, is an essential driving force to promote the
re-agglomeration and diffusion of social and economic factors. Against a background of
globalization, informatization, and rapid urbanization, population mobility between cities
is not only reshaping spatial patterns in China’s population, but also has a significant impact
on China’s urban development [9]. Therefore, it is of great importance to have an accurate
and timely grasp of the impact of the COVID-19 epidemic on population mobility between
cities for epidemic prevention and control as well as economic and social development.

As one of the most important geographical processes, the study of population mo-
bility has always been the focus of geographers [10,11]. Previous studies have examined
spatial–temporal patterns, their characteristics, and the factors that drive population mo-
bility [12–14]. Research data are traditionally extracted from census data, 1% population
sampling data, and statistical yearbook data. This kind of static data can depict the im-
portance of node cities in regional population distribution patterns, but it cannot reflect
the dynamic real-time characteristics of population mobility among cities in a region. The
data acquisition environment and collection methods of urban research have been greatly
improved in recent years with the rapid development of the Internet and information
technology [15]. New data sources, such as social network data [16], population migration
data [17], mobile phone signaling data [18], and taxi data [19], are constantly emerging.
Big data on geographical behavior, which are quantitative and objective, have strong spa-
tiotemporal heterogeneity, can perceive human activities, and provide new opportunities
for studying population mobility.

Many scholars have examined population mobility based on geographical big data,
which significantly enriches research perspectives on population mobility. At present,
research on the use of geographic big data mainly focuses on spatiotemporal evolution
patterns, the characteristics of network structures, and factors that influence population
mobility at different scales [20–22]. Most of the research methods are complex network
analyses. The network structures related to population mobility are analyzed by calculating
network characteristics such as degree centrality, weighted degree, clustering coefficients,
and diversity using UCINET and Gephi software [23,24]. Some scholars have also studied
the short-term patterns and modes of population mobility. For example, Xu and Li used
Tencent’s location big data to explore unbalanced migration between cities and the spatial
differences in urban development during China’s Spring Festival travel rush based on a
network analysis [25]. Lin and Wu revealed an asymmetric pattern in population mobility
in the Yangtze River Delta during the Spring Festival by analyzing the degree centrality,
core-edge structure, and symmetry of the population mobility network [26]. Pan and Lai
used Tencent’s location big data to reveal the temporal and spatial patterns and network
structure characteristics of population mobility during China’s National Day holiday [17].

Since the COVID-19 epidemic, several scholars have explored the relationship between
the spread and control of the epidemic and the population mobility between cities. For
example, Jia and Lu tracked the collective flow of the Chinese population by using mobile
phone signaling big data, and accurately predicted the relative frequency and temporal
and spatial distribution of COVID-19 infections on the Chinese mainland and evaluated
the epidemic risk in 296 counties in China [27]. Zhao and Li used Baidu migration big data
to explore national trends and infection coefficients of COVID-19 in China and revealed
the positive impact of government control measures at all levels [28]. Wei and Wang
examined population migration based on Baidu’s big data [29]. This paper examines spatial
patterns in the population migration network and their significance in curbing the spread
of the COVID-19 epidemic in China by analyzing the weighting degree and intermediary
centrality of the network.

Existing research has fully demonstrated the feasibility and effectiveness of geographic
big data and complex network analysis in exploring population mobility networks. Several
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attempts have been made to study the spread and impact of population mobility on the
COVID-19 epidemic, but have the following shortcomings. First, most of the research
has focused on the outbreak period in Wuhan, without a long-term series to track the
epidemic’s impact on population mobility. Second, studies have focused on the regional
impact of the COVID-19 epidemic, without examining the impact of a single city on the
whole network. Third, studies have also focused on analyzing the spatial–temporal pattern
of population mobility networks, ignoring the resistance and resilience of the network itself
after being disturbed and impacted. Network resilience refers to the adaptability, recovery,
and learning ability of the network when dealing with shocks and cumulative disturbances.
Many scholars have explored the impact of specific risk disasters such as public health
emergencies, earthquakes, typhoons, and floods on urban network resilience [26,30]. They
have pointed out that a timely and scientific assessment of the impact of extreme events on
urban network resilience can provide a fast and valuable way to diagnose weak links in
urban resilience construction. It is vital to improve the resistance and resilience of future
cities for the sustainable development of human society.

This study explores the impact of four major COVID-19 outbreaks on the resilience of
population mobility networks in the Beijing–Tianjin–Hebei (BTH) urban agglomeration
from 2020 to 2022 using AutoNavi population migration big data and social network
analysis methods. We provide empirical evidence for coordinating epidemic prevention
and control and economic and social development. We expect to provide policy references
for the implementation of precision measures in the routine control stage of an outbreak
by exploring the impact of four major COVID-19 outbreaks on the resilience of the BTH
population mobility network. Furthermore, this paper introduces a new perspective on
population mobility network resilience to provide scientific support and a theoretical basis
for improving risk management and the BTH coordinated development.

This paper is structured as follows. In the second section, we propose a theoretical
framework for the population mobility network resilience assessment. Measuring the
resilience level of urban nodes, structural characteristics, organizational efficiency, and sta-
bility of the population mobility network by the index of centrality and nodality, hierarchy
and matching, cluster, transmission, diversity, etc. The results of the impact of the COVID-
19 epidemic on population mobility in the BTH urban agglomeration are described in the
third section. The fourth section discusses our results in the context of other relevant papers
and makes some policy recommendations. The fifth part is the conclusion of the research.

