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Abstract: Biochar is an effective method for increasing soil carbon (C) sequestration and nitrogen (N)
supply under continuous monocropping. To investigate the impact of biochar placement methods
on soil C and N, a one-year field experiment with five treatments was conducted including control,
mineral fertilizers only (F), biochar hole placement (BFH; biochar applied to the soil layer at 5–10 cm)
+ F, biochar band placement (BFB; biochar applied to the soil layer at 15–20 cm) + F, and biochar
band and hole placement + F (BFBH). The results showed that, regardless of the placement method,
biochar application increased soil total organic C (TOC) and C pool management index by 6.9–39.7%
and 4.1–36.1%, respectively, especially for dissolved organic C (DOC; 6.9–51.3%), readily oxidizable
C (ROC; 2.4–46.4%), and microbial biomass C (MBC; 10.4–41.7%). Single biochar placement methods
significantly influenced DOC, MBC, and ROC contents of both soil layers in the rank order of BFH ≈
BFBH > BFB at 0–15 cm and BFB≈ BFBH > BFH at 15–30 cm. Soil TN and microbial biomass N (MBN)
mainly accumulated at the site of biochar placement. The increased soil TOC:TN and MBC:N ratios
under biochar treatments promoted inorganic N immobilization and reduced the loss of ammonium
N and nitrate N (NO3

−-N) through leaching at the early stage of tobacco growth. Biochar-adsorbed
N was remobilized at a later period (vigorous growth stage and maturity), possibly causing the slow
decrease in NO3

−-N content. Additionally, soil C and N pools were significantly influenced by the
main effects of soil layer and growth stage. Overall, biochar application increased soil C and N pools
and inorganic N supply through N remobilization. However, the increased labile organic C content
and microbial activity may prevent C sequestration in biochar-amended soils.

Keywords: biochar; soil labile organic C; soil inorganic N; placement method

1. Introduction

Biochar is a carbonaceous material that is widely used for soil amendment [1,2] and
has gained attention from the scientific community and policy makers [1,3]. Due to the
high surface area, cation exchange capacity, and N/P contents of biochar [4], there is ample
evidence that biochar application alters the physicochemical and biological properties of
soil [4], thereby influencing the sequestration of soil organic carbon (SOC), soil quality,
emission of greenhouse gases, bioavailability of heavy metal pollutants, and the diversity
and activity of soil microorganisms [1,2,5–10]. The large input of biochar-derived C into
soil influences the turnover of C and nitrogen (N) pools, especially over the short term [11].
Research has documented that the improvement of C sequestration by biochar application
is even higher than that by straw application [12]. Biochar was also shown to exert a
positive priming effect on soil organic matter (SOM) mineralization within a short time
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(2 months) [1]. As a component of bulk SOC, soil labile organic C (LOC) is sensitive to
soil management practices and is used as an index of soil quality and productivity [3,13].
The soil C pool management index (CPMI) is also used as a measure of the efficacy of soil
management practices in promoting soil quality [3,14], which is dependent on SOC content
and C lability. In addition to the soil C pool, biochar application also impacts N cycling
in soils because of the close relationships between N availability, N turnover rate, and
SOC [11,15,16]. For example, biochar application was found to enhance the denitrification
rate [17], increase the N uptake by plants [10], decrease dissolved organic N losses [8,18,19],
and cause net N immobilization in soils [16]. Meanwhile, inorganic N could be captured by
biochar via adsorption (either physisorption or chemisorption) [20].

Continuous monocropping leads to soil degradation, which reduces the soil aptitude
for production [9,21]. Tobacco (Nicotiana tabacum L.) is vulnerable to growth obstacles under
continuous cultivation [21–23]. China is the world’s largest producer of tobacco; planting
this crop is especially important for the local economy in many poverty-stricken areas
of central and western China [24]. Continuous cropping obstacles, such as soil nutrient
reduction and decreased SOM, yield, and product quality, have caused the wilting and
death of plants, thus jeopardizing the agricultural sustainability of this crop [25,26]. Soil
amendment (e.g., with biochar) can help to overcome these obstacles.

While many studies have investigated the effects of the type and dosage of mineral
N fertilizer on crop productivity [27–29], the placement method of fertilizers has been
largely overlooked, especially the role of different placement methods of biochar. Recent
studies have demonstrated that different methods of biochar placement, such as uniform
mixing in topsoil or subsoil and deep banding into the rhizosphere, influence soil hydraulic
properties (e.g., soil water retention and hydraulic conductivity) and soil structure [30,31].
This could in turn affect the transport of biochar and alter the partitioning of nutrients (e.g.,
C and N) between soil layers. For example, biochar mixed into 10–20 cm of subsurface soil
reduced nitrate leaching [30]. However, the effects of biochar placement on soil C and N
remain unclear, although appropriate placement may potentially optimize soil C and N
contents in continuously cropped fields [32].