2. Materials and Methods
2.1. Study Areas

The BTH urban agglomeration is located in the heart of the Bohai Sea in Northeast
Asia, which is the largest and most dynamic area in northern China (Figure 1). The BTH
urban agglomeration encompasses the municipalities of Beijing and Tianjin as well as Hebei
Province, which has 13 prefecture-level cities. It covers an area of 216,800 km2 and accounts
for 2.26% of China’s national land area [31]. It had a resident population of 110 million
in 2021, or 7.6% of China’s total population. In recent years, rapid urbanization and the
proposition of the BTH coordinated development strategy have led to the continuous
improvement of transportation infrastructure between cities within the BTH urban agglom-
eration and increasingly close social, economic, industrial, and innovation cooperation. All
of the above factors contribute to the increasing population mobility intensity in the BTH
urban agglomeration [32]. Since the outbreak of COVID-19 in 2020, the BTH urban agglom-
eration has experienced many localized outbreaks. It limited the population mobility in
the BTH urban agglomeration to some extent, which will further affect the socio-economic
operation in the BTH urban agglomeration. Hence, taking the BTH urban agglomeration
as an example, this study explores the impact and differences in the COVID-19 episodes on
the resilience of the population mobility network since 2020. The findings will be of great
significance for the implementation of precision control policies to improve the BTH urban
agglomeration’s risk management capacity.
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Figure 1. The location of the Beijing–Tianjin–Hebei urban agglomeration in China.

2.2. Data Processing and Network Construction
2.2.1. AutoNavi Migration Data

AutoNavi population migration data track user behavior through hundreds of mil-
lions of mobile phone communications and mobile application (AP) use, which has high
positioning data accuracy and covers all modes of transportation. It can accurately reflect
the direction and intensity of population mobility between cities and the population contact
network between cities. This study is based on AutoNavi population migration big data
and constructs a population migration network for the BTH urban agglomeration according
to migration data in the migration willingness list of major cities in China and big data
collected by AutoNavi’s traffic map (https://trp.autonavi.com/migrate/page.do (accessed
on 20 February 2022)).

2.2.2. Data Processing

This paper selects four major stages of the outbreak of the COVID-19 epidemic in
the BTH urban agglomeration: the full-scale outbreak, the Xinfadi outbreak in Beijing, the
outbreak in Shijiazhuang, and the outbreak in Tianjin. Next, we analyze the characteristics
and differences of the changes in the population network and the key nodes when they are
impacted by a full-scale outbreak.

In order to compare the impact of a COVID-19 outbreak on the resilience level of
the population network, the population mobility data of the corresponding period in
2019 (before the epidemic) are selected as a reference. This paper also considers the impact
of official holidays, such as the Spring Festival and Dragon Boat Festival, on population
mobility. We also consider that there will be a time lapse between the outbreak and local
governments’ response to the epidemic, and that during this period the normal population
flow between cities will continue. In order to eliminate the influence of this objective factor
on population mobility, this study selects 14 days during which the population mobility
between cities was relatively stable to collect population mobility data.

The collection time and reference time for population mobility data in each outbreak
period are as follows: the full-scale outbreak period of the BTH epidemic (A1) is taken from
2 February 2020 to 15 February 2020, and the control time (A2) from 13 February 2019 to
26 February 2019. The outbreak period of the Xinfadi epidemic in Beijing (B1) is taken

https://trp.autonavi.com/migrate/page.do
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from 19 June 2020 to 2 July 2020, and the control time (B2) from 1 June 2019 to 14 June 2019.
The outbreak period of the epidemic in Shijiazhuang (C1) is taken from 10 January 2021 to
23 January 2021, and the control time (C2) from 1 January 2019 to 15 January 2019. The
outbreak period of the epidemic in Tianjin (D1) is taken from 12 January 2022 to 25 January
2022, and the control time (D2) from 15 January 2019 to 28 January 2019.

2.2.3. Construction of Population Mobility Networks

This study uses AutoNavi migration data for 13 cities in the BTH urban agglomeration
to develop a daily migration index for each city in each epidemic outbreak period. Taking
the daily average value to obtain the population mobility intensity among the cities, we
construct a 13 × 13 population connection matrix.

In order to represent the migration intensity between cities, the average value of
migration intensity between the cities is used to express the migration intensity. The
calculation can be expressed as follows:

Tij =
Rij + Rji

2
(1)

where Tij is the migration intensity between city i and city j, Rij is the migration index from
city i to city j, and Rji is the migration index from city j to city i.

2.3. Evaluation Indicators and Measurement Methods

The network resilience of urban agglomerations is determined by the network node
resilience, network structure characteristics, and network organizational efficiency. Based
on the current research [33–36], an assessment index system for measuring network re-
silience is constructed by combining the social network analysis method, using centrality
and nodality, hierarchy and matching, cluster, transmission, and diversity to measure the
population mobility network resilience of the BTH urban agglomeration (Table 1). Where
the resilience level of urban nodes in the population mobility network is evaluated by
centrality and nodality, the structural characteristics of the population mobility network
are measured by hierarchy and matching. The organizational efficiency of the population
mobility network is measured by cluster, transmission, and diversity.

Table 1. Measurement index system for population mobility network resilience.

Network Property Index Meaning

Centrality and nodality

Degree centrality Interaction between nodes and other nodes
Closeness centrality Proximity between a node and other nodes

Betweenness centrality Proportion of the number of nodes passing
through all the shortest paths in the network

Hierarchy and matching Weighted degree distribution Dispersion of weighting degree of each node
Weighted degree correlation Correlation of connections between nodes

Cluster
Local custering coefficient Aggregation degree of connection between

nodes and adjacent nodes
Average clustering coefficient Aggregation degree of network

Transmission Average shortest path length Efficiency of element flow between nodes

Diversity Average number of independent paths Diversity and redundancy of communication
between nodes

2.3.1. Centrality and Nodality
Measurement Method for Centrality

Degree centrality is an important index to measure the centrality of nodes in the
network [37]. The greater the degree centrality of a node, the more nodes are connected in
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the network. This means the node has a greater ability to integrate resources and a higher
level of resilience. Degree centrality can be expressed as follows:

Ki = ∑
j∈N

ai (2)

CD(i) =
Ki

N − 1
(3)

where Ki is the degree of node i, aij = 1 if there is a connection between two nodes, and
is otherwise 0. CD(i) is the degree centrality of node i, and N is the number of nodes in
the network.

Measurement Method for Nodality

Nodality reflects the transfer and connection function of nodes within the network,
measured by closeness centrality and betweenness centrality. Closeness centrality repre-
sents the relative proximity of nodes in a network, measured by the sum of the distance of
the shortest path between nodes. The greater the node closeness centrality, the closer the
node is to other nodes, which means that the connection between the node and other nodes
is more convenient, and the resilience of the node is greater. The formula can be expressed
as follows:

CC(i) =
1

∑j Dij
(4)

where CC(i) is the closeness centrality of node i, and Dij is the distance of the shortest path
between node i and node j.

Betweenness centrality reflects the transit and hub functions of a node. The between-
ness centrality uses the ratio of the number of shortest paths through the node to the
number of all the shortest paths. The higher the betweenness centrality, the stronger the
transit connection ability and the higher the resilience of the node. The formula can be
expressed as follows [38]:

CB(i) = ∑
m 6=n

σmn(i)
σmn

(5)

where CB(i) is the betweenness centrality of node i, σmn is the number of all the shortest
paths from node m to node n, and σmn(i) is the number of all the shortest paths from node
m to node n through node i.

2.3.2. Hierarchy and Matching
Measurement Method for Hierarchy

Network hierarchy represents the hierarchical span between high-level cities and
low-level cities in the network. High-level networks usually have prominent core cities
that enhance the cohesion and competitiveness of the network. However, the development
gap between core and low-level cities is significant, and low-level cities have a strong
dependence on core cities. The network, therefore, presents a degree of fragility. In this
study, weighted degree and weighted degree distribution are used to measure the hierarchy
of networks. According to the weighted degree value of each node, the nodes are sorted
from large to small to draw a power law curve; the absolute value of its slope is the weighted
degree distribution coefficient of the network. The larger the distribution coefficient of the
weighted degree, the more significant the hierarchy. The power law curve distribution of
the weighted degree distribution is represented by the following formula:

Wi = C× (W∗i )
a (6)

By processing the formula, we obtain

log(Wi) = log(C) + a log(W∗i ) (7)
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where Wi is the weighted degree of city i, that is, the sum of the weights of edges directly
connected to node i; W∗i is the bit order ranking of the weighted degree of city i in the
network; C is a constant; a represents the slope of the weighted degree distribution curve,
and its absolute value is the weighted degree distribution coefficient.

Measurement Method for Matching

Matching of a network represents the relevance of different nodes in the network,
which can be divided into assortative networks and disassortative networks. In this study,
neighbor weighted average degree (NWAD) and weighted degree correlation are used to
measure network matching. If the correlation coefficient of the weighted degree is positive,
the network is assortative, and the cities in the network are connected at the same level. The
larger the coefficient, the greater the differences in the levels of the network, and the lower
the network’s resilience. If the correlation coefficient of the weighted degree is negative,
the network is disassortative, and the cities in the network can be connected across levels.
The larger the absolute value of the coefficient, the stronger the connection between the
core cities and the marginal cities in the network, and the higher the network’s resilience.
The formula can be expressed as follows:

Wi =
1
Ki

∑
i∈Gi

Wj (8)

The linear relationship of Wi is given by

Wi = D + bKi (9)

where Wi is the neighbor weighted average degree of node i; Wj is the weighted degree of
the adjacent node j directly connected to the city i; Ki is the degree of city i, Gi is the set of
all adjacent nodes of city i, D is a constant, and b is the degree correlation coefficient.

2.3.3. Cluster

The cluster represents the network’s density and is usually measured by the local
clustering coefficient and the average clustering coefficient. The higher the local clustering
coefficient, the higher the resource integration efficiency and resilience of the node in the
network. The higher the average clustering coefficient, the stronger the aggregation of the
network, and the higher the flow and integration efficiency of elements in the network [39].
The calculation can be expressed as follows:

Ci =
2Ei

Ki(Ki − 1)
(10)

C =
∑n

i Ci

n
(11)

where Ci is the local clustering coefficient of node i, Ki is the degree of node i, and Ei is the
number of edges connected between the neighbors of node i; C is the average clustering
coefficient of the network, and n is the number of nodes in the network.

2.3.4. Transmission

Transmission describes the flow efficiency of various elements in the network, which
is usually measured by the length of the shortest average path [40]. The higher the trans-
mission of the network, the lower the transmission costs in the network. When the network
is impacted, the integration efficiency of various resources is higher, the faster the response
speed, and the stronger the network’s ability to cope with the impact. The formula can be
expressed as follows:

L =
2

n(n− 1) ∑
i 6=j

Dij (12)
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where L is the length of the average shortest path in the network, Dij is the shortest path
length from node i to node j, and n is the number of nodes in the network.

2.3.5. Diversity

Diversity reflects the redundancy and fault tolerance of the network, expressed by
the average number of independent paths between two cities in the network. The higher
the average number of independent paths in the network, the richer the diversity and
redundancy of the network. This type of network has a high fault tolerance and stability.
The formula can be expressed as follows:

V =
∑i 6=j Vij

n(n− 1)
(13)

where V represents the average number of independent paths, Vij is the number of in-
dependent paths between node i and node j, and n represents the number of nodes in
the network.

During the construction of the various networks, we found connections between two
cities in the vast majority of the networks in the BTH urban agglomeration, and there were
also too dense connections and redundant data. In order to prevent the relatively weak
relationship between cities affecting the overall distribution of the urban agglomeration
network and to retain the effect of the original connection strength on the network, the
original network was divided into five levels using the natural breaks clustering analysis
method in ArcGIS. The fifth-level network, which had the lowest connection strength,
was deleted. The network data of the first four levels were taken to measure and analyze
structural characteristics and resilience, thus making the analysis results more precise
and intuitive.