We hypothesized that the placement method of biochar in soil influences the concen-
trations of soil C and N fractions. The aims of this study were as follows: (1) to examine the
responses of soil C and N fractions to short-term application of biochar in a continuously
cropped field; and (2) to compare the effects of different biochar placement methods on soil
LOC and N.

2. Materials and Methods
2.1. Study Site and Soil Characteristics

The experiment was conducted in Ganhai Township, Yanyuan County, Liangshan
Prefecture, Sichuan Province, China (101◦29′35.583” E, 27◦29′48.107” N). This site, which
is at 2349 m above sea level, has a subtropical monsoon climate with a mean annual
temperature of 13.2 ◦C and a mean precipitation of 727.3 mm. The weather data are
shown in Figure 1. The soil used as the arable layer in a local tobacco field was Typic
Dystrochrept. The chemical properties of the soil at the study site were as follows: pH
of 6.38 ± 0.54 (soil:water = 1:1), SOM of 22.46 ± 3.21 g kg−1, soil alkali-hydrolyzable N
of 87.12 ± 9.54 mg kg−1, soil available phosphorus (P) of 9.48 ± 1.02 mg kg−1, and soil
available potassium (K) of 84.15 ± 6.72 mg kg−1.
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Figure 1. Average temperature, average precipitation, and sunshine duration at study site.

2.2. Experimental Materials

Biochar was obtained from Sichuan Meijia Biomass Energy Co., LTD, China, and
was prepared by colza straw pyrolysis at a temperature of 400–500 ◦C under anaerobic
conditions. The N, P, and K contents of biochar were 5.9 g kg−1 (total N (TN)), 0.91 g kg−1

(total P), and 26.0 g kg−1 (total K), respectively; and the C and ash contents were 481.4 and
20.8 g kg−1, respectively. The pH of biochar was 9.65 (measured at biochar:water = 1:10).
The flue-cured tobacco (Nicotiana tabacum L.) variety used in this study was KRK26.

The mineral fertilizers used in this study were a compound fertilizer for tobacco
(N:P2O5:K2O = 9:9:27), kalium nitrate (14% N, 44% K2O), and potassium sulfate (51% K2O),
which were purchased from Sichuan Jinye Fertilizer Co. (Chengdu, China).

2.3. Experimental Design

The five treatments, which were arranged in a completely randomized design with
three replicates (15 plots in total), were as follows: (1) control (no biochar or mineral
fertilizers); (2) only mineral fertilizers at the recommended dosage (F); (3) 7600 kg hm−2

biochar band placement + F (BFB; biochar applied to soil layer at 15–20 cm); (4) 7600 kg
hm−2 biochar hole placement + F (BFH; biochar applied to soil layer at 5–10 cm); and
(5) 3800 kg hm−2 biochar band placement and 3800 kg hm−2 biochar hole placement + F
(BFBH). The same amount of mineral fertilizer was applied in a circle around each tobacco
plant (4–5 cm radius) in all treatments (except for the control) (Table 1). The amounts were
based on local fertilization standards and were as follows: special compound fertilizer for
tobacco at 675 kg hm−2, kalium nitrate fertilizer at 225 kg hm−2, and potassium sulfate
fertilizer at 225 kg hm−2. Detailed information on fertilization is shown in Table 1.

A total of 150 flue-cured tobacco plants were transplanted in the ridges (30 cm) of each
plot (20 m long by 4.8 m wide) with a line spacing of 120 cm and row spacing of 55 cm
(Figure 2) (2250 flue-cured tobacco plants were planted in total). In the BFB treatment, a
band was created under the soil ridge at a depth of 15–20 cm, and biochar (7600 kg hm−2)
was applied in the band at one time. In the BFH treatment, a hole was created at a depth of
5–10 cm from the soil ridge, and the biochar (7600 kg hm−2) was applied in the hole at one
time. In the BFBH treatment, the band and hole were prepared as described above, and
3800 kg hm−2 biochar was applied. The biochar used in the study was applied as the basal
fertilizer before transplanting the tobacco plants (in April 2017).
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Table 1. Detailed information on fertilization under different treatments.