3. Results
3.1. Spatial Pattern of Population Connections in Cyberspace under the Influence of
COVID-19 Pandemic
3.1.1. The Outbreak in the BTH Area (A1)

During A1, China responded quickly to cut off the transmission path of the COVID-19
pandemic by taking preventative measures, such as traffic control and extending holidays.
These epidemic prevention and control policies significantly impacted the population
mobility network within the BTH urban agglomeration [41]. Figure 2 shows the relative
strength of the population mobility network between A1 and A2. During A1, the population
mobility intensity in the BTH urban agglomeration decreased significantly. Compared
with A2, the population mobility intensity between Beijing and Langfang decreased from
20.74 (first level) to 5.16 (third level). Beijing–Tianjin, Beijing–Baoding, Tianjin–Langfang,
and Tianjin–Cangzhou, initially located on the second level, and Tianjin–Tangshan, which
was located on the third level, all dropped to the fourth level. Other network connections
initially on the third and fourth levels dropped to the fifth level, and the population mobility
intensity was below 0.92. Overall, the population mobility intensity of the BTH urban
agglomeration decreased by 76.3%. Beijing and Tianjin were still the core areas with high
population connection intensity.

3.1.2. The Xinfadi Outbreak in Beijing (B1)

In June 2020, a cluster epidemic broke out in the Beijing Xinfadi Wholesale Market. In
order to contain the outbreak, Beijing restricted the flow of traffic out of Beijing. Tianjin
and Hebei issued policies such as centralized isolation and medical observation for 14 days
for people from middle- and high-risk areas in Beijing. This had an immediate impact on
population mobility in the BTH urban agglomeration.
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The population mobility intensity between other cities was less affected by B1. In
the case of Shijiazhuang–Xingtai and Shijiazhuang–Hengshui, the population mobility
intensity increased from the third and fourth levels in 2019 to the second and third levels.
This shows that under the influence of the BTH coordinated development, cooperation and
exchanges between the cities had improved, as well as the intensity of population mobility
between cities.
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3.1.3. The Outbreak in Shijiazhuang (C1)

The epidemic broke out in Shijiazhuang in early January 2021, during which confirmed
cases were reported in Xingtai, Beijing, and Langfang. Shijiazhuang, Xingtai, and Langfang
immediately closed off the whole area and implemented a policy preventing travel to
Beijing. As the outbreak involved many cities, it had a significant impact on the population
mobility network within the BTH urban agglomeration. The overall population mobility
intensity decreased by 34.9%, which meant that it had the most significant impact on the
population network among the three nodal outbreaks.

The epidemic significantly affected the population mobility network with Shijiazhuang
and Beijing as the core (Figure 4). The population mobility intensity of Shijiazhuang de-
creased by 75.0%. Shijiazhuang–Baoding, Shijiazhuang–Xingtai, Shijiazhuang–Cangzhou,
and Shijiazhuang–Hengshui all fell from the third and fourth levels to the fifth level.
The population mobility intensity between Beijing and the other cities dropped by 58.8%.
Among them, Beijing–Langfang dropped from the first level to the second level. Beijing–
Tianjin and Beijing–Baoding dropped from the second to the third and fourth level, respec-
tively. Beijing’s connections with Cangzhou, Chengde, and Zhangjiakou dropped from the
fourth to the fifth level. Except for the four cities involved in the C1, the population mobility
intensity among other cities increased by a varying degree. This shows that under the strict
epidemic prevention and control measures, inter-city population mobility in unaffected
areas had improved under the impetus of the BTH coordinated development.
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3.1.4. The Outbreak in Tianjin (D1)

On 8 January 2022, a new outbreak of COVID-19 was reported in Tianjin; confirmed
cases were also reported in Beijing. The precise prevention and control measures adopted
by the BTH had significantly reduced the impact of the epidemic on social development.
Among the four outbreaks reported in this paper, D1 had the most negligible effect on the
population mobility network. The mobility intensity of the total population only decreased
by 2.43%.

D1 had the greatest effect on the connection between Tianjin and Beijing (Figure 5). The
population mobility intensity between Beijing and Tianjin decreased by 79.7%. With Tianjin
as the core, the population mobility intensity between Tianjin and Langfang dropped from
the second level to the third level. The Tianjin–Cangzhou connection fell from the third
to the fourth level. The Tianjin–Baoding connection dropped from the fourth to the fifth
level. The population mobility intensity between Beijing and Langfang decreased by 11%.
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Beijing–Baoding dropped from the second to the third level, and Beijing–Zhangjiakou fell
from the third to the fourth level.
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Except for Beijing and Tianjin, the population mobility intensity of the other cities in-
creased significantly compared to the same period in 2019. Langfang–Cangzhou, Langfang–
Baoding, Baoding–Cangzhou, Xingtai–Handan, and Tangshan–Chengde all improved
their levels. There are two main reasons for this result. First, due to the normalization
of epidemic control and the effectiveness of the control measures, the epidemic’s impact
on the social economy was getting smaller, especially in cities in urban agglomerations
without outbreaks. Second, with the deepening of the BTH coordinated development,
the transportation infrastructure in BTH urban agglomeration had improved. Cooper-
ation between the cities had also increased, thus promoting population mobility in the
urban agglomeration.

3.2. The Changing Characteristics of Centrality and Nodality
3.2.1. Degree Centrality

The results of the calculations on population network degree centrality in the BTH
urban agglomeration in different periods (Figure 6) show that epidemics in different periods
and scales have different impacts on the centrality of cities in urban agglomeration.