Treatment

Basal Fertilizer (kg ha−1) Topdressing (kg ha−1)

Biochar Compound
Fertilizer

Compound
Fertilizer

Kalium Nitrate
Fertilizer

Potassium Sulfate
Fertilizer

Control 0 0 0 0 0
F 0 405 270 225 225

BFB 7600 405 270 225 225
BFH 7600 405 270 225 225

BFBH 7600 405 270 225 225

Control, no biochar or mineral fertilizers; F, only mineral fertilizers at the recommended dosage; BFB, biochar
band placement + F; BFH, biochar hole placement + F; BFBH, BFB + BFH + F.
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2.4. Soil Sampling and Measurements

Soil samples were collected at a distance of 10–15 cm from each tobacco plant after
the removal of organic debris. Two soil layers, including topsoil (0–15 cm) and subsoil
(15–30 cm), were sampled at rosette, vigorous, and squaring growth stages, and at plant
maturity (total number of raw samples was 2 layers × 5 samples per plot × 15 plots ×
4 stages = 600). Five random samples from each plot and each layer were pooled for
the analysis of soil LOC fractions (microbial biomass C (MBC) [33], dissolved organic
C (DOC) [6,7], readily oxidizable C (ROC) [6,7], and particle organic C (POC) [34]) and
soil mineral N fractions (ammonium N (NH4

+-N) and nitrate N (NO3
−-N)) (120 pooled

samples were measured). The fresh soil samples were stored at 4 ◦C. Air-dried soil was
passed through 1- and 0.25-mm sieves and used for the analysis of total soil organic C
(TOC), soil TN, and POC.

Soil TOC content was measured by K2Cr2O7 oxidation and FeSO4 titration [35]. Soil
TN content was determined by micro-Kjeldahl digestion using a N analyzer automatic
distillation device (KDN-102C; Shanghai QianJian Instruments Co., Shanghai, China).
Soil MBC and MBN contents were determined by K2SO4 extraction with the chloroform
fumigation–extraction protocol [33]. Soil POC was determined by particle size fractiona-
tion [34]. Soil DOC, ROC, NH4

+-N, and NO3
−-N measurements have been described in

our previous studies [6,7].

2.5. Calculations and Statistical Analyses

The soil C pool management index (CPMI) is a measure of SOC variation in response
to soil management practices [13]. CPMI was calculated according to Yang et al. (2018) [3],
with the reference replaced by the control in the present study:

CMPI = CPI × LI × 100 (1)

CPI = TOCtreatment/TOCcontrol (2)

LI = Ltreatment/Lcontrol (3)

L = ROC/NLC (4)

NLC = TOC − ROC (5)

where, TOC and ROC were measured in g kg−1; NLC is the nonlabile C content (g kg−1);
L is C lability; Ltreatment and Lcontrol are the C lability of the sample and reference soils,
respectively; LI is the lability index (ratio of C lability of the sample soil to that of the
reference soil); CPI is the C pool index; and TOC treatment and TOC control are the TOC
contents of the sample and reference soils, respectively.

All data were analyzed using SPSS v18.0 software (SPSS Inc., Chicago, IL, USA).
The normality of datasets was assessed by the Shapiro–Wilk test. Differences among
treatment groups were evaluated by 1-way analysis of variance (ANOVA) combined with
the least significant difference test (p < 0.05). The effects of treatment, soil layer, and growth
stage and their interaction on soil properties were assessed by 3-way ANOVA using SPSS
v23.0 software.

3. Results
3.1. Soil TOC and LOC Fractions

The application of biochar (BFB, BFH, and BFBH) increased soil TOC content compared
to the control and F treatments (Figure 3a). In the soil layer at 0–15 cm, TOC content was
significantly lower under the BFB treatment (13.10–16.66 g·kg−1) than under the BFH and
BFBH treatments, except in the vigorous stage of tobacco plant growth (p < 0.05). However,
there was no significant difference between BFH and BFBH treatments except at the rosette
stage. A lower TOC content was found in the soil layer at 15–30 cm compared to the layer
at 0–15 cm (p < 0.05). The highest TOC content at 15–30 cm was found under the BFB
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treatment, followed by the BFBH treatment. The main effects of treatment, soil layer, and
growth stage on soil TOC, as well as the interaction effect of these three factors, were all
significant (p < 0.05; Table 2).

Biochar application significantly increased soil DOC content relative to the control and
F treatments regardless of the soil layer (0–15 or 15–30 cm) (p < 0.05; Figure 3b). At 0–15
cm, the highest soil DOC content was found under the BFH treatment and was 33.3–51.3%
higher than that under the F treatment (p < 0.05). However, at 15–30 cm, soil DOC content
under the BFH treatment (45.09–56.46 mg kg−1) was lower than that under the BFB and
BFBH treatments. The highest soil MBC content at 0–15 cm was found under the BFH
treatment (Figure 3c), and soil MBC was significantly higher under the BFH and BFBH
treatments than under the BFB treatment (p < 0.05). However, at 15–30 cm, soil MBC
was lower under the BFH treatment than under the BFB and BFBH treatments (p < 0.05).
At 0–15 cm, there was no significant difference between F and BFB treatments except at
the rosette stage of tobacco plant growth, but soil ROC content was significantly higher
under the BFH and BFBH treatments than under the BFB treatment (p < 0.05; Figure 3d).
The highest soil ROC content at 15–30 cm was under the BFB treatment, followed by the
BFBH treatment. Compared to the F treatment, at 0–15 cm, POC content was higher by
0.23–0.49 g kg−1 under the BFB and BFBH treatments, and by 0.82–1.01 g kg−1 under the
BFH treatment (p < 0.05). Soil POC content at 15–30 cm was higher under the BFB treatment
(Figure 3e). The results of the three-way ANOVA showed that soil DOC and ROC contents
were influenced by the interaction effect of treatment, soil layer, and growth stage (p < 0.05;
Table 2).