First, A1 had the most significant impact on the centrality of each city. The de-
gree centrality of the 13 cities declined by a varying degree, with an average decline of
0.33. Zhangjiakou, Chengde, and Qinhuangdao, with the lowest degree centrality in A2,
had the smallest decrease in degree centrality (0.1); however, due to their low centrality
and low resilience level, their resilience level declined further under the influence of A1.
Second, the degree centrality of Beijing decreased by 0.25, but the city still maintained
a high resilience level. In other cities, degree centrality decreased by 0.3–0.6. Intercity
population mobility was significantly reduced, which was not conducive to the resilient
development of the urban agglomeration. In B1 and C1, the epidemic’s impact on the
degree centrality of the population network was mainly reflected in the cities where the
epidemic occurred. During B1, Beijing had the most significant impact and its degree
centrality decreased by 0.4. The degree centrality of Cangzhou showed an upward trend,
increasing by 0.16. However, the change in degree centrality in the other cities was less than
0.1, as they were not affected by the epidemic. During C1, the centrality of Shijiazhuang
changed significantly, from 0.58 to 0.08, and the resilience of the city was significantly
impacted. At the same time, Hengshui, which is closely connected to Shijiazhuang, also
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dropped by 0.17. As there were confirmed cases in Beijing, Langfang, Xingtai, and other
places, the degree centrality of these cities also declined to a certain extent. D1 had the
most negligible impact on the centrality of cities. Tianjin’s degree centrality decreased by
0.17. Beijing, which is closely connected to Tianjin, fell by 0.08. Hengshui and Shijiazhuang
also showed a slight decline. In addition, the centrality of the other cities showed different
degrees of growth. Cangzhou had increased its population mobility in recent years and its
centrality growth increased by 0.25.
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3.2.2. Closeness Centrality

The epidemic’s impact on the closeness centrality of cities in the BTH urban agglomera-
tion was similar to that of degree centrality (Figure 7), which shows that both the proximity
centrality of cities involved in the epidemic and the stability of cities had decreased. With
the normalization of epidemic prevention and control measures, the closeness centrality of
the cities that were not involved in the epidemic continued to increase, the convenience of
the inter-city population increased, and the cities’ resilience was enhanced.

An analysis of the characteristics of the changes during the different stages shows that
during A1, the closeness centrality declined in all BTH cities, with an average decline of
0.24. After the decline, the proximity centrality of Beijing was 0.75, which was still in the
first place and had high stability. The closeness centrality of Shijiazhuang, Tianjin, Baoding,
and Langfang decreased significantly. The cities with the lowest centrality changed from
Zhangjiakou and Chengde, to Handan and Qinhuangdao.

During B1, the closeness centrality of Beijing decreased from 1.0 to 0.7. The external
connections between Cangzhou and Tianjin were less affected by B1, and population
mobility with other cities was improving. The closeness centrality of cities in B1 increased
compared to B2. Other cities were less affected by B1, and the decline rate was below 0.1.
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During C1, the closeness centrality of Shijiazhuang, Beijing, Xingtai, and Langfang,
which had experienced the epidemic, decreased significantly. Shijiazhuang, the core area of
the outbreak, had the most significant decline in centrality, with a decrease of 0.3. At the
same time, the closeness centrality of Hengshui and Xingtai, which are closely connected
to Shijiazhuang and Beijing, also declined to a certain extent. In contrast, the proximity
centrality of the other cities increased.

D1 had little influence on the closeness centrality of the cities. The closeness centrality
of Tianjin and Beijing declined slightly, with declines below 0.1. The closeness centrality of
the other cities increased, with Baoding and Cangzhou showing significant increases.
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3.2.3. Betweenness Centrality

Betweenness centrality fluctuated greatly during the epidemic (Figure 8). During
the outbreak period, affected by different levels of closure and control policies in various
places, population mobility between some cities dropped sharply. Dependence on inter-city
connections of intermediary node cities was further enhanced, and the overall vulnerability
of the network increased significantly.

During A1, Cangzhou, Hengshui, and Xingtai had weak connections with other
cities in the network, and their nodes tended to fail. At the same time, the betweenness
centrality of Baoding and Tianjin declined, which led to a significant increase in the urban
agglomeration network’s dependence on Beijing. Beijing’s betweenness centrality increased
from 17 to 46, and its ability to control the whole population mobility network increased. At
the same time, as the core city in the south of the BTH urban agglomeration, Shijiazhuang
had significantly enhanced its betweenness centrality. Xingtai and Tangshan also played an
intermediary role in the local network.
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During B1, the intensity of population mobility between Beijing and the other cities
dropped sharply, and the betweenness centrality of Beijing dropped from 15.9 to 2.3. Tianjin,
the sub-central node, played an intermediary role, and its betweenness centrality increased
from 3.8 to 10.5. Due to the increase in inter-city population mobility in Cangzhou, its
betweenness centrality began to stand out, while the betweenness centrality of other cities
had not changed much.

During C1, the centrality of Shijiazhuang, Beijing, and Langfang decreased signifi-
cantly, while the intermediary role of Baoding, Tianjin, and Tangshan was highlighted.
Baoding, located in the middle of the urban agglomeration, is closely connected to both
cities. Baoding’s betweenness centrality increased from 4 to 19, showing its capacity to
control population mobility in the network and thus significantly improve the stability of
the city.

During D1, the betweenness centrality between Beijing and Tianjin decreased signifi-
cantly. While the betweenness centrality between Shijiazhuang and Hengshui declined due
to the weakening intensity of population mobility. Cangzhou showed strong centrality.

3.3. The Changing Characteristics of Hierarchy and Matching

By calculating the weighted degree distribution (Figure 9) and weighted degree corre-
lation (Figure 10) of the population mobility network, this paper examines the influence
of the COVID-19 epidemic in different periods on the hierarchy and matching in the pop-
ulation mobility network. The hierarchy of A1 and C1 had improved, while B1 and D1
had been significantly reduced. Under the epidemic’s influence, the networks had become
less disassortative.

The absolute value of the population mobility network’s weighted degree distribution
coefficient of the BTH urban agglomeration increased from 1.15 in A2 to 1.29 in A1. This
shows that under the influence of A1, the hierarchy of the population mobility network in
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the BTH urban agglomeration had improved, and the difference in population mobility
intensity between cities at different levels had increased. The weighted degree correlation
coefficient changed from −0.323 to −0.259, and the network was still disassortative, but
was less disassortative compared to the same period in 2019. Population mobility between
high- and low-level cities had decreased, and the radiation effect of the core cities on the
general cities had decreased. The improvement in hierarchy and the reduction in the
disassortativity will lead to the decline of population mobility network resilience in the
BTH urban agglomerations.
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Figure 9. Changes in the weighted degree distribution of population mobility networks in differ-
ent periods.

During B1, the weighted degree distribution coefficient of the population mobility
network of the BTH urban agglomeration decreased from 1.04 in B2 to 0.87, and the
hierarchy decreased significantly. As the core city with the highest weighted degree in 2019,
Beijing decreased from 62 to 17. Langfang decreased from 43 to 30. While the weighted
degree of other cities was around 1, which significantly reduced the population mobility
intensity gap among different cities; the weighted degree correlation coefficient changed
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from −0.218 to −0.115, showing a disassortative network. However, the disassortative
decreased significantly, that is, the connection between different levels of cities decreased.
The significant decline in the hierarchy and disassortative qualities of the population
mobility network significantly reduced the resilience level of the BTH urban agglomeration.
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Figure 10. Changes in the weighted degree correlation of the population mobility networks in
different periods.

During C1, the weighted degree distribution coefficient of the population mobility
network increased from 1.2 to 1.4, and the network hierarchy increased. Compared to C2,
the difference in weighted degree distribution among cities at different levels increased.
However, from the perspective of matching, the weighted degree correlation coefficient
changed from−0.07 in 2019 to 0.08, and the network changed from a disassortative network
to an assortative network. The network tended to develop in groups of cities at the same
level, while the connection with cities at different levels decreased significantly. The
hierarchical increase and matching transformation of the BTH population network further
widened the gap in population mobility intensity between cities at different levels, which
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was not conducive to the healthy development of urban agglomerations, and the resilience
of the population mobility network was significantly reduced.

During D1, the weighted degree distribution coefficient of the population mobility
network decreased from 1.16 in the same period of 2019 to 0.95. The epidemic significantly
decreased population mobility between Beijing and Tianjin, which are core cities, and
the weighted degree decreased by 13. However, the population mobility intensity of
cities not affected by the epidemic increased. The differences between cities at different
levels narrowed, and the hierarchy decreased. The weighted degree correlation coefficient
changed from −0.25 to −0.05, which means that it was still a disassortative network, but
the disassortative level was extremely low and the connection between different levels
of cities was weak. During D1, the hierarchy and disassortative level of the population
network in the BTH urban agglomeration decreased significantly. The resilience level of
the population network also decreased significantly.

3.4. The Changing Characteristics of Clusters

The COVID-19 epidemic also had various impacts at different stages on the cluster
of population mobility networks in the BTH urban agglomeration (Table 2). The average
clustering coefficient of the population mobility network in the four periods declined. The
average clustering coefficient during A1 decreased from 0.84 in A2 to 0.52. The cluster of the
population mobility network decreased significantly, the efficiency of resource integration
also decreased. For B1, C1, and D1, the average clustering coefficient of the population
mobility network of the BTH urban agglomeration decreased slightly—all decreased by
0.03, and the average clustering coefficient remained above 0.7. The network cluster effect
was obvious, and the connection between cities was close. It was evident that when the
population network of the BTH urban agglomeration was impacted as a whole, the cluster
of the network would drop sharply. When a small number of network nodes were affected,
the overall impact on the network cluster was not obvious.

Table 2. Comparison of the measurement results of the population mobility network resilience index.

Stage Hierarchy and Matching Cluster Transmission Diversity

Weighted Degree
Distribution

Weighted Degree
Correlation

Average Clustering
Coefficient

Average Shortest
Paths Length

Average Number of
Independent Paths

A1 −1.29 −0.26 0.52 2.19 1.50
A2 −1.15 −0.32 0.84 1.44 5.00
B1 −0.87 −0.12 0.73 1.49 5.27
B2 −1.04 −0.22 0.76 1.42 5.44
C1 −1.45 0.08 0.74 1.83 2.79
C2 −1.21 −0.07 0.77 1.69 3.85
D1 −0.95 −0.05 0.76 1.49 5.00
D2 −1.16 −0.25 0.79 1.54 4.40

3.5. The Changing Characteristics of Transmission

From the perspective of network transmission, the impact of the failure of network
nodes caused by the COVID-19 epidemic reduced network transmission. During A1, the
average length of the shortest path of the population network increased from 1.44 in A2 to
2.19, and the transmission efficiency decreased significantly. The time cost of population
mobility between cities had increased, and the efficiency of population mobility dropped
significantly. During B1, as the core city in the urban agglomeration, Beijing’s external
connections weakened, but its connections with other cities still persisted. Therefore, the
average length of the shortest path in the network only increased by 0.07, which had a
weak impact on the transmissibility of the network. During C1, the average length of the
shortest path increased slightly from 1.69 to 1.83 due to the failure of nodes in Shijiazhuang.
The transmission efficiency declined slightly, but it had little impact on the network, and
the overall transmission was still at a high level. During D1, the optimization of epidemic
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control policies weakened the connection between Beijing and Tianjin, but the connection
between cities was not broken. Moreover, the connection between other cities was enhanced,
resulting in the average length of the shortest path in the network decreased from 1.54 in
2019 to 1.49. The network transmission improved between the two time periods.