Land 2022, 11, x FOR PEER REVIEW 6 of 18 
 

at the rosette stage. A lower TOC content was found in the soil layer at 15–30 cm compared 

to the layer at 0–15 cm (p < 0.05). The highest TOC content at 15–30 cm was found under 

the BFB treatment, followed by the BFBH treatment. The main effects of treatment, soil 

layer, and growth stage on soil TOC, as well as the interaction effect of these three factors, 

were all significant (p < 0.05; Table 2). 

 

 

 

 

Figure 3. Cont.



Land 2022, 11, 473 7 of 17Land 2022, 11, x FOR PEER REVIEW 7 of 18 
 

 

 

 

Figure 3. Soil TOC, DOC, MBC, ROC, and POC under different treatments. (a–e): Soil TOC (a), DOC 

(b), MBC (c), ROC (d), and POC (e) in soil layers at 0–15 and 15–30 cm were measured. Different 

lowercase letters represent significant differences among treatments at the same soil layer and 

Figure 3. Soil TOC, DOC, MBC, ROC, and POC under different treatments. (a–e): Soil TOC (a),
DOC (b), MBC (c), ROC (d), and POC (e) in soil layers at 0–15 and 15–30 cm were measured.
Different lowercase letters represent significant differences among treatments at the same soil layer
and growth stage (p < 0.05). Control, no biochar or mineral fertilizers; F, only mineral fertilizers at the
recommended dosage; BFB, biochar band placement + F; BFH, biochar hole placement + F; BFBH,
BFB + BFH + F.
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Table 2. Results of 3-way ANOVA (p values) testing the effects of treatment, soil layer, growth stage,
and their interaction on soil properties.

TOC DOC MBC ROC POC TN NO3−-N NH4
+-N MBN TOC:TN MBC:N

Treatment
(T) 16,287 * 191.8 * 684.1 * 113.7 * 17.6 * 78.0 * 580.5 * 850.3 * 83.7 * 115.2 * 61.5 *

Soil
layer (S) 7108 * 53.0 * 171.3 * 157.9 * 13.4 * 51.8 * 108.7 * 291.5 * 94.0 * 300.1 * 82.4 *

Growth
stage (G) 82,789 * 921.5 * 2387.9 * 314.7 * 36.2 * 597.6 * 73.5 * 157.3 * 733.0 * 359.0 * 68.3 *

T × S 350 * 4.4 * 3.3 * 1.5 0.2 0.9 10.0 * 21.5 * 0.3 6.4 * 3.8 *
T × G 6129 * 40.7 * 169.4 * 36.2 * 7.5 * 8.8 * 152.7 * 161.5 * 29.7 * 65.2 * 42.8 *
S × G 754 * 0.5 67.9 * 14.4 * 1.0 18.6 * 3.0 * 4.5 * 10.9 * 16.0 * 47.1 *

T × S ×
G 79 * 2.6 * 1.6 2.5 * 0.1 1.7 1.6 3.2 * 0.8 2.7 * 3.6 *

Data represent the F statistic for the results of the 3-way ANOVA; the asterisk (*) indicates a significant effect at
the level of p < 0.05.

3.2. Soil CPMI

Biochar application significantly affected soil NLC content and CPMI (Table 3). In the
soil layer at 0–15 cm, the highest NLC content and CPMI were observed under the BFH
treatment; these were 33.9% and 36.1% higher, respectively, than under the F treatment
(p < 0.05); however, at 15–30 cm, the values were 29.7% and 30.7% higher, respectively
(p < 0.05). There was no significant difference in NLC content or CPMI between F and BFH
treatments at 15–30 cm.

Table 3. Soil carbon pool management index under different treatments.