3.6. The Changing Characteristics of Diversity

The impact of the COVID-19 epidemic in different periods affected the diversity of the
population mobility network in the BTH urban agglomeration (Table 3).

Table 3. Comparison of the average number of independent paths of cities in different periods.

City A1 A2 B1 B2 C1 C2 D1 D2

Baoding 1.92 6.33 6.25 6.50 3.92 4.92 6.17 5.58
Beijing 2.00 6.33 5.83 6.50 3.75 4.92 6.17 5.58

Cangzhou 1.58 5.67 6.33 6.33 3.92 4.92 6.17 5.25
Chengde 1.00 2.00 3.92 3.92 1.00 2.00 3.00 2.00
Handan 1.00 5.08 4.67 3.92 2.50 2.75 5.17 3.58

Hengshui 1.58 6.00 5.83 6.33 3.00 4.92 5.67 5.58
Langfang 1.92 5.67 6.08 6.33 3.42 4.50 5.67 5.25

Qinhuangdao 1.00 2.83 3.00 3.92 2.50 2.00 3.00 2.83
Shijiazhuang 1.92 6.00 5.83 6.33 1.00 4.92 5.67 5.58
Tangshan 1.58 5.67 5.83 5.83 3.75 4.50 5.67 4.75

Tianjin 2.00 6.33 6.33 6.50 3.92 4.92 5.17 5.58
Xingtai 1.00 5.08 4.67 5.25 1.83 2.75 4.50 3.58

Zhangjiakou 1.00 2.00 3.92 3.00 1.83 2.00 3.00 2.00

During A1, intercity population connection intensity was significantly reduced, and
multiple nodes tended to fail. The diversity of the population mobility network dropped
sharply, the average number of independent paths in all cities dropped to 2 or below. The
network’s redundancy was significantly reduced, and the network’s ability to cope with
shocks was insufficient.

During B1, the average number of independent paths in the population mobility
network of the BTH urban agglomeration decreased slightly from 5.44 to 5.27 compared
with B2. The average number of independent paths in all the cities was greater than 3. The
impact of B1 on the diversity of the whole population network was not evident, and the
whole network still had a high level of stability and redundancy.

During C1, the average number of independent paths of the population mobility
network decreased from 3.85 to 2.79, and network diversity decreased. C1 impacted the
diversity of many cities. Shijiazhuang, which was most seriously affected by the epidemic,
saw a decline in the average number of independent paths from 4.92 to 1, and the resilience
of urban nodes in the network dropped sharply. Except for Shijiazhuang, Chengde, and
Xingtai, which showed low diversity, the external population mobility between other cities
still showed high redundancy.

During D1, the diversity of the population mobility network in the BTH urban agglom-
eration increased compared to D2. The average number of independent paths increased
from 4.4 in D2 to 5. From the perspective of individual cities, the average number of
independent paths decreased from 5.58 to 5.17 in Tianjin, while the diversity of other
cities showed an upward trend. The average number of independent paths in Chengde,
Zhangjiakou, and Qinhuangdao, which had low diversity, increased to 3. It can be seen that
D1 had little impact on the diversity of the population mobility network. In comparison,
the increase in population mobility promoted by the BTH coordinated development was
more prominent in 2019–2022.

4. Discussion

The analysis of the changing characteristics of population network resilience in four
periods, A1, B1, C1, and D1, shows that different types of shocks have different impacts on
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network resilience. The more cities affected and the higher the city’s level of development,
the more significant the effect on network resilience.

4.1. The Impact of the Full-Scale Outbreak of the Epidemic on the Population Mobility Network

A1 had a significant impact on the resilience of the population mobility network in
the BTH urban agglomeration. The first outbreak of the COVID-19 epidemic was charac-
terized by a high level of uncertainty. Strict epidemic prevention and control measures
were adopted, which significantly reduced population mobility within urban agglomera-
tions [42]. Consequently, population mobility intensity between cities was dramatically
reduced, and the weighted degree and degree centrality of cities were also reduced. The
cluster, transmission, and diversity of networks declined, which led to a decline in the
transmission efficiency, stability, and redundancy of networks. Although the population
mobility was limited to some extent, the connections still remained intact. The higher the
development level of cities, the greater the connection intensity of the external population.
Cities with lower development levels tended to be closely managed, which led to a further
increase in the hierarchy of cities and a decline in matching and network resilience. The
resilience level of individual city nodes also decreased.

4.2. The Impact of Urban Node Epidemic Outbreak on the Population Mobility Network

The impact of B1 on the population network of the BTH urban agglomeration was
mainly reflected in the network structure with Beijing as the core. The population mobility
between Beijing and other cities was significantly reduced, rapidly decreasing Beijing’s
weighted degree. Centrality and nodality were also vastly reduced, leading to a decline
in urban resilience within the network. At the same time, the matching, hierarchy, cluster,
transmission, and diversity of the network were all reduced. However, because the epi-
demic had little impact on the other cities, the overall resilience of the network remained
relatively unchanged.

C1 significantly impacted the population mobility networks of four cities during
the epidemic. Shijiazhuang, where the epidemic had the most significant impact, the
population mobility decreased significantly. In comparison, the effect on the other cities
was not apparent. The centrality and nodality of Beijing, Shijiazhuang, Langfang, and
Xingtai all declined by varying degree. In the population mobility network, the resilience
level decreased. However, Shijiazhuang was more seriously affected and tended to fail
at nodes; centrality and nodality dropped significantly, causing the resilience levels of
cities to drop sharply. The rise in the network hierarchy, the change in assortative into
disassortative networks, and the decrease in network cluster, transmission, and diversity
led to the apparent decline in the resilience level of the population mobility network.