Soil Layer Treatment † NLC (g kg−1) L LI CPI CPMI

0–15 cm

Control 11.35Ac 0.16Aa
F 11.43Ac 0.17Aa 1.08Aa 1.02Ac 110.30Ab

BFB 13.17Ab 0.16Aa 0.99Aa 1.16Bb 114.77Bb
BFH 15.31Aa 0.18Aa 1.10Aa 1.37Ba 150.12Aa

BFBH 14.61Aa 0.18Aa 1.13Aa 1.31Aa 147.70Aa

15–30 cm

Control 9.26Bc 0.15Ab
F 9.44Bc 0.17Aab 1.13Aa 1.04Ad 116.82Ab

BFB 12.18Aa 0.17Aab 1.14Aa 1.34Aa 152.64Aa
BFH 10.14Bbc 0.18Aab 1.17Aa 1.12Ac 130.37Ab

BFBH 11.07Bab 0.19Aa 1.24Aa 1.23Ad 152.21Aa
Different lowercase letters within the same column indicate significant differences among different treatments
at the same soil layer (p < 0.05); different uppercase letters represent significant differences among different soil
layers under the same treatment and growth stage (p < 0.05). † Control, no biochar or mineral fertilizers; F, only
mineral fertilizers at the recommended dosage; BFB, biochar band placement + F; BFH, biochar hole placement
+ F; BFBH, BFB + BFH + F. Abbreviations: CPI, carbon pool index; CPMI, carbon pool management index; L,
soil carbon lability; LI, lability index (ratio of soil sample carbon lability to reference soil carbon lability); NLC,
nonlabile carbon.

3.3. Soil N Fractions

Fertilization (F, BFB, BFH, and BFBH)—especially the BFH treatment—increased soil
TN content in the soil layer at 0–15 cm (Figure 4a). At 15–30 cm, TN content was 3.5–8.0%
higher under the BFB treatment than under the F treatment (p < 0.05). Compared to
the F treatment, NO3−-N content at 0–15 cm was reduced by 15.5–43.6% under the BFB
and BFBH treatments, respectively (p < 0.05; Figure 4b). Besides the control, the lowest
soil NO3

−-N content was observed under the BFH treatment at 15–30 cm. NH4
+-N at

0–15 cm was significantly lower under the BFB and BFBH treatments than under the F
and BFH treatments (p < 0.05; Figure 4c); however, at 15–30 cm, a lower NH4

+-N content
was observed under the BFH and BFBH treatments than under the F and BFB treatments
(p < 0.05). Compared to the F treatment, biochar application increased soil MBN content at
0–15 cm and, to a lesser extent, at 15–30 cm (Figure 4d). The highest soil MBN content was
observed under the BFH treatment in both layers.
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3.4. Ratio of Soil C to N

The TOC:TN ratio, which is a measure of soil organic quality and nutrient limita-
tions [36,37], was higher under biochar (BFB, BFH, and BFBH) treatments compared to
the F treatment in the soil layer at 0–15 cm; the difference was especially significant under
the BFH treatment (p < 0.05; Table 4). At 15–30 cm, the TOC:TN ratio increased with the
growth of the tobacco plant and was highest under the BFB treatment, followed by the
BFBH treatment (p < 0.05).

Table 4. Soil TOC:TN and MBC:N ratios in different soil layers under different treatments at each
growth stage.

Treatment † at
Different Soil

Layers

TOC:TN MBC:N

Rosette
Stage

Vigorous
Stage

Squaring
Stage Maturity Rosette

Stage
Vigorous

Stage
Squaring

Stage Maturity

0–15 cm
Control 11.89Ac 14.27Ac 14.61Ac 15.13Ac 3.31Ba 3.28Bb 3.35Ac 3.04Bd

F 11.25Ac 13.20Ad 14.61Ac 15.22Ac 3.06Bb 3.14Bc 3.18Ad 3.03Bd
BFB 13.23Ab 15.49Ab 15.32Ab 15.11Bc 3.43Aa 3.49Aab 3.58Abc 3.48Bc
BFH 14.42Aa 15.63Ab 17.78Aa 18.20Aa 3.25Bab 3.55Aa 3.66Ab 3.85Ab

BFBH 13.54Ab 17.28Aa 17.19Aa 17.00Ab 3.52Aa 3.73Aa 3.91Aa 3.96Aa
15–30 cm
Control 11.34Bb 12.63Bc 13.14Bc 13.58Bc 3.52Aa 3.45Ab 3.30Ab 3.98Aa

F 11.29Ab 12.10Bc 12.91Bc 13.39Bc 3.49Aa 3.48Ab 3.32Ab 3.99Aa
BFB 13.32Aa 14.61Ba 15.81Aa 16.68Aa 3.19Bb 3.41Ab 3.34Bb 3.92Aa
BFH 11.97Bb 12.44Bc 13.44Bc 15.06Bb 3.53Aa 3.57Aa 3.62Aa 4.04Aa

BFBH 11.99Bb 13.99Bb 14.92Bb 15.91Ab 3.50Aa 3.60Aa 3.56Ba 4.02Aa

Different lowercase letters within the same column indicate significant differences among different treatments at
the same soil layer and growth stage (p < 0.05); different uppercase letters represent significant differences among
different soil layers under the same treatment at the same growth stage (p < 0.05). † Control, no biochar or mineral
fertilizers; F, only mineral fertilizers at the recommended dosage; BFB, biochar band placement + F; BFH, biochar
hole placement + F; BFBH, BFB + BFH + F.