At the time of Tianjin’s outbreak, China had already experienced two years of COVID-
19 epidemic prevention and control measures. With the accumulation of experience and
technology, the epidemic prevention and control measures were more refined and appro-
priate; consequently, D1 only had a specific effect on population mobility, with Tianjin and
Beijing as the core [43]. The centrality and nodality of Beijing and Tianjin in the network
decreased, while the hierarchy and matching of the network declined, and the network
cluster also decreased slightly. However, due to the insignificant impact of the epidemic on
the other cities, the population mobility intensity between the other cities increased, and
the overall transmission and diversity of the network improved. During D1, because of the
low resilience level of Beijing and Tianjin in the network, connections between different
levels of the network decreased. The network resilience also decreased due to the lack of
core cities to drive the network.

4.3. The Impact of the Epidemic on Different City Nodes

Affected by the level of urban development and other factors, urban nodes at different
levels of the population mobility network in the BTH urban agglomeration were affected by
the COVID-19 epidemic to a varying degree. As the capital of China and the core city of the
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BTH urban agglomeration, Beijing has significant population mobility and was vulnerable
to an epidemic situation and experienced four outbreaks. At the same time, Beijing made
great efforts to prevent and control the COVID-19 epidemic and imposed strict control over
traffic and population mobility. Consequently, population mobility intensity in the network
changed significantly, and urban resilience was greatly affected. For marginal cities such
as Zhangjiakou and Chengde, with a low development level, the intensity of population
mobility was small, and the resilience level in the population network was comparatively
less affected by the COVID-19 epidemic.

4.4. Policy Recommendations

After several rounds of epidemic outbreaks, it is evident that appropriate, accurate,
and refined epidemic prevention and control policies are of great significance to ensure the
regular operation of population mobility networks in urban agglomerations. Governments’
decision-making and organizational connections between cities play a decisive role in
improving the network resilience [42,44]. Therefore, we put forward the following policy
suggestions for public health emergencies:

First, in the early warning and prevention stage of public health emergencies, a unified
early warning risk system and an emergency linkage mechanism should be established
in urban agglomerations. It should coordinate a joint response mechanism for regional
public health emergencies and improve the timeliness and accuracy of early risk warning
systems. Government departments in the urban agglomeration should jointly carry out
emergency training and emergency drills for various public health emergencies to improve
the coordination ability of all governments and relevant departments and to ensure that
when public health emergencies occur, cities can concentrate on cooperation and the timely
measures to prevent the spread of risks.

Second, in the response and governance of public health emergencies, authorities
should take full advantage of the possibilities presented by big data. A big data emergency
platform should be established to identify and scientifically predict risk areas accurately.
The precision of prevention and control measures in public health emergencies should be
refined to limit the impact on social and economic operations in the region. At the same
time, a unified command system should be established in urban agglomerations. Full play
should be given to the organization and leadership role of the government, while clarifying
the responsibilities and tasks of each city and unit [45]. Cities at all levels should respond to
public health emergencies in urban agglomerations in a timely way to maintain the regular
operation of urban agglomerations.

We need to be fully aware that the world is in the fastest and most widespread
period of disease transmission in history [46]. Whether in China’s urban agglomerations or
megalopolises all over the world, closely linked cities have become a community of shared
destiny on health issues. No city, no matter how powerful, wealthy, or technologically
advanced, can deal with all public health threats alone. Therefore, all urban agglomerations
in the world require high-quality intercity cooperation to respond to high-frequency public
health emergencies.

5. Conclusions

As an important symbol and carrier of regional social and economic activities, popula-
tion mobility is vital to promoting the reorganization of social and economic factors. Based
on the perspective of network resilience, this study constructs a measurement method
of population mobility network resilience by using AutoNavi population migration big
data and a social network analysis method to explore the impact of four major COVID-19
outbreaks on population mobility network resilience in the BTH urban agglomeration from
2020 to 2022.

The study shows that the outbreaks of the COVID-19 impacted the resilience of
population mobility networks in the BTH urban agglomeration. By comparing the resilience
of the population mobility network during four severe outbreaks of COVID-19 in Beijing,
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Tianjin, and Hebei since 2020 with the corresponding period in 2019, we found that A1 had
the most significant impact on population mobility in BTH. The resilience of the population
mobility network dropped sharply. The effect of B1 on the population mobility network
was mainly reflected in the network structure, with Beijing as the core. Beijing’s urban
nodes did not fail entirely, so the overall resilience level of the network was not severely
impacted. During C1, Shijiazhuang nodes tended to fail, and the resilience level of the
population mobility network decreased significantly. By D1, the prevention and control
measures of the epidemic had become more precise. As a result, the outbreak had a limited
impact on population mobility, with Beijing and Tianjin as the core, and little impact on the
resilience of the overall population network.

Urban nodes at different levels of the population mobility network were affected by
the COVID-19 epidemic to a varying degree. The epidemic situation significantly affected
the resilience level of core cities with high development levels in the network, such as
Beijing and Tianjin. The resilience level of marginal cities, such as Zhangjiakou, Chengde,
and Hengshui, was less affected.

After several rounds of epidemic outbreaks, it is evident that appropriate and refined
epidemic prevention and control policies are of great significance to ensuring the regular
operation of the population network of urban agglomerations. Based on the results of
our empirical analysis, we put forward policy suggestions to deal with public health
emergencies from the perspective of prevention and control, hoping to provide a reference
for coordinating epidemic control and economic and social development.

In addition, the study proposes a theoretical framework for network resilience mea-
surement. In future research, the assessment index system can be used to evaluate the
resilience of population mobility networks in urban agglomerations or a wider range. We
will also use this method to measure the resilience of various urban networks such as
transportation networks, economic networks, innovation networks, etc., in combination
with big data.
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