Biochar application increased the MBC:N ratio in the soil layer at 0–15 cm relative to
the F treatment, with a higher ratio under the BFBH treatment than under the BFB and BFH
treatments (Table 4). At 15–30 cm, the MBC:N ratio was reduced by 0.07–0.30 under the
BFB treatment relative to the F treatment. Meanwhile, the ratio was higher under the BFH
treatment than under other treatments, especially at the vigorous and squaring stages of
tobacco plant growth. There were main and interaction effects of treatment, soil layer, and
growth stage on TOC:TN and MBC:N ratios (p < 0.05; Table 2).
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Figure 4. Soil TN, NO3
−-N, NH4

+-N, and MBN contents under different treatments. (a–d): Soil
TN (a), NO3

−-N (b), NH4
+-N (c), and MBN (d) contents in soil layers at 0–15 and 15–30 cm were

measured. Different lowercase letters represent significant differences among treatments at the same
soil layer and growth stage (p < 0.05). Control, no biochar or mineral fertilizers; F, only mineral
fertilizers at the recommended dosage; BFB, biochar band placement + F; BFH, biochar hole placement
+ F; BFBH, BFB + BFH + F.

3.5. Crop Yield

Compared with the F treatment, biochar application increased the crop yield by
4.8–12.4%, especially for BFH and BFBH (Figure 5). The highest crop yield was observed in
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the BFBH treatment with the value of 2250.5 kg ha−1, which was significantly higher than
other treatments, except for the BFH treatment (p < 0.05).
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4. Discussion
4.1. Effect of Biochar on the SOC Pool in a Tobacco Field

In the present study, biochar application increased SOC content in a continuously
cropped tobacco field. Compared to the no-biochar (F) condition, TOC, DOC, MBC,
ROC, and POC contents and CPMI were increased by biochar application at the 0–15
and 15–30 cm soil layers (Table 3), which is consistent with previous reports [38–40]. The
incorporation of biochar into soil can cause short-term changes in the turnover of SOC
fractions [41–43] and suppress labile organic matter mineralization through physical sta-
bilization (e.g., sorption), thereby increasing the SOC pool [43,44]. Additionally, the high
content of organic C in biochar (481.4 g·kg−1)—especially aromatic organic compounds that
are not readily biodegraded [3]—is evidenced by the higher NLC content of soil observed
after biochar application in this study (Table 3). TOC content and CPMI were also increased
in soil treated with biochar (BFB, BFH, and BFBH). POC is an energy source for microorgan-
isms and a reservoir of relatively labile SOC and plant nutrients [3,45]. Biochar can remain
in the form of soil POC for years, or even decades or centuries, because of the recalcitrance
of biochar [46] and the enhancement of soil aggregation by its application [47]. Soil POC
content was indeed higher under biochar treatments relative to the control, although the
effect was not statistically significant, implying that short-term application is not sufficient
for biochar to persist in soil in the form of POC.

Different fertilizer placement methods may influence the efficiency of nutrient utiliza-
tion [28]. In general, placing fertilizer into the soil (e.g., through band or hole application
under topsoil) increases its uptake by plants, reduces nutrient loss, and improves the com-
petitive advantage of the crop over weeds compared to a broadcast application [28,48]. In
the present study, different biochar placement methods altered the distribution of SOC frac-
tions in the soil layers at 0–15 and 15–30 cm (Figure 3). Biochar applied by hole placement
mainly caused SOC to accumulate in the layer at 0–15 cm, whereas band placement caused
accumulation at 15–30 cm. This suggests that SOC does not readily mobilize along the
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soil profile but accumulates near the site of biochar placement (i.e., the soil layer to which
the biochar was added) in this study. The potential reasons are the limited precipitation
or irrigation events [28] and the short-term application during the tobacco growth period
(Figure 1). In this study, soil ROC content at 0–15 cm (or at 15–30 cm) did not significantly
differ under the BFBH treatment compared to the BFH or BFB treatments (Figure 3d),
implying that the placement method did not greatly influence soil ROC regardless of the
amount of biochar that was applied into the hole (3800 kg hm−2 in the BFBH treatment
and 7600 kg hm−2 in the BFH treatment) or band (3800 kg hm−2 in the BFBH treatment
and 7600 kg hm−2 in the BFB treatment). Similarly, the biochar placement method did
not significantly affect soil POC, as evidenced by the nonsignificant differences among
BFB, BFH, and BFBH treatments (Figure 3e). This may be attributable to the fact that the
short-term application of biochar was not sufficient to alter soil POC concentration.

In contrast, different single biochar placement methods (i.e., BFB and BFH treatments)
significantly influenced the DOC, MBC, and ROC contents of the soil layers at 0–15 and
15–30 cm. This may be the result of water retention in biochar-supplemented soil, as biochar
application has been shown to increase soil water retention at the boundary layers of soil
treated with biochar (5–10 cm in the BFH treatment and 15–20 cm in the BFB treatment)
because of the hydrophobicity of constituent organic molecules [49]. Thus, more C was
released, and microorganism’s activity was stimulated in an impoverished and dry soil,
resulting in higher soil DOC and MBC contents following biochar application. Additionally,
the biochar used in this study was pyrolyzed at 400–500 ◦C with an anaerobic condition,
which resulted in an incomplete oxidization [3]. Accordingly, ROC fractions released
from biochar itself could contribute to increases in soil ROC. Overall, biochar application
increased the C pool but mainly induced the accumulation of labile C in the supplemented
soil layer, indicating that short-term application may not promote the sequestration of
stable C, regardless of the biochar placement method.

Soil SOC fractions varied over the growth period of the tobacco, with the lowest con-
tent at the rosette stage (Figure 3). This may be explained by the priming effects of biochar
application, whereby native SOC or labile biochar compounds are readily decomposed
by microorganisms or lost through leaching in the initial period of application [3,43,50].
Alternatively, lower competition among tobacco plants at the early growth stage might
have caused large amounts of nutrients (e.g., N or C) to be taken up by microorganisms [27].
However, the priming effect was not observed in grassland soil due to the large amount of
native SOC [51]. We did not quantitatively analyze all potential mechanisms of C loss in
this study.

4.2. Effect of Biochar on the SOC Pool in a Tobacco Field

The uptake of N fertilizer applied by broadcasting depends on subsequent precipita-
tion or irrigation [52]; the fertilizer does not readily move to the root zone under limited
precipitation or irrigation, remaining instead in the topsoil [48]. In this study, all of the
mineral fertilizers (providing N) were applied by broadcasting near the tobacco plant.
Thus, soil TN or MBN contents were higher at 0–15 cm than at 15–30 cm because of the low
precipitation (Figure 1) or irrigation in the tobacco field. A similar result was reported by
Chen et al. (2016b) [28], who found that 76.5–79.9% of residual urea N (of which 90% was N
immobilized in SOM) remained in the topsoil after broadcast application [53]. Furthermore,
similar to SOC fractions, soil N also accumulated near the site of biochar placement, as
evidenced by the highest soil TN and MBN contents at 0–15 cm under the BFH treatment
and at 15–30 cm under the BFB treatment, respectively (Figure 4a,d). Besides influencing
water retention, C accumulated in biochar-supplemented soil may stimulate N assimilation
and enhance microbial activity [54], thereby increasing soil TN and MBN contents.

In this study, soil NH4
+-N and NO3

−-N contents were significantly higher under
the F and BFH treatments than under the BFB and BFBH treatments at 0–15 cm, and
higher under the F and BFB treatments than under the BFH and BFBH treatments at
15–30 cm. These results can be explained as follows. Firstly, because there was no biochar
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application under the F treatment, less N from the N fertilizers was assimilated and more
was directly transformed into NH4

+-N and NO3
−-N. Additionally, biochar decreased

inorganic N content via adsorption of N compounds [20,55]. Thus, the soil NH4
+-N and

NO3
−-N contents at 15–30 cm under the F treatment were not only higher than those in

the same soil layer under the BFB and BFBH treatments, but also higher than BFH and
BFBH treatments at 0–15 cm (Figure 4b,c). This suggests that without biochar application,
the loss of inorganic N due to leaching is increased. The lower crop yield under no-
biochar application compared to biochar application may verify the loss of inorganic N
(Figure 5). Secondly, the co-application of biochar and mineral fertilizer can increase
N utilization efficiency and stimulate N uptake [16,56] and crop yield (Figure 5); this
could also explain the lower NH4

+-N and NO3
−-N contents at 0–15 cm under biochar

treatment (except for BFB) than at 15–30 cm without biochar treatment. Thirdly, soil N
accumulates in biochar-supplemented soil as a result of water retention and high C:N
ratio, which promotes N immobilization or assimilation [11,57]. Furthermore, biochar
produced from lignocellulosic feedstock tends to cause net N immobilization over the
short term [16], leading to the consumption of NH4

+-N and NO3
−-N used for nitrification

and denitrification, respectively [58]. However, N immobilized in the presence of biochar
accounts for a negligible proportion of total inorganic N and is released to partially meet
crop N demands [15]. Compared to other biochar placement methods, hole placement
increased NH4

+-N and NO3
−-N contents in the soil layer at 0–15 cm, while band placement

increased the contents at 15–30 cm.
In the layer at 15–30 cm, a large amount of biochar applied in the band (i.e., BFB

treatment) might have promoted the movement of broadcast-applied N fertilizer in the
topsoil to the biochar-supplemented layer by increasing the C:N ratio [7]. Biochar mixed
into the subsoil (10–20 cm) has been shown to enhance the rate of wetting front migration
and water infiltration into silty clay soil, thereby stimulating the migration of soil inorganic
N from topsoil to subsoil [29]. Biochar is generally reported to improve root growth,
including root biomass and root length intensity [9,59,60], which could also promote the
movement of N to the biochar-supplemented layer. Indeed, NH4

+-N and NO3
−-N contents

at 15–30 cm were higher under BFB treatment than under other biochar treatments, even in
a tobacco field with limited precipitation or irrigation. This suggests that band placement
of biochar stimulated the soil layer at 15–30 cm to capture more inorganic N. Thus, the
biochar placement method can influence inorganic N distribution in tobacco fields over the
short term.

Our results also showed that the soil content of inorganic N—especially NH4
+-N—

decreased quickly with the tobacco growth period, which may be attributable to net
immobilization via microbial assimilation [11]. Biochar combined with inorganic N fertiliz-
ers increased nitrification in soils, thereby directly reducing soil NH4

+-N content [16,61,62].
Additionally, as tobacco growth proceeded, there was a greater decrease in NO3

−-N con-
tent under the F treatment (from 38.72 to 22.75 mg kg−1 at 0–15 cm and from 31.19 to
19.75 mg kg−1 at 15–30 cm) than under biochar treatments. This may be explained by the
increased nitrification after biochar and inorganic N fertilizers were incorporated into the
soil, which increased the NO3

−-N source. Alternatively, N that is immobilized or adsorbed
N following short-term biochar amendment will eventually be released through microbial
turnover due to physical disruption, predation, or starvation when C-rich substrates are
depleted [16]. The decrease in soil MBN content (especially in the layer at 0–15 cm) from
the vigorous growth stage to maturity may promote N release via microbial turnover. The
higher microbial activity (supported by the increased MBC and MBN contents) under
biochar treatments as compared to the control (no-biochar) treatment may also increase N
turnover. Biochar application reduced inorganic N (NH4

+-N and NO3
−-N), but this was not

necessarily detrimental to crop production (Figure 5). Moreover, the short-term application
of biochar increased the inorganic N supply through remobilization of biochar-adsorbed
N in the later period of tobacco plant growth. Thus, short-term biochar application could
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reduce the N loss in the early growth stage and supply inorganic N (especially for NO3
−-N)

in the later growth stage of tobacco.
Overall, biochar incorporation can greatly increase soil total C and N pools over the

short term, especially in the biochar-supplemented layer, but does not enhance the soil
stable C pool because of increased soil LOC and microbial activity. The loss of C after the
short-term application of biochar should be quantitatively analyzed in order to determine
the C budget. Additionally, biochar application provided inorganic N (especially NO3

−-
N) at later growth stages, especially in the biochar-supplemented layer. Therefore, the
biochar placement method as well as the residual effects of N should be considered in land
management practices.

5. Conclusions

Biochar application increased soil TOC, TN, and labile C (DOC and ROC) contents, as
well as the CPMI and microbial activity (MBC and MBN), which do not favor C sequestra-
tion; it also reduced soil NH4

+-N and NO3
−-N contents in a tobacco field compared to the

no-biochar treatment, which therefore reduced the loss risks of inorganic N. These effects
were more obvious in the biochar-supplemented soil layer. Biochar application reduced
inorganic N (NH4

+-N and NO3
−-N) leaching in the early growth stage of tobacco plants,

whereas it supplied inorganic N (mainly NO3
−-N) in later growth stages. Finally, the

placement methods of biochar in soil influenced the concentrations of soil N fractions; band
placement of biochar especially promoted vertical infiltration of NH4

+-N and NO3
−-N.

These findings provide insight into how soil physicochemical properties can potentially be
improved by biochar application and placement method in continuously cropped fields
to maximize crop production. In the future, more works related to nutrient loss through
runoff (e.g., surface and subsurface) in biochar-applied soil (different placement methods)
are necessary.
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